
The price of coordination in resource management

Kees van Hee, Alexander Serebrenik, Natalia Sidorova,
Marc Voorhoeve, and Jan van der Wal

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{K.M.v.Hee, A.Serebrenik, N.Sidorova, M.Voorhoeve, Jan.v.d.Wal}@tue.nl

Abstract. We propose a resource management policy that grants or refuses re-
quests for resources based only on the request made and the number of free re-
sources. Computations at runtime are independent of the number of active cases.
The policy requires little coordination and is therefore easy to implement in work-
flow management systems. This policy has been shown to be successful in avoid-
ing deadlocks. In this paper we investigate its performance characteristics.

1 Introduction

Workflow nets [11–14], a special class of Petri nets, are frequently used to model busi-
ness processes. In business processes, three elements are essential: cases to be pro-
cessed, tasks to be performed on the cases and resources needed to perform these tasks.
Typical examples of such resources are money, machinery and manpower. Tradition-
ally, models of workflow nets emphasise the partial ordering of activities (i.e. executing
a task for a case) in the process and abstract from the resources needed for them. The
resources, however, cannot be ignored in many practical applications [1, 3, 5, 6, 10].
Resource-constrained workflow nets have been introduced in [15] for resources that are
durable instead of consumable. Bad resource management may cause deadlocks, even
if the workflow net is well-designed, i.e. the workflow net is sound (cf. [14]).

Assessment of business process models involves correctness and efficiency. Cor-
rectness requirements include proper termination, i.e. that given some minimal initial
number of resources, in each reachable state of the business process it is possible to
release all claimed resources and complete all open cases. Efficiency criteria are quality
of service (e.g. the time between the arrival and the completion of cases) and costs of
operation (e.g. the number of resource-hours needed).

We consider business processes where an arbitrary number of cases is handled and
the resources belong to a single class. Cases are independent, i.e. they only communi-
cate with the resource manager by claiming and releasing resources in various quan-
tities. A resource manager, a human being or a software component in a workflow
management system, may either grant or refuse these resource claims. In principle the
resource manager may base its decisions on the global state of the process, i.e. the
number of cases, the state of each case and the number of available resources. The first
task of resource management is to ensure correctness of the resulting business process.
This involves scheduling. Note that we are not dealing with a static scheduling prob-
lem in which all cases to be handled are known. Instead we are dealing with a dynamic

scheduling problem, in which new cases arrive according to a random process and the
routing and resource consumption of cases are largely unknown to the resource man-
ager. The banker’s algorithm of E.W. Dijkstra [4] ensures correctness in this way. This
algorithm considers for each case only the maximal number of resources needed by it
(credit limit) and the number of resources claimed and not yet returned so far (debt),
plus the number of available resources.

The original paper [4] does not consider efficiency, but it leaves room for prioritising
between cases that need resources, when they become available. Such a choice can be
based on heuristics like FIFO (first in first out), SPT (shortest rest processing time) or
EDD (earliest due date).

In [15], a property for cases is defined that we call solidity. When all cases are solid,
the business process is guaranteed to terminate properly. Cases that are not solid can be
solidified by setting a threshold for the number of resources that need to be available for
each claim to be successful. In practise, solidification amounts to the following policy:
before committing resources to a case, make sure that there are enough resources avail-
able to allow its completion independently of other cases. This is akin to a well known
approach in production control [2]. The thresholds can be chosen in advance, when the
business process is defined.

In this paper, we investigate resource scheduling based on solidification. Resources
are granted to a task when the number of available resources exceeds a given threshold.
To determine thresholds that perform well, an iterative, simulation-based approach is
proposed. We illustrate our approach with a small example inspired by the building
industry.

The sketched approach leads to a robust “uncoordinated” resource management.
Note that the computation time needed at runtime by the resource manager is indepen-
dent of the number of active cases. It is interesting to compare the performance of these
robust resource managers w.r.t. more sophisticated ones, thus investigating the price of
coordination (cost of robustness). For a very small (tandem queue) example, it is possi-
ble to compute an optimal global scheduler by Markov decision theory [9]. We compare
the performance of the robust and optimal approaches.

