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Abstract

Conformance testing is one of the most rigorous and
well-developed testing techniques. Model-based test gen-
eration is an essential phase of the conformance testing ap-
proach. The main problem in this phase is the explosion
of the number of test cases, often caused by large or infi-
nite data domains for input and output data. In this pa-
per we propose a test generation framework based on the
use of data abstraction and constraint solving to suppress
the number of test cases. The approach is evaluated on
the CEPS (Common Electronic Purse Specifications) case
study.

1. Introduction

Throughout the years, testing remains one of the most
popular techniques that are used by industry to ensure the
reliability of systems. The main purpose of testing is to dis-
cover as many defects in a system implementation as pos-
sible. A large number of testing techniques have been de-
veloped by academic and industrial communities to provide
efficient and reliable ways of finding errors. Conformance
testing [19] is one of the most rigorous among existing test-
ing techniques. Given a specification, conformance testing
is concerned with checking whether an implementation un-
der test (IUT) conforms the specification.

Intuitively, an IUT conforms its specification if after each
input foreseen by the specification, the IUT exhibits only
the behavior allowed in the specification [17]. Assessing
conformance of an IUT is done by executing test cases. A
test case contains all possible reactions of an IUT on cer-
tain environmental inputs. Reactions of an IUT may lead
to different verdicts: Verdict Fail denotes a violation of the
specification while verdict Pass means that the reaction of

∗This work is done within the project “TTMedal. Test and Testing
Methodologies for Advanced Languages (TT-Medal)” [18]

an IUT is correct wrt. the specification. Checking all possi-
ble test cases is however not feasible, only a subset of sys-
tem behavior can be tested. Therefore some test selection
should be done prior to testing.

Using test purposes is one of the most popular strate-
gies for selecting test cases. A test purpose defines a subset
of the system behavior on which test cases should be fo-
cused. In case the IUT exhibits a behavior allowed by the
specification but not fitting the test purpose, verdict Inconc
(inconclusive) is given.

One way to generate test cases is to enumerate the state
space of the specification and select a part of it satisfying a
test purpose [11]. The generation does not always terminate
and even if terminated it often produces a huge number of
test cases. The most important reason the number explodes
is that data exchanged within and with the system comes
from large or even infinite domains. Here we propose a
testing framework that alleviates this problem by combining
data abstractions and constraint solving with enumerative
test generation techniques.

We consider specifications that describe open systems
communicating with their environments. Assumptions
about the component’s environment that software program-
mers are making is an important source of software er-
rors. They are often not documented and in many cases
erroneous. Two classical examples of failures caused by
this kind of errors are an incorrect handling of an arith-
metic exception that led to a power shutdown of cruiser USS
Yorktown and an unanticipated floating-point exception that
caused a rocket boost failure in Ariane 5 [16]. Therefore,
for testing purposes, we consider the most general possible
environment that can send all possible inputs wrt. the speci-
fication, parameterized with arbitrary data. Further we refer
to these environments as ”chaotic” environments.

Assuming a chaotic environment, we abstract the en-
vironmental data parameterizing inputs into one abstract
value. The abstract system shows then at least the behav-
ior of the original system [15]. We implement the abstrac-
tion as a program transformation on the level of specifica-



tion. Given a test purpose, we obtain an abstract test case
by applying already existing enumerative test generation al-
gorithms [11] to the abstract system that is derived from the
transformed specification.

An abstract system is an overapproximation of the orig-
inal one. Inputs and outputs of an abstract test case gener-
ated from the abstract system carry abstract values. To make
the abstract test cases executable, abstract values should be
concretized. We employ constraint solving to find concrete
values that will substitute the abstract ones. Substituting
all occurrences of abstract values is expensive and unnec-
essary. Therefore, we transform the original specification
into a constraint logic program (CLP) and shift constraint
solving to the test execution phase.

When testing a system, we want to reduce the number
of inconclusive verdicts. For this purpose, we start test ex-
ecution by choosing a shortest trace to verdict Pass. We
transform the chosen trace into a query for the CLP. If the
query has at least one solution, then a concretization of this
abstract trace is present in the original specification. The
solution provides concrete values to substitute occurrences
of abstract values. In case there is no solution, the trace is
introduced by the abstraction and has to be removed from
the test case.

