

Software Reliability Growth Models: Systematic Descriptions and Implementations

I. Corro Ramos¹

E. Brandt², A. Di Bucchianico¹ and R. Henzen²

ENBIS7 Dortmund, Germany, September 26th, 2007

¹ Eindhoven University of Technology, ² Refis System Reliability Engineering

Outline

Introduction

Systematic description of software reliability growth models

Systematic implementations: software reliability tool

Conclusions

Questions

Red Screen of Death

Windows Boot Error
Windows Boot Manager has experienced a problem.
Status: 0xc000000f
Info: An error occurred transferring exectuion.
You can try to recover the system with the Microsoft Windows System Recovery Tools. (You might need to restart the system manually.)
If the problem continues, please contact your system administrator or computer nanufacturer.
SPACE=Continue

Software testing

TU/e

Reliability growth data

<u>TU/e</u>

Software reliability growth models (SRGM)

Statistics is needed exhaustive testing not always feasible

SRGM used to:

TU/e

- Resource planning
- Release decisions
- Certification
- Find one or two more (QE paper)

Typical statistical quantities of interest:

- Probability of no failure in a given time period
- Expected time until next failure
- Number of errors left

Problems

TU/e

- Insufficient documentation of the models
- More than 200 models known
- Out-dated algorithms

What is needed:

- Systematic description of SRGM (general methodology + algorithms)
- Support pre-selection of models
- Apply specific state-of-the-art algorithms for the models (convergence issues)
- Tool to perform analyses

Systematic description of software reliability growth models

- 1. Probability model
- 2. Trend analysis
- 3. Model estimation
- 4. Model validation
- 5. Prediction

Systematic description of software reliability growth models (Cont.)

- 1. Probability model
 - **1.1** Joint distribution of $\{N(t)\}_{t>0}$ and/or T_1, T_2, \ldots, T_n and/or X_1, X_2, \ldots, X_n (including (in)dependence structure)
 - 1.2 Model assumptions
 - 1.3 Interpretation of model parameters
- 2. Trend analysis
 - 2.1 ...

Ungrouped or exact data

Grouped or interval count data

SRGM description

TU/e

- **GOS** models: $T_1, T_2, ..., T_n$ order statistics of a sample $Z_1, Z_2, ..., Z_N$ with c.d.f. F_{θ} .
 - Jelinski-Moranda or EOS: $X_i \sim Exp(\lambda(N-i+1))$ i.i.d.
- ► **NHPP** models: $N(t_i) N(t_{i-1}) \sim Poisson(\lambda(t))$ independent with mean

$$\mathbb{P}\left[N(t_i) - N(t_{i-1}) = k\right] = e^{-(\Lambda(t_i) - \Lambda(t_{i-1}))} \frac{(\Lambda(t_i) - \Lambda(t_{i-1}))^k}{k}$$

- Goel-Okumoto: $\Lambda(t) = a(1 e^{-bt})$
- Yamada S-shaped: $\Lambda(t) = a(1 (1 + bt)e^{-bt})$

• Duane:
$$\Lambda(t) = \left(\frac{t}{\alpha}\right)$$

Systematic description of software reliability growth models (Cont.)

3. Parameter estimation

TU/e

- 3.1 Point estimation procedures for parameters (Maximum Likelihood and/or Least Squares)
 - 3.1.1 Data requirements
 - 3.1.2 Existence results for parameter estimates
 - 3.1.3 Performance of parameter estimators (bias, efficiency)
 - 3.1.4 Algorithms to compute parameter estimates
- **3.2** Confidence interval procedures for parameters (Maximum Likelihood and/or Least Squares)
 - 3.2.1 Distributional description of underlying estimators
 - 3.2.2 Algorithms to compute confidence intervals

Model estimation

TU/e

- The unknown number of errors *N* is also a parameter (standard asymptotic theory is not applicable)
- ML equations usually do not have closed-form solution (use specific algorithm for each model, see Knafl and Morgan for some NHPP models)
- Direct maximization may cause numerical problems (parameters of different order of magnitude (Yin, Trivedi paper))

