
Consistency in Model Integration

Kees van Hee 1, Natalia Sidorova 1, Lou Somers1, and Marc Voorhoeve1

1 Eindhoven University of Technology, Dept. Math and Comp. Science, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

{k.m.v.hee, n.sidorova, l.j.a.m.somers, m.voorhoeve}@tue.nl

Abstract. We present a UML-inspired approach to modeling and analysis of
complex systems. Different stakeholders of a system may have different views,
modeled with different techniques. It is essential that the various aspect mod-
els (use cases and life cycles) provide a complete and consistent description of
the total system. Our approach based on the composition and decomposition of
(colored) Petri nets allows the integration of aspect models. We illustrate our
approach by a case study.

1 Introduction

The analysis and engineering of complex systems cannot be performed by a single
person. So, several system architects are involved, modeling various subsystems.
Also the system will have several stakeholders with different views, which also re-
quires various models for being able to validate the proposals of the architects. Dif-
ferent aspect models require different modeling techniques. UML [3] offers a wide
range of such techniques, most of them being diagram techniques. A UML descrip-
tion of a moderate-size system contains hundreds of diagrams of various kinds. Each
diagram models one or more aspects of the considered system. By concentrating on a
few aspects at a time, validation by stakeholders becomes possible.

As the project proceeds, the aspect models will be integrated, while adding detail
and rigor. This may lead to the discovery of inconsistencies. Early detection of such
inconsistencies will help to reduce development costs, so the software industry is
hard-pressed for methods to determine and preserve the consistency between the
various models. We believe that there is no “silver bullet” for achieving this. The
“honest” way is by a single model that integrates all aspects modeled so far. From
this integrated model, the aspect models are derived as projections. If and only if
such an integrated model can be found, the models made so far are consistent.

In this paper, we indicate how integrated models can be derived from aspect mod-
els in early stages of the development process. The key ingredients are Petri nets
with synchronization and projection operators. We start with various aspect models
that are combined by synchronization, resulting in an integrated model. From it,
scenario's can be derived by projection in order to allow validation. There exist many

tools that support such an approach, some of them, e.g. ExSpect [7] and CPN [9],
allow to add pre- and postconditions, resulting in a functional prototype.

The synchronization operator is closely related to the call mechanism for meth-
ods; the model thus can be used to support the design and implementation phases.
We illustrate our proposal with a case study of the well-known library system, which
is just large enough to illustrate the key aspects of our method.

In section 2, we introduce WF nets, a subclass of Petri nets used for our models
and our operators for composing and decomposing them. In section 3, we describe
the modeling, verification, and validation process. In section 4, we illustrate our
process with a library case study, and we also show how our models can be extended,
adding more functionality. We conclude with a comparison with related work.

2 Petri net models, synchronization and projection

We assume the reader has some knowledge of “classical” place-transition nets (bi-
partite directed graphs), markings (distributions of tokens in places) and the inter-
leaving firing rule. A transition may fire in marking M iff it can consume the neces-
sary tokens from M; as a result of this firing, a new marking M' is reached, consist-
ing of M with the consumed tokens removed and produced tokens added. A net de-
fines a reachability relation between its markings: a marking M' is reachable from a
marking M iff a finite sequence of firings exists starting in M and ending in M'.

Marked nets are too general for modeling. In [1], the class of WF (workflow) nets
is defined, which can be compared to UML activity diagrams. A WF net possesses a
unique source and a unique sink place. Every node of a WF net, seen as a directed
graph, lies on a directed path from the source to the sink place. A WF net possesses
an initial marking (one token in the source place) and a final marking (one token in
the sink place). It is sound iff (1) from the initial marking it is possible for every
transition t to reach a marking where t may fire and (2) the final marking is reach-
able from any marking M that is reachable from the initial marking. Sound WF nets
are the very nets used for modeling use cases and object life cycles, c.f. [4].

i b

a

d

c
e

f

p

q

r

Fig. 1. Example of a WF net

In Fig. 1 a WF net is depicted. The places i,f are respectively the source and sink
places. This net is sound, which can be verified by examining the reachable mark-
ings. For example, from the initial marking, a marking can be reached with only two

tokens in p (e.g. by firing b, then c then twice d). From this marking, it is possible to
reach the final marking by firing a, then e.