Having a substitution for just one trace, we start the test
execution. If the IUT follows the selected trace all the way,
verdict Pass is assigned. In case the reaction of the IUT
deviates from the selected trace, there are two possibilities:
the IUT violates the specification or it follows a different but
still correct trace, which is possible due to nondeterminism
in the specification. When the IUT violates the specifica-
tion, we stop the test execution and assign the verdict Fail.
Otherwise, we form a new query and a constraint solver is
consulted again. If there is a solution then we proceed with
the test execution. If no solution is found, verdict Inconc is
assigned.

Here, we assume decidability of all guards in the spec-
ification, e.g. the guards might belong to a decidable frag-
ment of Presburger arithmetic [14] with uninterpreted func-
tions [1]. We implement our approach to generate test cases
from µCRL specifications with TGV [11] and use the µCRL
toolset [2] to specify systems and test purposes, and to gen-
erate and reduce the state space. Eclipse Prolog [7, 6] is
used to implement constraint solving.

The rest of the paper is organized as follows: In Sec-
tion 2, we give an overview of testing theory our approach
is based on. Section 3 defines a set of specifications we
work with and provides an implementation for the data ab-
straction. In Section 4, we first illustrate our approach to
using the data abstraction for testing and then provide its
generalization. We conclude with Section 5 where we also
discuss related and future works.

2. Testing Theory

For the generation of abstract test cases from specifica-
tions, we rely on the approach to conformance test gener-
ation proposed in [11] and implemented in the tool TGV.
This approach relates specifications with conforming im-
plementations by a conformance relation. It formalizes the
notions of a test case and a test purpose and also defines
correctness criteria for test cases.

Specifications and implementations are modelled by in-
put output labelled transition systems (IOLTSs). An
IOLTS M is given by a tuple (Σ,Lab,→λ, σ0), where
Σ �= ∅ is a set of states, Lab is a set of labels (actions),
→λ⊆ Σ × Lab × Σ is a transition relation, and σ0 ∈ Σ
is the initial state. The set of labels Lab consists of three
subsets of actions, LabI , LabO, and {τ} denoting visible
input, output and invisible internal actions. An IOLTS is
deterministic iff there is at most one outgoing transition for
each action λ ∈ Lab in each state σ ∈ Σ.

The behavior of an IOLTS is given by sequences of
states and transitions ζ = σ0 →λ σ1 →λ . . . starting from
the initial one. In traces, the states are projected out, i.e.
[[M ]]trace ⊆ Lab�, where [[M ]]trace denotes the set of traces
of an IOLTS M . IOLTSs modelling IUT s are assumed to
be input-complete, meaning, the implementation must ac-
cept any input from its environment.

Conformance testing is restricted to observing outputs
(or deadlock) only after those traces that are contained in
the specification. The specification maybe partial, in which
case the output of the IUT after unspecified inputs is not re-
stricted. The approach in [11] (following Tretmans in [17])
describes the set of conforming IUTs by an ioco relation on
implementations and specifications. Given a model MIUT

of an implementation and a model MSpec of a specification,
the IUT is in ioco-relation with Spec if and only if for all
traces β from MSpec , whenever MIUT can issue an output
(or deadlock) after executing β, then also MSpec can exe-
cute trace β followed by the same output (or deadlock). In
this paper, we will not consider deadlocks.

The conformance test generation in [11] is guided by test
purposes that are deterministic IOLTS s (denoted further
MTP ) equipped with a non-empty set of accepting states
Accept and a set of refusing states Refuse which can be
empty. Both accepting and refusing states are sink states.
Moreover, MTP is complete in all the states except the ac-
cepting and refusing ones.

Test generation guided by a test purpose consists in
building a standard synchronous product MSP of MSpec

with MTP and assigning verdicts. The Pass verdict is as-
signed to those states of the product which correspond to
accept states in the test purpose. The Inconc verdict is
assigned to the states from which accepting states are not
reachable. The Fail verdict is implicit and is assigned af-



ter all unspecified outputs. Since the product represents ex-
pected behavior of an IUT from the tester’s point of view, all
input and output actions are mirrored during the generation
of the product.

