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Abstract. We study concurrent processes modelled as workflow Petri
nets extended with resource constrains. We define structural criteria for
the correctness of such models based on traps and siphons. We also define
a behavioural correctness criterion called soundness: given a sufficient ini-
tial number of resources, all cases in the net are guaranteed to terminate
successfully, no matter which schedule is used. We prove some properties
of sound nets.
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1 Introduction

In systems engineering, coordination plays an important role on various lev-
els. Workflow management systems coordinate the activities of human workers;
the principles underlying it can also be applied to other software systems, like
middleware and web services. Petri nets are well suited for modelling and verifi-
cation of concurrent systems; for that reason they have proven to be a successful
formalism for Workflow systems (see e.g. [2]).

Workflow systems are modelled by so-called Workflow Nets (WF-nets), i.e.
Petri nets with one initial and one final place and every place or transition being
on a directed path from the initial to the final place. The execution of a case is
represented as a firing sequence that starts from the initial marking consisting of
a single token on the initial place. The token on the final place with no garbage
(tokens) left on the other places indicates the proper termination of the case
execution. A model is called sound iff every reachable marking can terminate
properly.

Originally, WF-nets were intended to model the execution of a single case.
In [8] and [9] we considered WF-nets modelling the execution of batches of cases
in WF-nets and defined the notion of generalised soundness: “States reachable
after starting with k tokens on the initial place will be able to reach the state
with only k tokens on the final place, for any natural number k”.

WF-nets are models emphasising the partial ordering of activities in the pro-
cess and abstracting from resources, e.g. machines or personnel, which may fur-
ther restrict the occurrence of activities. In this paper we consider the influence
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of resources on the processing of cases in Workflow Nets. Resources are claimed
and released during the execution, and the task of the designer is often seen as
producing a model that uses resources in the most efficient way. We concentrate
here however on fundamental correctness requirements for Resource-Constrained
Workflow nets (RCWF-nets): no redundancy in the system design, resource con-
servation laws (every claimed resource is freed before the case terminates and
no resource is created) and no deadlocks or livelocks that occur due to the lack
of resources. We introduce some structural correctness criteria for RCWF-nets,
extend the notions of soundness to RCWF-nets and give necessary conditions
for soundness expressed in terms of net invariants.

The rest of the paper is organised as follows. In Section 2, we sketch the basic
definitions related to Petri nets and Workflow nets. In Section 3 we introduce
the notion of Resource-Constrained Workflow Nets and consider some structural
correctness criteria for them. In Section 4 we define and investigate the notion
of soundness for RCWF-nets. We conclude in Section 5 with discussion of the
obtained results, related work and directions for future work.

2 Preliminaries

N denotes the set of natural numbers, Z the set of integers and Q the set of
rational numbers.

Let P be a set. A bag (multiset) m over P is a mapping m : P → N. The
set of all bags over P is NP . We use + and − for the sum and the difference
of two bags and =, <, >,≤,≥ for comparisons of bags, which are defined in a
standard way. We overload the set notation, writing ∅ for the empty bag and ∈
for the element inclusion. We write m = 2[p] + [q ] for a bag m with m(p) = 2,
m(q) = 1, and m(x ) = 0 for all x 6∈ {p, q}.

For (finite) sequences of elements over a set T we use the following notation:
The empty sequence is denoted with ε; a non-empty sequence can be given by
listing its elements between angle brackets. The Parikh vector −→σ of a sequence
σ maps every element t ∈ T to the number of occurrences of t in σ, denoted by−→σ (t).

Transition Systems A transition system is a tuple E = 〈S , Act,T 〉 where S
is a set of states, Act is a finite set of action names and T ⊆ S × Act × S is a
transition relation. A process is a pair 〈E , s0〉 where E is a transition system and
s0 ∈ S an initial state. We denote (s1, a, s2) from T as s1

a−→ s2, and we say
that a leads from s1 to s2. For a sequence of transitions σ = 〈t1, . . . , tn〉 we write
s1