The remainder of the paper is organised as follows. We describe our motivating
example in Section 2. Basic notions from Petri net theory are defined in Section 3.
Correctness and solidification are introduced in Section 4. Then, efficiency criteria are
proposed and assessed by means of two examples in Section 5. Finally, we discuss the
results presented.

2 Motivating example

The business processes investigated are modelled as workflow nets. Our example model
describes the business process of a building contractor, who constructs buildings of a
similar nature in large numbers for various clients. Each building under construction
represents a case. Each case is divided into tasks, that are performed by subcontractors
and require a certain amount of time to complete. The resource considered is money; the
contractor has an account at his bank with a fixed credit limit. At the onset of a task, an
amount of money has to be paid to the subcontractor. At termination of a task, the client

pays some amount of money (not necessarily the same as paid to the subcontractor). All
payments pass through the contractor’s bank account. So each construction task can be
characterised by three parameters: payment to a subcontractor, duration and payment
from the client. The net model for each task is shown in Figure 1. Horizontally, the
control flow is depicted; the remaining edges describe the resource flow. Initially money
is transferred to the account of the subcontractor and money is received at the end.

begin end

bank

subcontractor client

Fig. 1. A typical construction task

Construction starts by paying a subcontractor 2 mu (units of money, e.g. 20.000
euro) for the groundwork. This process takes twenty days and upon completion the
client pays 1 mu. The next task is known as framing and includes building walls, win-
dows and a roof. For this stage 4 mu is required by a subcontractor, and after thirty
days the work is finished and 2 mu is paid by the client. Next, additional commissions
(add-ons) of ten days long may be requested by the client. Each add-on requires 1 mu as
initial payment to the subcontractor. The same amount is charged from the client when
the task is finished. The independence of add-ons is modelled as a loop with 45% exit
chance. Then, the internals of the building are installed (plumbing, heating, electricity).
This task takes thirty days, requiring an initial sum of 1 mu for the subcontractor. This
sum is payed by the client at termination of this task. Finally, when the construction
is approved by the customer, she pays back the remaining 3 mu. The workflow net
corresponding to this process description is presented in Figure 2. When considering
correctness, we treat the tasks as transitions. However, when treating performance, the
indicated timing delays must be observed and tasks are treated as subnets defined by
Figure 1. For the sake of simplicity we abstract from the communication with subcon-
tractors and clients, including money transfers.

The process described can deadlock and thus is not guaranteed to terminate prop-
erly. Suppose the credit limit equals 16 mu and the groundwork is started for 8 clients
on days 1 to 8. On days 9 to 15, applications of 7 more clients are received, but these
cases cannot start due to a lack of resources. On day 22, the groundwork for the first
two clients has terminated, 2 mu is available and the groundwork for client 9 is started.

2
1 4 2

1
1 1

0
3

30

20 10
0

bank

30

addons

1

internal

i f

handover

p q

groundwork

sframing

Fig. 2. Workflow of a building construction

By immediately starting groundwork for new clients as soon a 2 mu becomes available
rather than waiting for 4 mu and starting framing activities, we will arrive at a state
where only 1 mu is available and 15 clients are in state p, which is a deadlock state.
Such a deadlock can be achieved for larger credit limits as well.

As explained in the introduction, several deadlock avoidance policies can be im-
plemented. Dijkstra’s scheduling algorithm [4] will prevent groundwork for the 13-th
client to start in the above scenario. This will allow framing to start for at least one
client, eventually freeing the resources invested. Deadlock is likewise avoided by solid-
ifying the process, setting a threshold of 3 mu for the groundwork task. Groundwork is
started for a new client, investing 2 mu, only if 5 mu (the required 2 plus the threshold
amount) are available.