Test cases are derived from the product by resolving
choices between several outputs and between inputs and
outputs that might be present in the product. Formally, a
test case MTC is a deterministic input-complete IOLTS
equipped with sink states Pass, Inconc and Fail. A test suite
is a collection of test cases.

Test execution consists in giving outputs of a test case
as stimuli to an IUT and observing whether reactions of the
IUT match inputs expected by the test case. Execution of
test cases on an IUT should give a verdict about confor-
mance of an IUT wrt. Spec. Verdicts assigned by a test case
should be sound [11]. Fail is assigned if and only if a vi-
olation of the specification is observed. Pass is assigned if
and only if we observe a trace that fits the test purpose and
belongs to the specification. Inconc may be assigned only if
an observed trace belongs to Spec but is refused by the test
purpose.

3. Data Abstraction

Inadequate and underspecified assumptions about envi-
ronment are an important source of software errors. We aim
at automatic generation of test cases that does not depend on
particular assumptions about environmental behavior. Thus
we use the most general, ”chaotic”, environment that can
send and receive all possible messages in an arbitrary order.
Values exchanged by the system with an environment are
coming from large or even infinite domains. That immedi-
ately leads to large or infinite number of test case obtained
during test case generation. Here we use a data abstraction
that allows us to obtain an smaller (finite) overapproxima-
tion of the original system.

We abstract data coming from environment to one
“chaotic” value, denoted by ��. Values that are not influ-
enced by the environment remain unchanged. They should
be treated in the same way as in the original system. This
data abstraction was first proposed in [15] and successfully
used for model checking open systems. A system obtained
by this approach is a safe abstraction of the original one,
meaning, it shows at least the behavior of the original sys-
tem [15].

In this section, we first define the syntax and the seman-
tics of specifications we work with and further explain the
implementation of the data abstraction as a transformation
on the level of specifications.

3.1. Syntax and Semantics

Our operational model is based on synchronously com-
municating processes with top-level concurrency. This is
a simplification of a model used in [15]. A specification
Spec is given as the parallel composition Πn

i=1Pi of a fi-
nite number of processes. A process definition P is given
by a four-tuple (Var ,Loc, σ0,Edg), where Var denotes a
finite set of variables, and Loc denotes a finite set of lo-
cations, or control states. A mapping of variables to val-
ues is called a valuation; we denote the set of valuations
by Val = {η | η : Var → D}. We assume standard data
domains such as N, Bool , etc. We write D when leaving
the data-domain unspecified and silently assume all expres-
sions to be well-typed. Let Σ = Loc × Val be the set
of states, where a process has one designated initial state
σ0 = (l0, η0) ∈ Σ. The set Edg ⊆ Loc × Act × Loc
denotes the set of edges. An edge describes changes of con-
figurations specified by an action from a set Act .

As actions, we distinguish (1) input of a signal s contain-
ing a value to be assigned to a local variable, (2) output of
a signal s together with a value described by an expression,
and (3) assignments. Every action except inputs is guarded
by a boolean expression g, its guard. The three classes of
actions are written as ?s(x), g �!s(e), and g � x := e, re-
spectively, and we use α, α′ . . . when leaving the class of
actions unspecified. For an edge (l, α, l̂) ∈ Edg , we write
more suggestively l −→α l̂.

The behavior of the process is then given by sequences
of states ζ = σ0 →λ σ1 →λ . . . starting from the ini-
tial one. The step semantics is given by an IOLTS M =
(Σ,Lab,→λ, σ0), where →λ ⊆ Σ × Lab × Σ is given as a
labelled transition relation between states. The labels differ-
entiate between internal τ -steps and communication steps,
either input or output, which are labelled by a signal and a
value being transmitted, i.e. ?s(v) or !s(v), respectively.