For convenience, we omit in this paper the source and sink place from the WF
nets. Thus a WF net has one or more start transitions (without input places) and end
transitions (without output places). The firing of transitions models the occurrence
of events. If a transition bordering the source place fires, a “create” event occurs,
since in a sound net this transition does not consume any tokens. Analogously, de-
stroy events are firings of transitions bordering the sink place. The soundness prop-
erty now states that whatever is caused by a single creation can eventually be undone
by a single destruction.

For Petri nets there are several methods for analyzing the behavior. Some of these
methods use only the structure of the Petri net and not the underlying state space. T-
invariants provide such a method. A T-invariant can be computed by standard linear
algebra and can be related to sequences of transitions that return the system to the
state before the sequence was executed. We use T-invariants in the validation proc-
ess.

The tokens in the places refer to objects; every place contains references to objects
of one and the same class. Initially, we abstract from the attributes of the objects,
allowing “classical” analysis of our nets. Eventually, our models will consist of high-
level nets, e.g. colored nets [9], specifying pre- and postconditions for the firing of
transitions. A transition will fire only if its consumption satisfies the precondition; it
will then produce tokens in accordance with the postcondition.

We add operators for composing and decomposing net models, which are essential
for the integration of models and for checking their consistency. The composition
operator is called synchronization and is indicated by a dotted line connecting two
transitions. When transitions synchronize in a high-level net, data may be exchanged
in either direction. In Fig. 2, an example net with synchronization is shown at the
left. The synchronization result is the net in the middle, which is obtained by transi-
tion fusion: the transitions participating in a synchronization are glued together.
This mechanism resembles the synchronization within process calculi like CCS [10].
Synchronization between sound nets does not always result in a sound net; the mid-
dle net in Fig. 2 is not sound, since transition cd cannot fire.

b

a

c

d

p

q

r

 r r

cd q

ab

p

cd q ab

p

Fig. 2. Example of synchronization and projection

The decomposition operator is called projection. Projection of a net w.r.t. a subset
S of the net's places is obtained by removing all the places not in S plus the edges

leading to and from them. Transitions that become isolated are removed as well. The
right-hand net shows the projection of the middle net w.r.t. the set {p,q,r}. If N is a
connected net, P its set of places, and S ⊆ P, then N can be obtained by synchroniz-
ing its projections w.r.t. S and P \ S.

When creating WF nets for use cases, the transitions describe events that can oc-
cur. If a net models an object life cycle, the transitions represent methods of the
object's class. In the design phase, the synchronization of methods will result in one
of them calling the other. The following rule describes the essence of our approach:
deriving an integrated model from aspect models and checking their consistency:
• The integrated model is derived from the aspect models (use cases and life cy-

cles) by synchronization.
• All aspect models should be derivable from the integrated model by projection.

3 Modeling process

We focus on deriving an integrated logical model that captures the functionality of
the system, we have left out other engineering activities. In general, we have a suc-
cession of elicitation, modeling, verification and validation steps. We split the mod-
eling step into three steps: process modeling, data modeling, and transformation
modeling. In the elicitation steps the stakeholders play an important role. There are
several techniques to obtain useful information from a group of stakeholders. Well-
known are “brown paper sessions” where stakeholders write down individually the
most important items, like issues, functions, scenario's, or objects. These items are
stuck to a brown paper board and grouped by the moderator into related groups.
Then the items are discussed and terminology is fixed. These sessions are repeated
with different topics. Group decision support systems [11] provide computerized
support. The modeling step is done by system architects, who also perform verifica-
tion, possibly “on the fly” during modeling using “correctness by construction”,
sometimes after modeling (like verifying the integrated model). After modeling and
verification comes validation with the help of stakeholders. As a result, a redesign
may be needed.

The modeling, verification and validation steps are iterated until the stakeholders
are satisfied with the logical model. At some stage when use cases have become
stable, user interface designers can start to define screens containing forms and but-
tons. After having established the logical model, it is extended to accommodate for
the designed user interface. We will describe the successive phases and steps in more
detail. Remember that stakeholders are involved in phases 1 and 6 only.