σ−→ s2 when s1 = s0 t1−→ s1 t2−→ . . .
tn−→ sn = s2, and s1

σ−→ when s1
σ−→ s2

for some s2. In this case we say that σ is a trace of E . Finally, s1
∗−→ s2 means

that there exists a sequence σ ∈ T ∗ such that s1
σ−→ s2. To indicate that the

step a is taken in the transition system E we write s a−→E s ′.
Given two transition systems N1 = 〈S1, Act,T1〉 and N2 = 〈S2, Act,T2〉. A

relation R ⊆ S1 × S2 is a simulation iff for all s1 ∈ S1, s2 ∈ S2, s1Rs2 and
s1

a−→ s ′1 implies that there exists a transition s2
a−→ s ′2 such that s ′1Rs ′2.
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Petri nets A Petri net is a tuple N = 〈P ,T ,F+,F−〉, where:

– P and T are two disjoint non-empty finite sets of places and transitions
respectively, the set P ∪ T are the nodes of N ;

– F+ and F− are mappings (P × T ) → N that are flow functions from tran-
sitions to places and from places to transitions respectively.

F = F+ − F− is the incidence matrix of net N .
We present nets with the usual graphical notation.
Markings are states (configurations) of a net. We denote the set of all mark-

ings reachable in net N from marking m as R(m). The set of markings from
which marking m is reachable is denoted as S(m).

Given a transition t ∈ T , the preset •t and the postset t• of t are the bags
of places where every p ∈ P occurs F−(p, t) times in •t and F+(p, t) times in
t•. Analogously we write •p, p• for pre- and postsets of places. We overload this
notation further and apply preset and postset operations to a set B of places:
•B = {t | ∃ p ∈ B : t ∈ •p} and B• = {t | ∃ p ∈ B : t ∈ p•}. Note that •B and
B• are not bags but sets. We will say that node n is a source node iff •n = ∅
and n is a sink node iff n• = ∅. A path of a net is a sequence 〈x0, . . . , xn〉 of
nodes such that ∀ i : 1 ≤ i ≤ n : xi−1 ∈ •xi .

A transition t ∈ T is enabled in marking m iff •t ≤ m. An enabled transition
t may fire. This results in a new marking m ′ defined by m ′ def= m − •t + t•. We
interpret a Petri net N as a transition system/process where markings play the
role of states and firings of the enabled transitions define the transition relation,
namely m + •t t−→ m + t•. The notion of reachability for Petri nets is inherited
from the transition systems. For a firing sequence σ in a net N , we define •σ
and σ• respectively as

∑
t∈σ

•t and
∑

t∈σ t•, which are the sums of all tokens
consumed/produced during the firings of σ. So m σ−→ (m + σ• − •σ). We will
use the well-known Marking Equation Lemma:

Lemma 1 (Marking Equation). Given a finite firing sequence σ of a net N :
m σ−→ m ′, the following equation holds: m ′ = m + F+ · −→σ −F− · −→σ , or in other
words, m ′ = m + F · −→σ .

Note that the reverse is not true: not every marking m ′ that is representable
as a sum m + F · v for some v ∈ NT is reachable from the marking m.

We will write F .X for the set of vectors {F · x | x ∈ X }.

Traps and Siphons (see [5]) A set R of places is a trap if R• ⊆ •R. The trap is a
proper trap iff it is not empty. A set R of places is a siphon if •R ⊆ R•. The siphon
is a proper siphon iff it is not empty. Important properties of traps and siphons
are that marked traps remain marked and unmarked siphons remain unmarked
whatever transition firings would happen. As follows from the definition, traps
and siphons are dual by their nature.
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Invariants (see [10]) A place invariant is a row vector I : P → Q such that
I · F = 0. When talking about invariants, we consider markings as vectors. The
main property of place invariants is that for any two markings m1,m2 such that
m1

∗−→ m2 and any place invariant I holds: I ·m1 = I ·m2.
A transition invariant is a column vector J : P → Q such that F ·J = 0. For

any markings m,m ′ and firing sequences σ, γ, if m σ−→ m ′ and m
γ−→ m ′, then−→σ −−→γ is a transition invariant. This also means that for any firing sequence σ

such that m σ−→ m, −→σ is a transition invariant.

Workflow Petri nets In this paper we primarily focus upon the Workflow
Petri nets (WF-nets) [1]. As the name suggests, WF-nets are used to model the
processing of tasks in workflow processes. The initial and final nodes indicate
respectively the initial and final states of processed cases.