Receiving a signal s with a communication parameter x,
l −→?s(x) l̂ ∈ Edg , results in updating the valuation η[x �→ v]

according to the parameter of the signal and changing cur-
rent location to l̂. Output, l −→g �!s(e) l̂ ∈ Edg , is guarded,
so sending a message involves evaluating the guard and the
expression according to the current valuation. It leads to the
change of the location of the process from l to l̂.

Assignments, l −→g � x:=e l̂ ∈ Edg , result in the change
of a location and the update of the valuation η[x �→ v], where
[[e]]η = v. Assignments are internal, so assignment transi-
tions are labelled by τ .

3.2. Program Transformation

Abstraction theory is well developed within the Abstract
Interpretation framework [4, 5]. Here we provide a variation
of the program transformation from [9] implementing the



data abstraction.

We extend each data domain by an additional value
��, i.e. we assume abstract domains N

�� = N ∪ {��N},
Bool�� = Bool ∪{��Bool} etc. These ��-values are consid-
ered as the largest ones.

The transformation of the process specification consists
in lifting all variables, expressions and guards to ��-data
domains. Each occurrence of a variable x carrying values
from domain D, is substituted by an occurrence of the vari-
able x�� carrying values of domain D��.

Each expression e is strictly lifted to expression e��. If
at least one of the variables of e�� carries a ��-value, then
[[e��]]η�� = ��. Otherwise, expression e�� has the same value
as in the original system.

The transformation of guards is similar to the transfor-
mation of expressions. Every occurrence of a guard g is
lifted to a guard g�� of type Bool��. While transforming
guards we should ensure that the abstract system shows at
least the behavior of the original system. The guards valu-
ated to �� behave as guards valuated to true. To avoid in-
troducing unnecessary nondeterminism, we provide a more
refined lifting for boolean operations.

After lifting system variables, expressions and guards,
we obtain a system that can receive all values defined by the
original specification as well as ��-values from the environ-
ment. The environment can influence data only via inputs.
We transform every input l −→?s(x) l̂ from the environ-
ment into an input of signal s parameterized by the ��-value
from the corresponding domain followed by assigning this
��-value to the variable x��, i.e. every input edge is substi-
tuted by l −→?s(��)−→true � x��:=�� l̂ ∈ Edg��.

A specification obtained by this transformation is re-
ferred further as Spec��. An abstract system modelling the
transformed specification is referred further as M��. This
system can receive only �� values from the environment, so
the infinity of the environmental data is collapsed into one
value. Basically, the transformed system shows at least the
traces of the original system where data influenced by envi-
ronment are substituted by �� values [10].

Although we provide here the program transformation
for specifications consisting of one process only, it does not
limit our approach. Existing linearization techniques [8] al-
low to obtain a single process definition for a parallel com-
position of a finite number of process definitions by resolv-
ing communication and parallel composition.

4. Testing with abstraction

In this section, we first illustrate our approach on a sim-
ple example and then generalize it.
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?getBalance
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4

5

!Balance(b)
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 !pinCorrect
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!pinIncorrect>)( px ≠

Figure 1. Simple Cash Machine

4.1. Cash Machine Example

Fig. 1 gives a specification of a simple cash machine.
When a customer enters a card, the machine initializes a
pin and a balance according to the card. Then the customer
should enter a pin number. The machine checks whether the
entered pin is the same as the one it expects after the initial-
ization. If an incorrect pin is entered, the machine sends the
pinIncorrect-message and stops the communication with
the customer. Otherwise, it sends the pinCorrect-message
and allows the user to choose between two options: (i) to
withdraw some cash or (ii) to ask information about the
current balance and then to get money. In case the cus-
tomer tries to withdraw more money than the balance, the
message LowBalance parameterized by the balance value
is issued. Otherwise, the machine dispenses money to the
customer and updates the balance.

As a test purpose we choose entering a pin followed (af-
ter some steps) by dispensing some money. Already for this
simple specification, test generation yields a large number
of test cases, which is caused by large domains for input
values. Therefore we produce an abstract specification by
transforming the original one as described in Section 3. The
simplified result of the transformation is given in Fig. 2.
Then we apply the enumerative test generation [11] to ob-
tain the synchronous product of the transformed specifica-
tion and the test purpose. The result of the generation is
given in Fig. 3.