Step 1: Elicitation
(a) Make a list of use cases, indicated by a name and some additional comments by

the stakeholders.
(b) Define some allowed and explicitly forbidden scenario's (event sequences) for

each use case.
(c) Identify the classes of objects that play a role in the scenario's.

(d) List relationships between object classes. The existence of these relationships is
triggered by use case events that involve more than one object.

(e) Collect relevant attributes for the objects.
(f) Find static constraints that the system's state (the set of all living objects) should

satisfy at all time.

Step 2: Process modeling
(a) Create WF nets for the use cases. Each WF net should combine the allowed

scenarios for one use case and disallow the forbidden ones.
(b) Create WF nets for the object life cycles. The transitions are the methods of the

classes.
(c) Integrate the workflows by identifying the transitions in use cases and object life

cycles that must be synchronized. If necessary, adapt use cases and/or life cycles.

Step 3: Data modeling
(a) Construct the class model with relationships and attributes. We prefer functional

relationships.
(b) Formalize the static constraints. Use logical predicates that can be translated

back into natural language with increased precision. Add other common-sense
static constraints.

(c) Define global variables. For each object class we define a global variable, called
object store or object file. All objects that are active in the system reside in an
object store. Also, other global variables like the current date or time are de-
fined.

Step 4: Transformation modeling
(a) Combine the process model and the data model. Establish the relationships

between object classes and methods. For each class we determine whether the
methods create, read, update, or destroy objects from it (a CRUD-matrix).

(b) Determine the input and output parameters of the methods: places, global vari-
ables and additional parameters, e.g. for the user interface.

(c) Determine pre- and postconditions of the methods. The end product is the high-
level integrated model.

Step 5: Verification
(a) Check the soundness of all workflows: use cases, object life cycles, and the inte-

grated model.
(b) Check that all use case nets can be derived from the integrated model by projec-

tion.
(c) Check that each relationship in the class model is created somewhere.
(d) Check the preservation of the static constraints. Some constraints may be tempo-

rarily violated during the execution of a certain sequence of transitions (a trans-
action) but they should be valid after the transaction.

(e) If necessary, return to modeling.

Step 6: Validation
(a) Validate the integrated model by spawning new scenarios from T-invariants of

the nets.

(b) Validate all static constraints.
(c) Present the scenario's with data transformations added.
(d) If necessary, return to one of the modeling steps.

Step 7: User interface integration
(a) Make additional classes and methods to accommodate the user interface.
(b) Synchronize the additional methods with the existing ones. If necessary, adapt

the logical model.

The steps are not executed in the order presented; it is important that verifications
and validations are effectuated as soon as possible in order to reduce costs. For ex-
ample, step 5a should immediately succeed steps 2abc for the modeled WF nets.
Usually, the nets created in 2ab can be verified by hand; the net in 2c often needs
tool support [14]. Step 6a can succeed step 2c after verification. Indeed, we have
drawn a rather sizable WF net depicting the described process. Afterwards, the logi-
cal model is translated into specifications for software components. These compo-
nents can be constructed from scratch or the can be assembled from existing compo-
nents. For component selection, the scenario's are helpful.

The steps above apply to systems of moderate size. Large systems should be split
into subsystems to which the above steps apply. By synchronization the subsystems
are integrated as suggested in section 5 of this paper. This extra integration step
should be verified and validated similarly to the description above, concentrating on
the interface between the subsystems. We will illustrate the above approach with an
example case study.

4 Case study: a library system

In the case study we consider a more or less standard library system. Stakeholders
are personnel and members that lend books. Several copies of the same book may
exist. Members can make reservations for books that are not available. We focus on
the modeling steps, in particular the process modeling step. Therefore we treat the
other steps rather superficially.

4.1 Elicitation

Library member

maint
resv

order

lend

personnel

<< may lead to>>

Fig. 3. Library use case diagram

Fig. 3 depicts typical use cases like lending a book, reserving and then lending a
book, ordering books, and maintaining the member file and book catalogue. In Fig. 4
a loan/reserve use case net is given. The initial transition (event) is s, which creates a
token in place b denoting the reservation by a member of a book in the catalogue. If
the book is available, a loan is started (transition l1). If the book is not available, the
token stays in place b and if a matching book is returned, the reservation object can
go to the notified state d by transition n (notification). From this state, transition l2
can occur resulting in a loan (a token in f). A lent book can get lost (transition lo) or
it will be returned (transition re).