However, deadlock avoidance alone does not guarantee a good performance. As-
sume that all cases have one add-on option. With the threshold 3 and 16 mu, it is possi-
ble to reach a global state where 12 cases are waiting in state p and for one case framing
has started. After 70 days, 5 mu becomes available, which allows either to start ground-
work for a new case or to start framing for a waiting case. If the groundwork option is
chosen, 3 mu are left, so framing has to wait 20 more days, upon which framing can
start for one case and we are back in the initial state. Thus, only one case in 90 days is
completed. It is not difficult to find a different resource management scenario allowing
the completion of 3 cases every 70 days. The reason for the bad performance of the
sketched scenario is that the number (13) of active cases is too high. By increasing the
minimum threshold of 3 for starting the groundwork of a new case, the number of active
cases can be reduced.

3 Preliminaries

We adopt standard notation for sets, bags and transition systems. A Petri net is a tuple
N = 〈P,T,F+,F−〉, where:

– P and T are two disjoint non-empty finite sets of places and transitions respectively,
the set P∪T are the nodes of N;

– F+ and F− are mappings (P×T)→ N that are flow functions from transitions to
places and from places to transitions respectively.

We present nets with the usual graphical notation.
Markings are states (configurations) of a net. We denote the set of all markings

reachable in net N from marking m as R (N,m). We will drop N and write R (m) when
no ambiguities can arise. Given a transition t ∈ T , the preset •t and the postset t• of t
are the bags of places where every p ∈ P occurs F−(p, t) times in •t and F+(p, t) times
in t•. Analogously we write •p, p• for pre- and postsets of places. We will say that a
node n is a source node if and only if •n = /0 and n is a sink node if and only if n• = /0.

A transition t ∈ T is enabled in marking m if and only if •t ≤m. An enabled transi-
tion t may fire. This results in a new marking m′ defined by m′ def= m−•t +t•. We interpret
a Petri net N as a transition system/process where markings play the role of states and
firings of the enabled transitions define the transition relation, namely m+•t t−→m+t•.
The notion of reachability for Petri nets is inherited from the transition systems. A net
N = 〈P,T,F+,F−〉 is called a state machine if •t and t• are singleton bags for all t ∈ T .

Given a Petri net, a place invariant is a row vector I : P→Q such that I ·F = 0.
In this paper we primarily focus upon the Workflow Petri nets (WF-nets) [11]. As

the name suggests, WF-nets are used to model the processing of tasks in workflow
processes. The initial and final nodes indicate respectively the initial and final states of
processed cases.

Definition 1. A Petri net N is a Workflow net (WF-net) if and only if :

1. N has two special places: i and f . The initial place i is a source place, i.e. •i = /0,
and the final place f is a sink place, i.e. f • = /0.

2. For any node n ∈ (P∪T) there exists a path from i to n and a path from n to f .

We extend the notion of WF-nets in order to include information about the use of
resources into the model. A resource belongs to a type; we have one place per resource
type in the net where the resources are located when they are free. We assume that
resources are durable, i.e. they can neither be created nor destroyed, they are claimed
during the handling procedure and then released again. By abstracting from the resource
places we obtain the WF-net that we call production net.

Definition 2. We will say that a WF-net N = 〈Pp∪Pr,T,F+
p ∪F+

r ,F−p ∪F−r 〉 with initial
and final places i, f ∈ Pp is a Resource-Constrained Workflow net (RCWF-net) with the
set Pp of production places and the set Pr of resource places if and only if

– Pp∩Pr = /0,
– F+

p and F−p are mappings (Pp×T)→ N,
– F+

r and F−r are mappings (Pr×T)→ N, and
– Np = 〈Pp,T,F+

p ,F−p 〉 is a WF-net, which we call the production net of N.

The processes that we consider can be modelled as WF nets with only one resource
place, where the production net is a state machine (SM1WF-nets). In [15] it is shown
that a business process modelled by an arbitrary workflow net can be converted to a
state machine workflow net, provided that cases are independent.

Definition 3. An RCWF-net N = 〈Pp ∪Pr,T,F+
p ∪F+

r ,F−p ∪F−r 〉 is called a state ma-
chine workflow net with one resource type (SM1WF-net) if Pr = {r} and the production
net Np of N is a state machine.

Observe that the net in Figure 2 is indeed an SM1WF-net.