Definition 2. A Petri net N is a Workflow net (WF-net) iff:

1. N has two special places: i and f . The initial place i is a source place, i.e.
•i = ∅, and the final place f is a sink place, i.e. f • = ∅.

2. For any node n ∈ (P ∪T ) there exists a path from i to n and a path from n
to f . (We call this property the path property of WF-nets.)

We consider the processing of batches of tasks in Workflow nets, meaning that
the initial place of a Workflow net may contain an arbitrary number of tokens.
Our goal is to provide correctness criteria for the design of these nets. One natural
correctness requirement is proper termination, which is called soundness in the
WF-net theory. We will use the generalised notion of soundness for WF-nets
introduced in [8]:

Definition 3. We say that a marking m ∈ R(k [i ]) in a WF-net N terminates
properly iff m ∗−→ k [f ].
N is k -sound for some k ∈ N iff for all m ∈ R(k [i ]), m terminates properly.
N is sound iff it is k-sound for all k ∈ N.

We will use terms initial and final markings for markings k [i ] and k [f ] re-
spectively (k ∈ N).

3 Resource-Constrained Workflow Nets

Workflow nets specify the handling of tasks within the organisation, factory,
etc. without taking into account resources available there for the execution. We
extend here the notion of WF-nets to include the information about the use of
resources into the model.

A resource belongs to a type; we have one place per type in the net, where
the resources are located when they are free. The resources become part of case
tokens when they are occupied. We assume that resources are durable, i.e. they
can be neither created nor destroyed, i.e. they are claimed during the handling
procedure and then released again. By abstracting from the resource places we
obtain the WF-net that we call production net.
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Definition 4. We will say that a WF-net N = 〈Pp ∪Pr ,T ,F+
p ∪F+

r ,F−p ∪F−r 〉
with initial and final places i , f ∈ Pp is a Resource-Constrained Workflow net
(RCWF-net) with the set Pp of production places and the set Pr of resource
places iff

– Pr 6= ∅,
– Pp ∩ Pr = ∅,
– F+

p and F−p are mappings (Pp × T ) → N,
– F+

r and F−r are mappings (Pr × T ) → N, and
– Np = 〈Pp ,T ,F+

p ,F−p 〉 is a WF-net, which we call a production net of N .

Note that introducing resource places will only limit the behaviour of the
production net:

Lemma 5. Let N = 〈(Pp ∪ Pr ),T ,F+,F−〉 be an RCWF-net with Np as its
production net. Then R = {(mp + mr ,mp) | mp ∈ NPr ∧ mr ∈ NPp )} is a
simulation relation.

We start with discussing structural correctness criteria for WF-nets based
on traps and siphons and then show how these criteria can be adapted to the
RCWF-nets.

3.1 Redundant and Persistent Places

In [9] we introduced notions of redundant and persistent places in WF-nets and
showed how to find them with the use of siphons and traps. Here we give a brief
summary of the results from [9] we need here and use the notions of redundancy
and persistency to analyse structural correctness of RCWF-nets.

A logical requirement for the correct design of an RCWF-net is non-redundan-
cy, namely: every transition of the net can potentially fire and every place of
the production net can potentially obtain tokens, provided that there are enough
tokens on the initial place i and resource tokens. Production net N1 in Fig. 1
does not satisfy this requirement because transition d can never fire and place s
can never get tokens. So d and s are redundant. The resource places are, contrary
to the production places, redundant by their nature, since the resource tokens
cannot be created by the production net.

On the other hand, it should be possible for all places of the production net
(except for f ) to become unmarked again—otherwise the net is guaranteed to be
not sound, as e.g. net N2 in Fig. 1—place s can obtain tokens but it can never
become unmarked after that, i.e. this place is persistent. Similarly, there should
be no persistent transition in the production net, i.e. a transition producing a
token to a non-final place of the production net which cannot be “moved” to a
final place later on. The resource places, on the other hand, are persistent, since
every claimed resource should have been released before the production process
is completed. In formal terms:

Definition 6. Let N = 〈P ,T ,F 〉 be a WF-net.
A place p ∈ P is non-redundant iff there exist k ∈ N and m ∈ NP such that
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Fig. 1. Redundant and persistent places

k [i ] ∗−→ m ∧ p ∈ m.
A place p ∈ P is non-persistent iff there exist k ∈ N and m ∈ NP such that
p ∈ m ∧m ∗−→ k [f ].
A transition t is non-redundant iff there exist k ∈ N and m ∈ NP such that
k [i ] ∗−→ m t−→.
A transition t is non-persistent iff there exist k ∈ N and m,m ′ ∈ NP such that
m t−→ m ′ ∗−→ k [f ].