s

c

n

l1

re d b f l2

lo

Fig. 4. Request / lend / reserve use case

Similar use cases can be found for maintenance and ordering activities. This is as
complicated as it gets in our library case, but for other systems a use case may exhibit
concurrent behavior, so it may have states that are distributed over various places. So
far we encountered two object classes, reservations in places b,d, and loans in place f.
When treating the other use cases, we encounter members, book orders, book copies,
and book titles. It is necessary to distinguish book titles and copies, since several
copies can exist for the same title. We determine the following classes (see Fig. 5):

MEM library member
RSV reservation of title by member
LOAN loan of copy by member
TITLE book title
BCPY copy of title
ORD order of title

MEM LOAN

RSV

BCPY

*

1

1 *

*

*

*

ORDTITLE

1

1

11*

Fig. 5. Relations between object classes

4.2 Process modeling

The next phase is the modeling of each object's life cycle. A life cycle is composed of
create, update and destroy methods, drawn as transitions. The objects correspond to
tokens within places; an object class ranges over a set of places. The simple MEM
objects only have one state a. Other objects may have more states, e.g. BCPY objects
may be available for lending (h) or not (g).

Life cycle modeling starts with projecting the use cases onto the places from one
class. The transition l1 of our example use case thus becomes split into ln (creating a
loan), regl (recording the loan of a book title) and stal (creating a loan object). By
concentrating on one class, one is likely to find “gaps” in the life cycles found so far,
which need to be plugged by adding transitions.

upd

a

star

b

rti

term join

car

ln

d

noti

frb

obso

h
regl

stac

regr

g
lost

stal

f
starl

lose

retu

k nre resd

i

stao

cano rec

j rem add

otit rtit

RSV LOAN

TITLE

MEM
BCPY

ORD

w

v

z

p

r

v

y

t

x

z

Fig. 6. Integrated library system model

The integrated model in Fig. 6 is obtained by synchronizing the transitions from life
cycles that have been split (and some transitions that were added). Every life cycle
produced so far should be obtainable by projection from the synchronization result. If
not, the inconsistencies should be repaired (and discussed with the stakeholders).

The dashed lines indicating synchronizations are labeled; we will use these labels
to identify the data exchanged in synchronization. Also, some transitions communi-
cate with transitions from e.g. the user interface layer. These transitions have thick
borders. The transitions, indicated by mnemonics, are explained in Table 1.

Table 1. Mnemonics for the transitions in the model

MEM join start membership
 upd update member details
 rti request title
 term terminate membership
RSV star start reservation
 ln immediate loan
 car cancel reservation
 noti notify member
 frb fetch reserved book
LOAN stal start immediate loan
 starl start reservation loan
 lose lent book lost
 retu book return
 nre title not reserved
 resd title reserved
BCPY stac start copy
 regr register return
 lost register loss
 regl register loan
 obso write off
ORD stao start order
 cano cancel order
 rec receive
TITLE add add title
 rtit read title
 otit order title
 rem remove

In Fig. 7, the synchronizations have been spelled out for the submodel without the
classes MEM, ORD and TITLE.

b

rti star rtit

car

ln regl stal

d

noti resd

frb starl

obso

h

stac rec

regr nre

g

lost lose

f
retu

k

RSV
LOAN

BCPY

Fig. 7. Integrated model with spelled-out synchronizations (MEM, ORD, TITLE not shown)

4.3 Process verification and validation

A verification and validation step is possible before starting the data modeling. It is
easy to see that all object life cycles are sound. For the use case in Fig. 4, this is also
clear. Also, the use case in Fig. 4 can be obtained by projection on the places b, d
and f.

We next turn to validation of the process model. It is possible to spawn “com-
pleted” scenarios by considering T-invariants of the net. A T-invariant is related to
sequences of transitions that result in the same state before and after executing them.
Each token produced is consumed and vice versa. T-invariant analysis is performed
by standard linear algebraic techniques. Since completion of a T-invariant leaves no
active token (case) in the net, all cases that were started have been completed, which
makes T-invariants good candidates for validation. One rather intricate T-invariant
is:

2(rti+req)+(ln+regl+stal)+(res+star)+retu+(resd+noti)+(frb+stal)+retu+(nre+regr).