4 Correctness

As explained in the introduction the correctness criterion we consider is proper termina-
tion, also known as soundness in WF-nets. Proper termination is the property that every
marking reachable from an initial marking can reach the corresponding final marking.
Initial markings of the net have some tokens (say k) in the initial place and a number
of resource tokens on each resource places. The corresponding final marking has k to-
kens in the final place; the resource places must contain the same number of tokens as
initially. We assume that the number of resource available initially is sufficient.

Another correctness requirement that should be reflected by the definition is that
resource tokens cannot be created during the processing, i.e. at any moment of time the
number of available resources does not exceed the number of initially given resources.
The definition of proper termination reads thus as follows:

Definition 4. Let N be an RCWF-net.
N is (k,r)-sound for some k ∈ N,r ∈ NPr if and only if for all m ∈ R (k[i] + r) holds:
mr ≤ r and m ∗−→ (k[f]+ r).
N is sound if and only if there exists r ∈ NPr such that it is (k,r′)-sound for all k,r′ ∈
N,r′ ≥ r.

In [15], it is proved that for any sound SM1WF-net there exists a unique place
invariant W such that W (i) = W (f) = 0, W (r) = 1 and for all p ∈ Pp, W (p)≥ 0. Given
a place p we call W (p) the weight of p.

Example 1. Recall the construction Petri net presented in Figure 2. Then, W (i)=W (f)=
0, W (p) = 1, W (q) = W (s) = 3.

The discussion in Section 2 shows that the existence of a place invariant is necessary
but not sufficient.

4.1 Solidity

The key ingredient in determining proper termination of SM1WF nets, called solidity,
is the possibility that all resources claimed are eventually released. Important in the
algorithm is the path concept. A path is a sequence of transitions such that the output
state of a transition is the input state of the next transition. A path has an input and
output state, resp. the input state of the first transition and the output state of the last
transition. A path p is a successor of a path q if the input state of p equals the output
state of q. If the weight of the input state of a path is less than the weight of its output
state, the path is called a consumption path, if it is more than the weight of the output
state the path is called a production path. Finally, we define the resource need of a path.
This is the minimum number of resources needed for the execution of the path.

In our example net, the sequence (framing,addons, internal) is a path with input
place p and output place s. Since p has weight 1 and s has weight 3, it is a consumption
path. Its resource need is 5, since 4 free resources plus 1 resource occupied in the input
place p are sufficient to fire the sequence, leading to s occupying 3 resources plus 2 free
resource.

The above definition allows to formulate the necessary and sufficient condition for
solidity: Each consumption path produces enough resources to fulfil the resource need
of at least one successive production path.

Our example net does not satisfy this condition: the path σ = (groundwork) (con-
sisting of only one transition) is a consumption path, since its input place i has weight
0 and its output place p has weight 1. Its resource need equals 2. Any production path
succeeding σ has input place p and thus must start with transition framing needing 4
free resources, so the resource need of such a production path is at least 5 (4 free ones
and one occupied by p). So σ has no production successor with a resource need not
exceeding 2.

In order to verify solidity, given an SM1WF-net with Pp production places, we
introduce a matrix M, such that M(p, p) is defined to be W (p) for all p∈Pp and M(p,q)
is defined as the sum of W (q) and the minimal resource production of transitions from
p to q. If there are no such transitions M(p,q) is defined to be ω (denoting infinity).
The condition above has considered paths rather than individual transitions. Therefore,
we need to extend the definition of M to include paths of arbitrary length. To do so, we
have introduced a binary operation ◦ such that for any A,B : Pp×Pp → N, the product
A◦B is defined as C : Pp×Pp →Nwhere C(p,q) = min{max(A(p,r),B(r,q)) | r ∈ Pp}.
We denote A ◦A by A2 etc. One can show that M,M2,M4, . . . converges to a fixpoint,
which we call µ. Then, the intuitive condition for solidity stated above can be expressed
as follows:

Corollary 1. ([15]) The SM1WF-net N is solid if and only if

∀x ∈ Pp : miny{µ(y,x) |W (y) < W (x)} ≥minz{µ(x,z) |W (x) > W (z)}.
In our running example, the following holds:

M =

i p q s f
i 0 2 ω ω ω
p ω 1 5 ω ω
q ω ω 3 4 ω
s ω ω ω 3 3
f ω ω ω ω 0

M2 =

i p q s f
i 0 2 5 ω ω
p ω 1 5 5 ω
q ω ω 3 4 4
s ω ω ω 3 3
f ω ω ω ω 0

M4 =

i p q s f
i 0 2 5 5 5
p ω 1 5 5 5
q ω ω 3 4 4
s ω ω ω 3 3
f ω ω ω ω 0

M4 is the fixpoint. Soundness condition is violated by p since

min{µ(y, p) |W (y) < W (p)}= 2 < 5 = min{µ(p,z) |W (p) > W (z)}.

However, it is possible to solidify SM1WF nets with a resource invariant. This is
done by thresholding some of its transitions. A transition is thresholded by not firing
it when the resources it needs are available unless some additional resources are avail-
able too. The amount of required extra resources is called the threshold. Thresholding
replaces scheduling as by Dijkstra’s algorithm ([4]; it is similar to the order acceptance
strategy of ([2]). We have developed a method to find algorithmically minimal thresh-
olds for a net to become solid. It should also be noted that any threshold exceeding the
minimal one makes the net solid too.

The threshold solution proposed at the end of Section 2 has been obtained by the
solidification technique.

5 Efficiency

5.1 Defining efficiency

In order to estimate the quality of resource management, we need to define efficiency
criteria. As mentioned in the introduction, we distinguish two kinds of criteria: those
considering the quality of service, and those considering the cost of operation. Quality
of service is focused towards minimising the throughput or cycle time of a case, i.e.
the time between the arrival and the completion of the case. In our case minimising the
throughput is equivalent to minimising the waiting time of a case, since the processing
times of tasks are independent of the resource allocation. For a random stream of cases
it is natural to consider as quality of service the average cycle time or waiting time:

lim
n→∞

∑n
i=1 w(i)

n
,

where w(i) is a waiting time of case i. An alternative for the minimising the average
expected time is minimising the probability that a case has a waiting time larger than
some given bound.

For the cost of operation we consider as criterion the average expected use of re-
sources. However we need an additional condition for this criterion to eliminate the
situation when the cost of operation is zero but no cases are handled. There are at least
two approaches to deal with this: one can assume some minimum level of service as
a boundary condition (like the average expected waiting time) or one can assign cost
to resources and rewards for handling cases. Then the cost of operation is transformed
into the value of the operation by subtracting the the reward of handled cases from the
average cost of resource usage. We choose this last option; a negative cost of operation
corresponds to making profit.

To evaluate the solidification technique, we computed an optimal scheduler de-
scribed in Section 5.2, comparing it to the solidification approach. Unfortunately, opti-
misation is only feasible for very small examples, like the tandem queue described in
the next subsection. To tackle our building example, only simulation techniques have
been used (Section 5.3).

5.2 Tandem queue example

In order to determine what extra cost we incur in case of the solidification approach,
we need to find an optimal resource allocation strategy. Such a strategy defines for each
possible global state a decision for resource assignment. Finding an optimal strategy is,
in general, an extremely difficult task. Therefore, we consider a tandem queue example.

The tandem queue example has two sequential tasks as shown on Figure 3. Like
in Figure 2, numbers inside the task boxes denote the duration of the task. We assume
exponential service times with mean service times equal to 1 for both tasks. 1 The arrival

1 In order that the system satisfies the Markovian property, we need at least phase type service
time distributions. However, since each extra phase adds an extra dimension to the state space,
the number of phases has to be limited so that the Markov decision approach is still feasible.
For random service times with a squared coefficient of variation larger than 0.5, two phases
suffice to mimic the first two moments. Here we have chosen for exponential service times.

process is Poisson with 4 arrivals per time unit on average. For this example the optimal
strategy can be calculated by means of a Markov decision process theory [9, 7], using
techniques such as successive approximation.