Model (pre-)selection

TU/e

Data Requirements and Assumptions	Relative Importance	Geometric	Jelinski-Moranda	Littlewood-Verrall	Musa basic	Musa-Okumoto	Goel-Okumoto	Shick-Wolverton	Schneidewind	Yamada S-shaped	Duane
Data may be exact failure times (ungrouped data)	2	х	х	х	х	х	х	х	x	х	х
Data may be grouped failure times (interval count data)	2	х	х	х	х	х	х	х	X	х	х
Testing intervals may be of different length	3	х	х	х	х	х	х	х		х	х
Failures need not occur equally likely	2	x		х		x	x		x	х	х
Detection of faults may be dependent of each other	2	30-38		х	х	x	x		x	х	х
Failures need not be of the same severity	1	8 - 13		х	х	х	х	-	x	х	х
Detection rate depends on time (testing effort)	3			х	х	х	x		х	х	х
Detection rate depends on number of remaining defects	3	X	х					X	1	0-0	
Failures need not be repaired instantaneously	3		х		x		х	х	х	х	х
Imperfect repair of defects allowed	2		ĺ.							1	
Infinite number of errors allowed	2	0.0		Ì		х		Ĭ.		1.1	х

Systematic implementations: software reliability tool

- Existing packages do not make full use of state-of-the art statistical methodology
- Interface in Java (platform independent)
- Statistical computations in R (open-source free software)
- Communication: JRI and JavaGD libraries (Computational Statistics group, University of Augsburg)
- ► Financially supported by a grant of the Dutch Innovation Platform

Example

<u>TU/e</u>

Select Dat	ta Type		X
?	Times: Counts: Severity:	times Not Available	Cumulative times
	ooverney.		Grouped (interval data)
			C Ungrouped (exact data)
			C Counts
			C Cumulative Counts
			The last element of the data set is an observed error.
			Try to Autodetect Data Type
			Cancel

TU/e

	Observation Number	times
1	1	39
2	2	10
3	3	4
4	4	36
5	5	4
5	6	5
7	7	4
3	8	91
9	9	49
10	10	1
11	11	25
12	12	1
13	13	4
14	14	30
15	15	42
16	16	9
17	17	49
18	18	44
19	19	32
20	20	3
21	21	78
22	22	1
23	23	30
24	24	205
25	25	5
2/	00	100

TU/e

TU/e

Trend Tests			×
Variable:	Trend Test	Test Results	
Observation Number times Cumulative Times	F Laplace	Results Laplace Trend Test	•
		Data set: Joe_I.xls	
	Alpha:	Number of observations: 207	
	1	Variable: Cumulative Times	
	Perform Test	α: 1%	
		Test statistic: 6.67231	
		Lower Critical Value: -2.57583	
		Upper Critical Value: 2.57583	
		P-Value: 0.00000	
		Conclusion	
		The test statistic is small, which indicates that there is a significant growth in reliability.	
		Results Military Handbook 189 Trend Test	
		Data set: Joe_Lxls	
		Number of observations: 207	
		Variable: Cumulative Times	
		a: 1%	
		Test statistic: 611.94130	-1
		Lower Critical Value: 341.81800	
		Upper Critical Value: 489.69129	
	Copy rest Output	P-Value: 0.00000	•
		ОК	

Hodel 5	elect Wizard		
?)	Assumptions:	Preferred models:	Score
•	Data may be exact failure times (ungrouped data) Data may be grouped failure times (interval count data) Testing intervals may be of different length Failures need not occur equally likely Detection of faults may be dependent of each other	Geometric Jelinski-Moranda Littlewood-Verrall Musa basic Musa-Okumoto	0% 0% 0% 0%
	Failures need not be of the same severity Detection rate depends on time (testing effort) Detection rate depends on number of remaining defects Failures need not be repaired instantaneously	Shick-Wolverton	0% 0% 0% 0%
	Imperfect repair of defects allowed Infinite number of errors allowed Cancel Cancel Cancel		

TU/e

TU/e

TU/e

TU/e

Conclusions

TU/e

- Systematic description of software reliability growth models needed
- Model assumptions
- Numerical problems in model estimation
- Results for both grouped and ungrouped data
- Software reliability tool
- Programmed in Java (interface) and R (statistical computations)

TU/e Questions technische universiteit eindhoven

Advanced statistical issues

Model validation

TU/e

- · Standard goodness-of-fit test result inappropriate in general
- · Alternatively: conditional goodness-of-fit tests
- Unconditional goodness-of-fit tests for diverse subclasses of models, only for ungrouped data!
- Model prediction
 - One-sided confidence intervals
 - Asymptotic confidence intervals ($N \rightarrow \infty$ or $t \rightarrow \infty$)
 - Number of remaining errors, reliability (time to next error) of the system, predicted intensity function, etc . . .