This invariant indicates a scenario where two different members request the same
book, one obtains a loan and the other a reservation. When the book is returned, the
second member lends and finally returns it. The scenario is depicted as a sequence
diagram in Fig. 8 and validated as such.

star rti

ln

noti

frb

regl

regr

stal

retu

nre

resd

: RSV : LOAN : MEM : BCPY : LOAN : RSV : MEM

rti star

starl

retu

Fig. 8. Sequence diagram: loan after reservation

While validating the model in this way, omissions may be discovered. For in-
stance, members may receive notifications for reserved books and fail to turn up to
fetch them. After three days, the reservation expires and it is examined anew
whether other reservations exist. Another omission is that after receiving ordered

copies, they should be examined for reservations just like returned lent copies. This
leads to a redesign of the model: a loan terminates when the book is returned and the
BCPY class is extended with states and transitions. This redesign is displayed in Fig.
9. The states of BCPY now become:

e to be checked for reservations
k awaiting notified member
h free for lending
g lent.

The transitions resd and nre move from class LOAN to BCPY and BCPY is ex-
tended with the transition lres, a reservation becoming a loan.

star

b
car

ln

d

noti fg lost

stal

f
starl

lose

retu

RSV

LOAN

BCPY

w

q

p

v

t

x

e

stac

nre

h
obso

resd

timo

regr

regl

k

g

lres

frb

u

v

Fig. 9. Revised integrated model (MEM, ORD, TITLE not shown)

4.4 Data modeling

After constructing and validating the “classical” Petri net model, it becomes appro-
priate to consider data. The use case models and the events (transitions) that occur in
them are helpful in eliciting the data involved. Data can be input data: attribute val-
ues of objects related to consumed tokens and input parameters (e.g. from the user
interface). Output data are attribute values of objects related to production and output
parameters.

By looking at the transitions connected to a certain class, we can produce a list of
attributes for each class (Table 2). The boldface attributes are the object's key attrib-
utes; many-to-one relations are implemented by including the (foreign) key of the
“one” object within the “many” object.

Table 2. Attributes of library classes

MEM lcode: Tcode membership nr
 name : Tname name of member
 address : Taddr address
RSV lcode: Tcode foreign key MEM
 ISBN: TISBN foreign key TITLE
 date: Tdate date of reservation
 state: {b,d}
LOAN bcode: Tcode foreign key BCPY
 lcode: Tcode foreign key MEM
 date: Tdate loan date
BCPY bcode: Tcode key
 ISBN: TISBN foreign key TITLE
 free: Boolean available indicator
 indate: Tdate date of acquisition
 state: {e,g,h,k}
ORD ISBN: TISBN foreign key TITLE
 date: Tdate order date
TITLE ISBN: TISBN key
 titdat: Ttitdat author(s)/publisher/year/title

We can formulate constraints: for example, the “key constraint” that a member

cannot have two reservations for the same title:

 r,r' : RSV | r ≠ r' • r.lcode ≠ r'.lcode r.ISBN ≠ r'.ISBN .

Each synchronization in the integrated model will correspond to some method call
where parameters and return values are exchanged. Therefore, for each synchroniza-
tion these values must be specified:

p,v lcode + bcode
q,t,y,z ISBN
r,u lcode + ISBN
w,x bcode.

(Note that in deriving method calls from synchronizations a choice has to be made
which object takes the initiative.) By looking at synchronizations that connect objects
from different classes, we can verify the modeled relations. An object is often related
to objects that are involved in its creation. For example, an ORD object is created
from a TITLE object, which accounts for their relation in Fig. 5. Relations can be
transferred when creating an object involves destroying another one. For example, a
BCPY object is created from an ORD object and it “inherits” its relation to TITLE.
The existence of a relation is often the condition for synchronization. The synchroni-
zations t,q and u between RSV and BCPY transitions all have the condition that the
book's title matches the reserved title.

4.5 Transformation modeling

The places in the WF nets contain tokens that correspond to objects. This makes it
possible that one object corresponds to several tokens. When consumption and/or
production of tokens occurs, the corresponding objects are created, destroyed, read or
updated. When synchronization occurs, two or more objects can be accessed at the
same time. In some cases, transitions (methods) must “globally” inspect all objects of
a given class, which can be done by accessing a global variable containing all objects
of this class. This variable has the same name as the class itself. It is not allowed to
modify objects in this way; this should be done by the transitions.