sq

1 0 1 2

1
task1

1
task2p

Fig. 3. Tandem queue example

To model this workflow system as a Markov decision process with continuous time
we consider the two tasks as multi-server service stations, where the servers are the
resources. The state of the Markov decision process is a quadruple 〈q1, t1,q2, t2〉 where
q1 and q2 are the number of waiting cases for the first and the second tasks and t1 and
t2 are the number of cases treated in these service stations respectively. The possible
actions are: admission of a newly arrived case, assigning resources to a waiting case
in the queue q1 and assigning resources to a waiting case in the queue q2. Using the
well-known uniformisation technique [7] we translate the model with continuous time
into a Markovian decision process with discrete time. In order to determine the optimal
strategy we need a finite state space, so we need to add some more restrictions. We
assume q1 ≤ 3 and q2 ≤ 3. These assumptions imply that when a new case arrives to
a queue but the queue is full, the case is lost. In order to achieve finiteness of the state
space, t1 and t2 should be bounded as well. We set t1 ≤ 4 and t2 ≤ 7. Under these
restrictions, the number of states space of the system is bounded.

The boundedness restrictions are not too severe if the loss of cases lost is penalised.
High penalties imply that queue overflow is avoided as much as possible. Case loss
in q1 is punished by 5 cost units, case loss in q2 by 10 cost units. We consider these
penalties as opportunity costs.

Finally, to complete the specification of the Markov decision process, the perfor-
mance measures have to be chosen. We consider two different measures, namely qual-
ity of service (QoS) and cost of operation (CoO). For the QoS measure, the waiting
times at q1 and q2 plus the opportunity costs for queue overflow are added. For the
CoO measure, we consider the average resource occupation of a case, i.e. the process-
ing time of the first station plus the waiting time at q2 (where one resource is occupied
by the case) plus twice the processing time of the second station (where two resources
are occupied). As explained earlier, we subtract the reward for completed cases, which
equals 7. After the subtraction, the cost of operation becomes negative for successful

executions. Hence, minimising the cost of operation reflects the best possible scenario
from “a case’s point of view”.

Using the standard successive approximation techniques (c.f. [7]), we derive an op-
timal strategy: it defines an action for each possible state. Since the state space consists
of 640 states, the strategy becomes rather complex. Recall that the Bellman equation
describes successive approximations v0, . . . as follows:

v0(s) = 0
vn+1(s) = min

a∈A
{c(s,a)+ ∑

s′∈S
P(s′ | s,a)vn(s′)},

where s ∈ S.
In the equations above, S is the set of all possible states, i.e. the set of quadruples
〈q1, t1,q2, t2〉, A is the set of all possible actions: {reject,assign to q1,assign to q2},
P(s′ | s,a) is the probability to move from the state s to state s′ by executing an ac-
tion a, and c(s,a) is the cost per time unit when the system is in state s and action a
is taken. The value vn(s) is the total cost for running the system for n time units from
state s under an optimal strategy. We consider the two cost functions QoS and CoO as
described above.

We note that the average cost g per time unit under an optimal strategy satisfies:

min
s∈S

(vn+1(s)− vn(s))≤ g≤max
s∈S

(vn+1(s)− vn(s))

In case the process is recurrent, which means that from every state one can reach every
other state, these two bounds converge to the same value. In this way one can compute
the exact values of quality of service and cost of operation for the tandem queue. The
optimal values found are

QoS : 1.73
CoO : −2.88.

Next, we apply our solidification approach. We start by observing that the place in-
variant W exists and satisfies W (p) = W (s) = 0, W (q) = 1. Therefore, the solidification
approach is applicable. The powers of the matrix M are defined as follows:

M =

p q s
p 0 1 ω
q ω 1 2
s ω ω 0

M2 =

p q s
p 0 1 2
q ω 1 2
s ω ω 0

The fixpoint µ is reached with M2. This net is unsound since

min{µ(y,q) |W (y) < W (q)}= 1 < 2 = min{µ(q,y) |W (y) < W (q)}.