It is easy to prove that the following correlation for places and transitions
takes place [9]:

Lemma 7. (1) A WF-net N has no redundant places iff it has no redundant
transitions. (2) A WF-net N has no persistent places iff it has no persistent
transitions.

3.2 Structural Correctness Requirements for RCWF-Nets

Non-redundancy and non-persistency are behavioural properties. They imply
though the following restrictions on the structure of the net: all proper siphons
of the net should contain i and all proper traps should contain f . If N contained
a proper siphon without i , the transitions consuming tokens from places of that
siphon would be dead, no matter how many tokens are inserted into i . Similarly,
if N contained a trap without f , the net could not terminate properly. It is
not surprising that the absence of traps and siphons is a necessary condition
for the correctness of the design. What is more interesting is that the absence
of such siphons and traps is a sufficient condition for the absence of redundant
and persistent places respectively: if a net has a redundant place, there exists
a proper siphon without i , and if a net has a persistent place, there exists a
proper trap without f , i.e. these behavioural and structural characteristics are
equivalent for WF-nets [9]:

Theorem 8. Let N = 〈P ,T ,F 〉 be a WF-net. Then the following holds:
(1) p ∈ P \ {i} is a redundant place iff it belongs to a siphon X ⊆ (P \ {i}).
(2) p is a persistent place iff it belongs to a trap X ⊆ (P \ {f }).
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Fig. 2. An RCWF-net with dependent resource places

One can compute the largest siphon X in P \ {i} in a standard manner [12]:
initialize X with P \ {i} and remove places that belong to t• for some t such
that t 6∈ X • until the fixed point is reached. The largest trap not containing f
can be computed with a similar algorithm.

Thus, let an RCWF-net N with an underlying production net Np be given.
To check the structural correctness requirements on N , we first check that the
production net Np has no redundant and persistent places, i.e. there is no any
siphon in (Pp \ {i}) and there is no any trap in (Pp \ {f }). If redundant or per-
sistent places are found, the error is reported to a designer. The production net
without redundant and persistent places does not have redundant or persistent
transitions either. We will call the production net that has neither redundant
nor persistent places structurally correct.

Next, we check that all the resource places are redundant and persistent in net
N . If this is not the case, there is an error in the design: resources can be created
or destroyed during the processing. If the design is correct w.r.t. this criterion, we
can proceed further with using different interpretations of “design correctness”,
depending on whether the resources are supposed to be independent or not. From
the modelling point of view, resource dependence means that resource items may
render to resource items of another type during the processing. We illustrate the
notion of resource dependence with net N in Figure 2. A firing of transition b
moves a resource from the resource place r1 to the resource place r2 while firing of
transition c moves a resource from the resource place r2 to the resource place r1.
Thus, during the processing of a task in the net (N , [i ]+ [r1]+ [r2]) the resources
r1 and r2 trade places. We call such resources dependent. Note that r1 (r2) is
redundant and persistent in net N , but it is neither redundant nor persistent in
the net obtained from N by projecting out place r2 (r1 respectively).

We will say that a resource r is independent of other resources in an RCWF-
net N = 〈Pp ∪Pr ,T ,F+

p ∪F+
r ,F−p ∪F−r 〉 with a structurally correct production

net Np iff projecting out all resource places except for r leads to an RCWF-net
where place r is a resource place again, i.e. it is both redundant and persistent.
We expect the designer to indicate which resource places in the net are supposed
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to model independent resources; then the check whether they are independent
indeed can be easily done by calculating traps and siphons.