For example, resd synchronizes with noti if a reservation exists and nre inspects
the RSV variable to make sure that there are no reservations of the given title. If
there are several reservations for the considered title, noti picks the oldest one, which
also requires a global access. A third type of global access occurs when destroying
MEM and TITLE objects, which may only occur if there are no other objects that
refer to it. Another global variable is day, the current date. Table 3 lists which transi-
tions create, read, update, and/or delete objects of each variable.

Table 3. CRUD matrix with transitions from the revised model

 MEM RSV BCPY LOAN ORD TITLE day
MEM join c
 upd u
 rti r r
 term d r r
RSV star c r
 car d
 noti u r
 fg d r
 frb d
BCPY stac c r
 resd u
 timo u
 nre r u
 obso d
 regl u
 regr u
 lost d
 lres u
LOAN stal c r
 star c r
 retu d
 lose d
ORD stao c r
 cano d
 rec d
TITLE add c
 otit r
 rtit r
 rem r r r d

We are now in a position to specify every transition by giving pre- and postcondi-

tions. To this end we may use the Z language [8]. Each transition specification con-
sists of a header and a body. The header describes the objects of the consumed and
produced tokens, indicated by the place name decorated with a question mark (?)
respectively exclamation mark (!) symbol. The synchronization labels are not deco-
rated. Additional input and output parameters have been named in and out respec-
tively. We do not mention global variables in the header.

Z requires that parameters are typed. Table 2 gives the types associated with the
object attributes. In the body, conditions for the transition's occurrence are given.
Unconnected conditions on different lines are interpreted as connected by conjunc-
tion (symbol). Conditions only containing inputs must be preconditions; if they are
not met, the transition will not occur. Many of the other conditions show how the
output depends upon the input. Below we give the specifications for three transitions
of the RSV class:

star
a reservation object is created from the synchronization s,
with date and state added
s : [l:Tcode, t:TISBN]; b! : RSV
(

 x : RSV • x.lcode = s.lcode x.ISBN = s.ISBN)
b!.lcode = s.l b!.ISBN = s.t b!.date = day b!.state = b

noti
the oldest RSV object matching synchronization t is selected and updated;
the member and title id are output to the user interface
t : TISBN; b?,d! : RSV; out : [l:Tcode, t:TISBN]
(

 r : RSV • r.ISBN = b?.ISBN r.date < b?.date r.state = b)
t.ISBN = b?.ISBN d! = b? [state:d, date:day]
out = [l:b?.lcode, t:b?.ISBN]

fg
an RSV object in state d waiting for more that 3 days is destroyed;
its ISBN synchronizes via q
q : TISBN; d? : RSV
d?.ISBN = q d?.date < day – 3

Before validation, it can be e.g. verified that the reservation key constraint is pre-
served; when a new reservation id created by transition star, it is checked that no
reservation with the same member and title code exists.

4.6 Extensions: user interface integration

While architects and stakeholders were busy with the logical model, another team of
engineers has defined the user interface. It is now time to integrate the two models.

For instance, the “request title” (rti) transition requires the ISBN number of the
requested title as input parameter. The user interface engineers have designed title
selection screens to achieve this. These screens do not directly interface to transitions
in the logical model, but to an additional class TQRY that allows a user to find out
the ISBN number of a book he or she is interested in. The class TQRY has the fol-
lowing transitions (methods):

mqry make query the user describes his wishes
dres display results a list of titles matching the query is displayed
rqry refine query the original query is modified
selt select title a title is chosen from the list.

The selt transition will synchronize with the rti transition defined earlier. In Fig.
10, the life cycle of a TQRY object is given. As attributes, it has a predicate and a set
of titles found so far that satisfy the predicate. The “ports” r and z of the rti transition
have been connected to the selt transition and dres synchronizes with the TITLE
class to filter out the titles matching the predicate. Synchronization thus allows to
integrate the different models, also in the technical design phase.

rti selt mqry
dres

b
rqry

a

TRQY
r

z

MEM

Fig. 10. The subnet for the request-title (rti) transition

5 Related work and conclusion

The use of Petri nets for the integration of UML models has been recommended by
various authors. In all cases, some kind of composition operator is used to connect
the various models. In [15], use case modeling with Petri nets is treated in conjunc-
tion with transition fusion (extended with place fusion). In [5], UML sequence dia-
grams that model scenarios are integrated within high-level Petri nets and used for
prototyping. In [13], high-level nets are used for prototyping based upon state charts
and collaboration diagrams. In [6], a thorough comparison of Petri nets and activity
diagrams is given.