To present the (expected) behavior of the system from
the tester point of view, inputs and outputs in the product
are mirrored with the specification. The product also con-
tains verdicts. Note that the product might implement mul-
tiple test strategies - after entering a pin we still can choose
between asking for some cash and inquiring the balance.
Since we want testing results to be repeatable, we choose
one of the options, namely, withdrawing money without
asking for the balance. The selected test case is depicted
in solid lines.

To make the selected test case executable, we need to
concretize abstract values in it. We employ constraint solv-
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Figure 2. Transformed Cash Machine
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Figure 3. Synchronous product with verdicts

ing to find concrete values. The information about con-
crete data and their dependencies is contained in the original
specification. Therefore, we transform the specification into
a constraint logic program. The fragment of the program for
the edges getP in, pinIncorrect and pinCorrect is given
in Fig. 4.

The constraint logic program is a set of rules that consist
of an action name, three parameters and a guard that can
be empty. The first parameter given by the first state-tuple
represents states in which the action is enabled. The second
parameter given by the second state-tuple represents states
reachable by the action. The third parameter, the param-
tuple, contains variables local to the rule, which are intro-
duced to represent input and output data.

In the fragment in Fig. 4, variables P, B, X, Y of the
specification represent respectively the initialized pin, the
initialized balance, the pin entered by the customer, and the
required money. In the rule getP in(state(2, P, B, X, Y ),
state(3, P, B, X1, Y ), param(X1)), variable X1 repre-
sents the value entered by the customer and getP in-action
substitutes the value of the variable X of the original spec-
ification by the value of X1. This action is possible only
in location 2 and it leads to location 3. The other variables
remain unchanged.

We are interested in getting Pass or Fail verdicts and
want to avoid Inconc verdicts because test executions end-
ing with Inconc verdict neither cover the behavior of inter-
est nor discover software failures. Therefore, we choose a

% C o n s t r a i n t l o g i c program . . .
getP in(state(2, P, B, X, Y ), state(3, P, B, X1, Y ),

param(X1)).
pinIncorrect(state(3, P, B, X, Y ), state(8, P, B, X, Y ),

param(_)) :− X �= Pin.
pinCorrect(state(3, P, B, X, Y ), state(4, P, B, X, Y ),

param(_)) :− X = Pin.
. . .
% Query
oracle(P, B, X, Y in, Y out) :−

initP in(state(0, 0, 0, 0, 0), G1, param(P )),
initBalance(G1, G2, param(B)),
getP in(G2, G3, param(X)),
pinCorrect(G3, G4, _),
getAmount(G4, G5, param(Y in)),
money(G5, _, param(Y out)).

Figure 4. Query and a fragment of the con-
straint logic program

[eclipse2] : oracle(P, B, X, Y in, Y out).
P = P{−1.0inf ..1.0inf } B = B{−1.0inf ..1.0inf }
X = P{−1.0inf ..1.0inf } Y in = Y out{−1.0inf ..1.0inf }
Y out = Y out{−1.0inf ..1.0inf }
Delayed g o a l s :
Y out{−1.0inf ..1.0inf } − B{−1.0inf ..1.0inf } =< 0
Yes

Figure 5. Solver’s output

trace of the abstract test case to Pass and transform it into
a query for the constraint logic program. The query for the
Pass-trace of the abstract test case is given in Fig. 4. In the
query, variables P , B, X , Y in, Y out denote respectively
the initial pin, the initial balance, the pin entered by a cus-
tomer, the amount of money requested by the customer and
the amount of money dispensed by the cash machine. We
use Eclipse Prolog [7, 6] to solve the query.

The output of the solver is given in Fig. 5. The query
has solutions and the solver returns the information about
them: The pin-value entered by the customer should be the
same as the value of the initialized pin and the amount of
money dispensed by the machine should be the same as the
amount required by the user. The solver also provides an
additional information, delayed goals, meaning the amount
dispensed by the machine should not be greater than the
initial balance.