4 Soundness of Resource-Constrained Workflow Nets

Soundness in WF-nets is the property that says that every marking reachable
from an initial marking with k tokens on the initial place terminates properly,
i.e. it can reach a marking with k tokens on the final place, for an arbitrary
natural number k . In the RCWF-net, the initial marking of the net is a marking
with some token on the initial place and a number of tokens on the resource
places. Proper termination assumes then that the resource tokens are back to
their resource places and all tasks are processed correctly, i.e. all the places of
Np except for f are empty. Moreover, we want the net to work properly not only
with some fixed amount of resources but also with any greater amount. The
extended definition of soundness reads thus as follows:

Definition 9. Let N be an RCWF-net with marking m ∈ R(k [i ] + mr ) where
mr ∈ NPr . We say that (N ,m) terminates properly iff m ∗−→ (k [f ] + mr ).
N is (k ,mr )-sound for some k ∈ N,mr ∈ NPr iff for all m ∈ R(k [i ] + mr ),
(N ,m) terminates properly.
N is k -sound iff there exists mr ∈ NPr such that it is (k ,m ′)-sound for all
m ′ ≥ mr .
N is sound iff there exists mr ∈ NPr such that it is (k ,m ′)-sound for all k ∈
N,m ′ ≥ mr .

Any (finite) firing sequence of the production net is possible in the RCWF-
net if we take a sufficiently large resource marking. Since we require a sound
RCWF-net to work properly for all “large” resource markings, the production
net has to be sound as well:

Theorem 10. Let N be an RCWF-net. (1) If N is k-sound, the underlying
production WF-net Np is k-sound as well. (2) If N is sound, Np is sound, too.

Proof. (1) Assume N is k -sound (i.e. it is (k ,m ′
r )-sound for all markings m ′

r ∈
NPr such that m ′

r ≥ mr , for some marking mr ∈ NPr ) while Np is not k -sound.
Then there exists a marking m such that k [i ] σ−→Np m for some firing sequence σ

and m does not terminate properly, i.e. m 6 ∗−→Np k [f ]. Now consider a marking
m ′

r = mr + mσ where mσ is the projection of the marking •σ in N on the
places Pr . Then k [i ] + m ′

r
σ−→N m + m ′′

r , where m ′′
r ∈ NPr . Since N is k -sound,

m + m ′′
r

∗−→N k [i ] + m ′
r . By Lemma 5, m ∗−→Np k [i ], which contradicts to our

assumption. Thus k -soundness of N implies k -soundness of Np .
(2) can be proven analogously. ut

Thus the soundness of the underlying production net is the necessary condi-
tion of soundness of the RCWF-net. We do not discuss the decision procedure
for soundness of WF-nets here but refer the interested reader to [9].
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Another consequence of the requirement to work correctly for all “large”
markings is that any transition invariant of the closure of the production net is
a transition invariant of the the closure of the RCWF-net N , where the closure
is the net obtained by adding a closing transition tc such that •tc = [f ] and
t•c = [i ] RCWF-net.

Theorem 11. Let N be a sound RCWF-net such that its production net Np

has no redundant transitions, and N ′ and N ′
p be their respective closures. Then

for any vector x ∈ ZT holds:

F ′p · x = 0 ⇔ F ′ · x = 0. (1)

Proof. (⇒): Let F ′p · x = 0 for some x ∈ ZT . First we prove that there exist
nonempty firing sequences σ1, σ2 in N ′

p such that ~σ1 − ~σ2 = x . Indeed, since Np

has no redundant transitions, for every transition t there exist a firing sequence
σt and k ∈ N such that k [i ] σt−→N ′

p
mt

t−→N ′
p

m ′
t . Then we can choose σ1 as the

concatenation of the sequences (σt t)x(t) for t such that x (t) > 0 and (σt)x(t)

for t such that x (t) < 0. For σ2 we choose the concatenation of the sequences
(σt)x(t) for t such that x (t) > 0 and (σt t)x(t) for t such that x (t) < 0. Thus
~σ1 − ~σ2 = x and σ1, σ2 are firable from the marking k =

∑
t∈T ktx (t).

Consider markings m1,m2 such that k [i ] σ1−→N ′
p
m1 and k [i ] σ2−→N ′

p
m2. Since

F ′p · x = 0 and ~σ1 − ~σ2 = x , we have F ′p · ~σ1 = F ′p · ~σ2. By the Marking Equation
Lemma, m1 = k [i ] + F ′p · ~σ1 = k [i ] + F ′p · ~σ2 = m2. We set m = m1 = m2.