In our approach, the combination of synchronization and projection allows to
move back and forth between aspect and integrated models, thus improving the con-
sistency between the various aspect models. Current high-level Petri net tools like
CPN [9] use token passing (i.e. place fusion) as composition operator. This operator
adapts itself more easily to collaboration diagrams. The use of the synchronization
operator (transition fusion) makes it easier to work with use cases, class and se-
quence diagrams. It also smoothens the transition to the design phases where method
calls are implemented. Note that many modeling paradigms exist that allow syn-

chronization and projection within Petri nets, c.f. [2,12]. Any such paradigm will do
for the purpose described here.

Acknowledgements

We are thankful for the support of our colleagues Ad Aerts, Tim Willemse and Jaap
van der Woude and for the efforts of many of our students. It was the teaching of
systems analysis and design throughout the years that led to the insights of the pre-
sent paper.

References

1. W.M.P. van der Aalst. Verification of Workflow Nets. In: P. Azéma and G. Balbo (eds)
Proc. ATPN97, Lect. Notes in Comp. Science, Vol. 1248. Springer-Verlag, Berlin (1997)

2. E. Best, W. Fraczak, R.P. Hopkins, H. Klaudel, and E. Pelz. M-nets: an algebra of high-
level Petri nets with an application to the semantics of concurrent programming lan-
guages. Acta Informatica Vol. 35, No. 10 (1998) 813-857

3. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide.
Addsion-Wesley, Reading (1999)

4. M. Chaudron, K. van Hee, and L. Somers. Use Cases as Workflows. In: W. van der
Aalst, A. ter Hofstede, and M. Weske (eds) Proc. BPM 2003, Lecture Notes in Comp.
Science, Vol. 2678. Springer-Verlag, Berlin (2003) 88-103

5. Mohammed Elkoutbi and Rudolf K. Keller. User Interface Prototyping Based on UML
Scenarios and High-Level Petri Nets. In: M. Nielsen and D. Simpson (eds) Proc. ATPN
2000, Lect. Notes in Comp. Science, Vol. 1825. Springer-Verlag, Berlin (2000) 166-186

6. R. Eshuis and R. Wieringa. A Comparison of Petri Net and Activity Diagram Variants.
In: Proc. Int. Coll. Petri Net Tech. Modeling Communication Based Systems (2001)

7. K.M. van Hee. Information Systems Engineering: a Formal Approach. Cambridge Uni-
versity Press, Cambridge (1994)

8. J. Jacky. The way of Z. Cambridge University Press, Cambridge (1997)
9. K. Jensen. Colured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.

EATCS monographs on Theoretical Comp. Science. Springer-Verlag, Berlin (1992)
10. R. Milner. Communication and Concurrency. Prentice-Hall, London (1989)
11. J. Nunamaker, A. Dennis, J. Valacich, R. Vogel, and J. George. Electronic Meeting

Systems to Support Group Work. CACM Vol. 34, No. 7 (1991) 40-61
12. L. Priese and H. Wimmel. A uniform approach to true-concurrency and interleaving

semantics for Petri nets. Theoretical Comp. Science, Vol. 206, No. 1-2 (1998) 219-256
13. J. Saldhana and S.M. Shatz. UML Diagrams to Object Petri Net Models: An Approach

for Modeling and Analysis. In: Proc. SEKE’00 (2000) 103-110
14. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow Processes

using Woflan. The Computer Journal, Vol. 44, No. 4 (2001) 246-279
15. J.L Woo, D.C. Sung, and R.K. Yong. Integration and Analysis of Use Cases using Modu-

lar Petri Nets in Requirements Engineering. IEEE Trans. on Software Engineering, Vol.
24, No. 12 (1998) 1115-1130