Assume we have chosen a substitution {P �→ 888, B �→
9999, X �→ 888, Y in �→ 9000, Y out �→ 9000} that is
one of the possible solutions of the query. We start the test
execution that consists in providing stimuli to an IUT and
checking whether the response of the IUT is the same as we



expect according to the selected trace and data.
Assume that during the execution of selected trace we

observe a reaction of the IUT that does not match the ex-
pected one according to the selected trace. For example,
after sending request getAmount(9000) to the IUT, it re-
turns Money(9001) instead of Money(9000). For the cash
machine, this reaction is obviously a wrong one because the
substitution {P �→ 888, B �→ 9999, X �→ 888, Y in �→
9000, Y out �→ 9001} is not a solution for the query. There-
fore, we issue verdict Fail and stop the test execution.

Specifications might be nondeterministic, so more than
one correct response is possible on one input. In this case,
assigning a verdict or proceeding test execution will require
an analysis of responses obtained from the IUT, which we
explain in the next subsection.

4.2. The Approach

Here we generalize our testing framework that covers the
test selection and test execution phases.

Test selection consists of the following steps: (1) Given
a test purpose TP and a specification Spec, we trans-
form the specification into the abstracted one, Spec��. (2)
Then we apply the enumerative test generation algorithm
from [11] to obtain a synchronous product of IOLTS s mod-
elling Spec�� and TP . (3) Abstract test cases are selected
from the product by resolving choices between several out-
puts or between inputs and outputs that might exist in some
states of the product [11]. (4) To execute an abstract test
case, abstract data should be concretized. Prior to execut-
ing the test case, we concretize only a part of abstract values
sufficient to start the execution. Having a partial concretiza-
tion we start executing the test case, while the concretiza-
tion of other abstract values happens "on-demand", i.e. it is
shifted to the test execution phase. Now we consider these
steps in more detail.

The transformation of a specification into an abstract
one is given in Section 3. The product generated from
the abstract specification and the test purpose might imple-
ment many testing strategies. To keep testing results re-
peatable, we have to select one of the strategies. By prun-
ing conflicting inputs and outputs [11], we single-out an
input-complete subgraph of the product. It does not contain
choices between several outputs or choices between inputs
and outputs. We further refer to the subgraph as an abstract
test case. Here, we limit our attention to subgraphs without
loops.

Environmental data occurring in the product are ab-
stracted into ��-values. To make the abstract test case exe-
cutable, abstract values should be concretized. For the con-
cretization of abstract values, we employ constraint solv-
ing [13]. The information necessary for concretization is
contained in the original specification. Therefore, we trans-

l −→g �!s(e) l̂ ∈ Edg
ROUT

s(state(l, η̃), state(l̂, η̃), param(X)) :− g ∧ X = e

l −→?s(x) l̂ ∈ Edg
RINP

s(state(l, η̃), state(l̂, η̃[x �→Y ]), param(Y ))

l −→g � x:=e l̂ ∈ Edg
RASSIGN

τ (state(l, η̃), state(l̂, η̃[x �→ e]), param(_)) :− g

Table 1. From specification Spec to constraint
logic program RS

form it into a constraint logic program RS that consists of
rules. Each edge of the specification is mapped into a rule
as defined in Table 1.

Rules of the constraint program are of the follow-
ing form: name(state(l, η̃), state(l̂, η̃′), param(Y )) :− g

where name(state(l, η̃), state(l̂, η̃′), param(Y )) is a user
defined constraint and g is a guard. The first parameter
state of the constraint describes the source states in terms
of locations and valuations of process variables. The second
parameter state describes the destination states in terms of
locations and valuations of process variables. The third pa-
rameter param contains parameters representing input and
output values. The constraint is satisfied iff the guard g is
satisfied.

By ROUT, the output edge l −→g �!s(e) l̂ is transformed

into the rule s(state(l, η̃), state(l̂, η̃), param(X)) :− (g ∧
X = e). The name of the constraint coincides with signal
s. The edge leads to the change of location from l to l̂. The
values of the process variables η̃ remain unmodified. The
output value is represented by parameter X . The value of
this variable is given by expression e.