Since N is sound, Np is sound as well (Theorem 10), and thus there exists
γ such that m

γ−→N ′
p

k [f ]. We can take a resource marking mr large enough

so that σ1γ, σ2γ are firable in (N ′, k [i ] + mr ). Thus k [i ] + mr
σ1−→′

N m + m ′
r

and k [i ] + mr
σ2−→′

N m + m ′′
r . Since N is sound and we assume mr to be large

enough, (N ,m + m ′
r ) and (N ,m + m ′′

r ) terminate properly, i.e. k [i ] + mr
σ1−→′

N

m + m ′
r

γ−→′
N k [f ] + mr and k [i ] + mr

σ2−→′
N m + m ′′

r
γ−→′

N k [f ] + mr . By
the Marking Equation Lemma, we have then F ′ · (−−→σ1γ) = F ′ · (−−→σ2γ). Then
F ′(~σ1 − ~σ2) = 0, i.e. F ′ · x = 0
(⇐): trivial, since F ′p is a submatrix of F ′. ut

Thus, for any sound RCWF-net, the solution space of the equation F ′p ·x = 0
is a subset of the solution space of the equation F ′r · x = 0. On the other hand,
for any RCWF-net, if F ′p · x = 0 ⇔ F ′ · x = 0 holds we can conclude that
if no deadlock or livelock caused by the lack of resources occurs then the net
terminates properly:

Theorem 12. Let N be an RCWF-net such that its production net Np has no
redundant transitions, and for the closure nets N ′ and N ′

p holds that for any
vector x ∈ ZT , F ′p ·x = 0 ⇔ F ′ ·x = 0. Then for any k ∈ N,mr ∈ NPr ,m ′ ∈ NP ,
k [i ] + mr

∗−→ k [f ] + m ′ implies mr = m ′.

Proof. Follows directly from Theorem 11 and Theorem 10. ut
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Now we will investigate properties of sound RCWF-nets w.r.t. place invari-
ants. First, we define an “extended reachability” relation and show that this
relation has a simple algebraic characterization for sound RCWF-nets.

Definition 13. The extended reachability relation Ã⊆ NP×NP between mark-
ings of an RCWF-net N is defined by
m Ã m ′ ⇔ ∃ k ∈ N,mr ∈ NPr : m + k [i ] + mr

∗−→ m ′ + k [f ] + mr .

Note that ∗−→⊆Ã (take k = 0 and mr = ∅).
For sound RCWF-nets, Ã turns out to be equality modulo the F -lattice:

Theorem 14. Let N be a sound RCWF-net without redundant places and let
m,m ′ ∈ NP . Then m Ã m ′ ⇔ m −m ′ ∈ F .ZT .

Proof. (⇒): Since N is sound, k [f ] = k [i ] + F · x for some x ∈ NT (Lemma 1).
By Definition 13 and Lemma 1, m +mr + k [i ] = m ′+mr + k [f ] +F · y for some
y ∈ NT . Hence, m = m ′ + F · (x + y).
(⇐): Suppose m − m ′ ∈ F .ZT , so there exist x , y ∈ NT such that m − m ′ =
(F+ − F−) · (y − x ). Thus, m + F+ · x + F− · y = m ′ + F− · x + F+ · y .

Since Np has no redundant places, we can find k > 0,mr ∈ NPr ,m1 ∈ NP

such that k [i ] + mr
∗−→ F− · (x + y) + m1. Note that every firing sequence σ

with Parikh vector y is enabled in F− · (x + y) + m1, and F− · (x + y) + m1
σ−→

F− · x + F+ · y + m1. Since N is sound and k [i ] + mr
∗−→ F− · x + F+ · y + m1,

we deduce F− · x + F+ · y + m1
∗−→ k [f ] + mr .

On the other hand, m +k [i ]+mr
∗−→ m +F− · (x +y)+m1

∗−→ m +F+ ·x +
F− ·y +m1 = m ′+F− ·x +F+ ·y +m1. Since F− ·x +F+ ·y +m1

∗−→ k [f ]+mr ,
m + k [i ] + mr

∗−→ m ′ + k [f ] + mr , i.e. m Ã m ′. ut
Now we can prove that for every resource place r there is a place invariant

where r has a non-zero weight while i and f do have zero-weights. Let I be the
set of all place invariants of a net N .