Solidification requires that the resource request of the first task is granted only if
there is at least one more resource available. In this way one guarantees that at least
one resource is available when a case arrives at place q in the net, so that the second
transition can fire. Observe that if more than one additional resource is available, proper

termination is guaranteed as well. Therefore, we have performed a number of simula-
tion runs for different values of the parameter k—the number of additional resources—
ranging from one to three. For each one of the values of k, two priority configurations
were considered. The first uses FCFS (first come first served) priority for all tasks of
all cases. The second uses SPT priority for tasks (i.e. the second task has priority over
the first one) and FCFS for the same task of different cases. In both cases, “greedy”
resource allocation takes place: if the set of tasks that can be started (i.e. for which the
number of resources is at least the requested number plus the threshold) is nonempty,
some task will start immediately.

Finally, for each one of the cases two values have been measured: cost of operation
(CoO) and quality of service (QoS).

Strategy Threshold QoS CoO
Optimal 1.73 -2.88
Solidification; 0 3.02 -2.13
FCFS 1 2.14 -2.67

2 2.09 -2.72
3 2.53 -2.44

Solidification; 0 2.23 -2.60
SPT+FCFS 1 1.94 -2.80

2 2.09 -2.72
3 2.53 -2.44

Table 1. QoS and CoO for the tandem queue example

Table 1 represents our results for quality of service and cost of operation. The perfor-
mance w.r.t. the optimal strategy is given at the top. Then come solidification strategies
with various threshold values. The thresholds indicated represent the extra number of
available resources required for entering the queue of the first task or station. Since the
mathematical model has queues with finite capacity, no deadlocks are possible, so so-
lidification is not required. The cases that are waiting in the queues are treated in FCFS
order; when resources become available, the longest waiting case that can be served is
selected. The third group of results stem from the solidification extended with the SPT
priority rule. When resources become available, the second station has priority. Cases
of that station are treated in FCFS order.

We observe that the simulation minima are obtained for QoS for a threshold value
of 1 for the prioritised configuration and 2 without SPT priorities, and for CoO for
threshold value 2, either with or without priorities. The exact values are 1.94 for QoS
and -2.80 for CoO.

While comparing the theoretical results with the results of simulation, we observe
that the relative error is quite small for CoO and somewhat larger for QoS. Probably,
this difference is caused by the penalty for lost opportunities.

By examining scenarios where the solidification approach makes suboptimal de-
cisions, it is possible to arrive at heuristics that improve upon the decisions made. It

seems that information predicting the future availability of resources can be of some
use here. Of course, improving performance in this way decreases the robustness, i.e.
more information is needed and a less straightforward computation.

5.3 Simulation results for the construction example

A simulation study in Arena [8] has been conducted to determine the optimal solidi-
fication of the example net from Figure 2. We assumed that the credit limit is 50 mu
and that the arrival of new customers is Poisson with the average time between arrivals
being 8.5 days.

Strategy Threshold QoS CoO
Solidification; 1 deadlock
FCFS 2 deadlock

3 106.05 17.59
4 43.48 6.93
5 51.19 6.89

Solidification; 1 deadlock
SPT+FCFS 2 50.93 7.71

3 45.66 6.77
4 38.79 5.97
5 51.15 6.49

Table 2. QoS and CoO for the construction example

In Table 2, the simulation results for resource management in our building example
are given. In the first series of simulations, resources are assigned to transitions based on
the FCFS principle. This means that when the resources become available, the longest
waiting case that has become enabled can continue. In the second series, this FCFS
strategy is extended with the SPT priority rule, like in the tandem queue example. The
first task (groundwork) gets lowest priority, next comes the framing task and the other
two tasks have highest priority. Parameter of the simulation is again the threshold value
for the groundwork task, which ranges from one to five. Thresholds one and zero yield
deadlock in both cases. With a threshold of two, the simulation does not deadlock in
combination with the SPT priority rule, although this is theoretically possible. Thresh-
olds greater than three do solidify the net. For thresholds above five, both the CoO and
QoS performance measure increase rapidly, so they have not been listed.

Summarising these results, we observe that the best quality of service is always
achieved for threshold four: 43.48 in the FCFS case and 38.79 for SPT extension. Unlike
this, the optimal threshold for the lowest cost of operation depends on the resource
assignment policy. For FCFS, the minimum is obtained for threshold five (6.89), while
for the SPT extension it happens for threshold four (5.97).