By RINPUT, the input edge l −→?s(x) l̂ is transformed

into the rule s(state(l, η̃), state(l̂, η̃[x �→ Y ]), param(Y )).
Here, input leads to the substitution of process variable x
by input parameter Y .

By RASSIGN, an assign-edge l −→g � x:=e l̂ is mapped
into a τ -rule τ(state(l, η̃), state(l̂, η̃[x �→ e]), param(_)) :−
g. An assignment is represented by substituting process
variable x by expression e. τ -rules have no local param-
eters, which is denoted by the underscore (don’t-care) here.

Specifications are often nondeterministic meaning mul-
tiple reactions might be specified for one input. We cannot
predict which of the reactions are implemented by an IUT,
so concretizing all abstract values is time-consuming and
unnecessary. Therefore, we try to find a concretization only
for abstract values of one trace and shift the concretization
of other abstract values to the execution phase.

Different occurrences of the same abstract value do not
necessarily represent the same concrete value. In order to
differentiate the occurrences of abstract values, we substi-



tute each occurrence of �� values by a unique variable that
does not occur in the original specification. We will further
refer to these variables as parameters of the abstract test
case.

Formally, an abstract test case is an input complete
IOLTS M��

TC equipped with a set of parameters Varparam .
Test case M��

TC might contain several Pass-traces. We se-
lect one (for instance, the shortest one) Pass-trace β of
M��

TC and transform it into a query Oβ for the constraint
logic program.

Basically, a query is a conjunction of constraints corre-
sponding to the steps of the selected Pass-trace β. We con-
struct the query by induction on the length of the selected
trace. Initially, the query is empty and the first step of the
trace becomes the first element of the conjunction.

The initial input(output)-step, σinit −→?s(Y ) σ̂
(σ −→!s(Y ) σ̂), is transformed into a query s(state(linit,
η̃init), state(L1, η̃1), param(Y )). There linit is the ini-
tial location of Spec, variable L1 denotes the location of
Spec reachable by the step. η̃init gives the initial valua-
tion of system variables, η̃1 denotes a valuation of process
variables reachable from the initial one by the step. Param-
eter Y represents an input (output) value. The initial τ -step,
σinit →τ σ̂, is mapped into the query τ(state(linit , η̃),
state(L1, η̃1), param(_)).

The next input(output)-step σ −→?s(Y ) σ̂ (σ −→!s(Y )

σ̂) is transformed into the constraint s(state(L(k+1),
η̃(k+1)), state(L(k+2), η̃(k+2)), param(Y )). The next τ -
step σ →τ σ̂ is mapped into the constraint τ(state(L(k+1),
η̃(k+1)), state(L(k+2), η̃(k+2)), param(_)). The constraint
is added to the already constructed query by conjunction.

We use Eclipse Prolog [7, 6] to solve the query. If there is
no solution for the query, the selected trace is introduced by
the data abstraction. Therefore, we remove the trace from
the test case. If none of the Pass traces of the abstract test
case is solvable, we proceed by selecting another abstract
test case from the product. If there is at least one solution
for the query, the trace β can be mapped to a trace of the
original system.

Let θ : Varparam → D be a solution of the query in
the rule system RS . We refer to trace β with parameters
substituted according to θ as an instantiated trace, denoted
[[β]]θ . By the construction of the constraint logic program
and the query, the instantiated trace [[β]]θ is a trace of the
original system.

Test execution Knowing one possible solution for the
selected Pass-trace, we start the execution of the abstract
test case M��

TC . Test execution consists in giving output-
steps as stimuli to an IUT and checking whether reactions
of the IUT match inputs expected according to the selected
trace. The τ -steps are not observable, so we just skip them
during the execution. In case responses match expected in-
puts, we just proceed the execution until the Pass verdict is

reached.
An IUT does not always follow the selected trace during

the test execution: The IUT might provide an input ?s′(v′)
that does not match the input expected according to the se-
lected trace. In this case, we first need to decide whether
this input violates the specification. Let ρ be the already
executed prefix of [[β]]θ . We transform ρ followed by the
observed input ?s′(v′) into the new query for the constraint
system. If the query has no solution, meaning, the observed
input violates the specification, we assign the Fail verdict
and stop the test execution. If the query has a solution, then
the observed input does not violate the specification and we
may proceed the test execution.