Theorem 15. Let N be a sound RCWF-net and r ∈ Pr . Then there exists a
place invariant I ∈ I such that I (i) = I (f ) = 0 and I (r) 6= 0.

Proof. Since [i ]+mr
∗−→ [f ]+mr for some mr ∈ NPr , I (i) = I (f ) for any I ∈ I.

Suppose that for any I ∈ I : I (i) = 0 ⇒ I (r) = 0. Since I is a linear space over
Q, there exists k/` ∈ Q such that for any place invariant I ∈ I : I (r) = (k/`)I (i).
Since F .QT is the subspace orthogonal to I, k [i ]− `[r ] ∈ F .QT . By multiplying
out the denominator, we deduce the existence of k , ` ∈ N such that k [i ]− `[r ] ∈
F .ZT . By Theorem 14, we have k [i ] Ã `[r ], so there exist K > 0,Mr ∈ NPr such
that (k + K )[i ] + Mr

∗−→ `[r ] + K [f ] + Mr . By the soundness of N , there exists
a marking M ′

r ∈ NPr such that any marking reached from (k +K )[i ] + Mr + M ′
r

can reach (k + K )[f ] + Mr + M ′
r . Hence, `[r ] + K [f ] + Mr + M ′

r can reach
(k + K )[f ] + Mr + M ′

r . But `[r ] + K [f ] + Mr + M ′
r contains only resource places

and the sink place f , so it is a deadlock. This contradicts our initial assumption,
thus proving the theorem. ut
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In Section 3 we formulated a criterion of place independence based on a check
of traps and siphons. Theorem 15 allows a different characterization of indepen-
dence as well as additional correctness criteria. The place invariants of a net N
constitute a linear space I. If N is a sound RCWF-net, the invariants satisfy
I (i) = I (f ) and we can decompose I into the subspaces IP , the production
invariants, and IR, the resource invariants satisfying I (i) = I (f ) = 0. If the
resources are independent, we can further decompose IR into subspaces Ir for
r ∈ Pr such that ∀ I ∈ Ir , q ∈ Pr : I (q) 6= 0 ⇔ q = r . A desirable property
for RCWF-nets with independent resources is the existence of bases for the Ir
having nonnegative coefficients. This property indicates that resources can only
become available when released after being claimed earlier. RCWF-nets with
this property are connected to the S4PR nets of [4].

5 Conclusion

We have introduced an extension of Workflow nets: Resource-Constrained Work-
flow nets (RCWF-nets) and given a number of necessary conditions of design
correctness for these nets. One condition is a structural correctness criterion that
guarantees the absence of redundant and persistent places and transitions and
it can be checked by using traps and siphons. The second criterion postulates
that the transition invariants of the closure of a sound RCWF-net and of its
underlying production net are the same. This criterion guarantees resource con-
servation. We showed that soundness implies the existence of a resource place
invariant for all resource places, which relates sound RCWF-nets to S4PR nets.
We also defined resource dependencies and discussed how to discover them in a
model.

Related work Modelling the use of resources by Petri nets and analyzing these
models is an active research field. We mention research on flexible manufacturing
systems (FMS) (see [7, 4, 6, 11]), where the construction of appropriate schedules
for such models is the key issue. Our approach emphasises the construction of
robust nets that are free of deadlock irrespective of the number of resources
available beyond a certain minimum.

In [3] the authors consider structural analysis of Workflow nets with shared
resources. Their definition of structural soundness corresponds approximately
to the existence of k ,mr such that the net is (k ,mr ) sound. Since we consider
systems where the number of cases going through the net and the number of
resources can vary, and the system should work correctly for any number of
cases and resources, the results of [3] are not applicable to our case.

Future work The RCWF-nets satisfying the correctness criteria defined in
this paper are not sound only if they contain a deadlock or a livelock due to
a lack of resources during the production process. Soundness is decidable for
RCWF-nets with a fixed number of resources by using techniques from [9] but
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it is still a question whether soundness is decidable for general RCWF-nets.
Another research question is finding structural patterns for building sound-by-
construction RCWF-nets.
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