6 Conclusion

In this paper, we have presented a way, called solidification, to obtain a deadlock free
scheduler that requires minimal coordination. The computation of this scheduler needed
at runtime are independent of the number of active cases. This can be of importance in
the implementation of workflow management systems.

We have studied the price of coordination in resource management, i.e. the dif-
ference in performance between the optimal (global) and the robust (local) scheduler
based on the solidification approach. The performance criteria studied did correspond
to quality of service and cost of operation respectively. Our experiments indicate that
the performance loss due to a minimal coordination scheduler is not too high, but more
convincing realistic case studies are sorely needed. The solidification scheduler can be
significantly improved by extending it with an SPT priority rule.

For further research, it is interesting to apply our method to real-life resource schedul-
ing problems. As it is computationally infeasible to compute an optimal scheduler for
such processes, comparisons have to be made with heuristic schedulers used in practice.
A second line of investigation is the improvement of our resource allocation strategy by
adding more information without compromising robustness too much.

References

1. K. Barkaoui and L. Petrucci. Structural analysis of workflow nets with shared resources. In
Workflow management: Net-based Concepts, Models, Techniques and Tools (WFM’98), vol-
ume 98/7 of Computing science reports, pages 82–95. Eindhoven University of Technology,
1998.

2. J. Bertrand, J.C.Wortmann, and J.Wijngaard. Production Control, A Structural and Design
Oriented Approach. Educatieve Partners, 1998. Second revised edition.

3. J. Colom. The resource allocation problem in flexible manufacturing systems. In W. van der
Aalst and E. Best, editors, Application and Theory of Petri Nets 2003, ICATPN’2003, volume
2679 of Lecture Notes in Computer Science, pages 23–35. Springer-Verlag, 2003.

4. E. W. Dijkstra. Selected Writings on Computing: A personal Perspective. Texts and Mono-
graphs in Computer Science. Springer Verlag, 1982.

5. J. Ezpeleta. Flexible manufacturing systems. In C. Girault and R. Valk, editors, Petri nets
for systems engineering. Springer-Verlag, 2003.

6. J. Ezpeleta, J. M. Colom, and J. Martı́nez. A Petri net based deadlock prevention policy for
flexible manufacturing systems. IEEE Transactions on Robotics and Automation, 11(2):173–
184, 1995.

7. E. Feinberg and A. Shwartz. Handbook of Markov Decision Processes: Methods and Algo-
rithms. Kluwer, 2002.

8. W. Kelton, R. Sadowski, and D. Sadowski. Simulation with Arena. McGraw-Hill, 1998.
9. M. Puterman. Markov decision processes: discrete stochastic dynamic programming. Wiley,

New York, 1994.
10. M. Silva and E. Turuel. Petri nets for the design and operation of manufacturing systems.

European Journal of Control, 3(3):182–199, 1997.
11. W. M. P. van der Aalst. Verification of workflow nets. In P. Azéma and G. Balbo, editors,

Application and Theory of Petri Nets 1997, ICATPN’1997, volume 1248 of Lecture Notes in
Computer Science. Springer Verlag, 1997.

12. W. M. P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers, 8(1):21–66, 1998.

13. W. M. P. van der Aalst. Workflow verification: Finding control-flow errors using Petri-net-
based techniques. In W. M. P. van der Aalst, J. Desel, and A. Oberweis, editors, Business
Process Management: Models, Techniques, and Empirical Studies, volume 1806 of Lecture
Notes in Computer Science, pages 161–183. Springer-Verlag, 1999.

14. W. M. P. van der Aalst and K. M. van Hee. Workflow Management: Models, Methods, and
Systems. MIT Press, 2002.

15. K. van Hee, A. Serebrenik, N. Sidorova, and M. Voorhoeve. Soundness of resource-
constrained workflow nets. In G. Ciardo and P. Darondeau, editors, Application and The-
ory of Petri Nets 2005, ICATPN’2005, Lecture Notes in Computer Science. Springer Verlag,
2005. accepted.