To proceed, we first check whether the abstract test case
has a trace to Pass with prefix ρ?s′(v′). If there is such
a trace, we transform ρ followed first by ?s′(v′) and then
by the selected trace to Pass to a new query. If the query
has a solution, we use the solution to proceed with the test
execution. Otherwise, we stop the test execution. We also
cannot proceed if there is no trace to Pass after ρ followed
by ?s′(v′). Since we do not observe any violation of the
specification in both cases, we assign verdict Inconc.

The abstract system shows at least the behavior of the
original one and assigning test case verdicts is based on
solving queries for the rule system obtained from the orig-
inal specification. Therefore the test case verdicts assigned
in result of the proposed test execution are sound.

Implementation and CEPS case study We have imple-
mented our approach for test generation from µCRL spec-
ifications (see www.cwi.nl/̃ calame/dataabstr.html for
more detail). We use the µCRL toolset [2] to specify sys-
tems and test purposes, to generate and to optimize state
spaces. TGV [11] is employed to generate abstract test
cases from abstract systems. Eclipse Prolog [7, 6] is used
to solve queries.

We evaluated our approach to test generation on
Common Electronic Purse Specifications (CEPS) [3].
CEPS define a protocol for electronic payment using a
multi-currency smart-card. A card has a number of slots,
each corresponds to one currency and the balance for this
currency. CEPS defines how the information stored in slots
can be loaded, accessed and modified.

We have specified inquiry and load functionality of
CEPS and performed test case generation for the test pur-
pose based on the load transaction processing. We ap-
plied our abstraction tool to the specification and then in-
stantiated and reduced the abstracted specification using the
µCRL toolset. The instantiation and reduction took 16 min-
utes 5 seconds on a cluster of five 2.2GHz AMD Athlon
64 bit single CPU computers with 1 GB RAM each (operat-
ing system: SuSE Linux 9.3, kernel 2.6.11.4-20a-default).
Using TGV, we generated two test cases without loops:
one of 594 states with 597 transitions and another one of



109 states with 111 transitions. Test case generation took
0.65 seconds and 0.42 seconds, respectively, on a worksta-
tion with one 2.2GHz AMD Athlon XP 32 bit CPU and
1 GB main memory (operating system: Redhat Linux Fe-
dora Core 1, kernel 2.4.22-1.2199.nptl). For more detail see
www.cwi.nl/̃ calame/dataabstr.html.

5. Conclusion

In this paper we proposed an approach to test genera-
tion combining data abstraction and constraint solving with
enumerative test generation techniques. Application of the
approach to the CEPS case study shows that it is scalable
to systems of industrial size. Currently we are working on
the automation of the test execution process as described in
Section 4.

The closest to our approach is symbolic test genera-
tion [12]. This method works directly on higher-level
specifications given as Input-Output Symbolic Transition
Systems (IOSTSs) without enumerating their state space.
Given a test purpose and a specification, their product is
built. Since coreachability problem is undecidable for the
symbolic case, the coreachability analysis is overapproxi-
mated by classical Abstract Interpretation technique [4].

The purpose and usage of abstraction techniques in our
approach is conceptually different from the one of symbolic
test generation. We use a data abstraction that mitigates
infinity of external data. It allows to obtain abstract test
cases by applying existing enumerative test generation al-
gorithms. Abstract test cases are further supplied by con-
crete data derived by constraint solving. In the symbolic
test generation approach, approximate coreachability anal-
ysis is used for pruning pathes potentially not leading to
Pass-verdicts. Both approaches are valid for any abstrac-
tion leading to an overapproximation of system behaviors.
Both approaches employ constraint solving to choose a sin-
gle testing strategy during test execution. More case studies
are still needed to draw conclusions which approach is more
suitable for which class of systems.
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