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Abstract

State-of-the-art systems engineering uses many models reflecting various aspects of the modeled system.
A major task of system engineers is to ensure consistency between the many models. We present an

approach to the engineering of complex systems based on the modeling of use cases and object life cycles

as Petri nets. Synchronization by place fusion allows the derivation of an integrated model that can be ver-

ified and validated. We illustrate our approach by a case study.
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1. Introduction

The analysis and engineering of a complex system usually requires the effort of several system
architects, modeling various subsystems. The system will also have several stakeholders with dif-
ferent views, so various models are needed to validate the proposals of the architects. Often, these
models address different aspects of the system, and require different modeling techniques. UML
[3] offers a wide range of such techniques, most of them being diagram techniques. A UML
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description of a moderate-size system often contains hundreds of diagrams of various kinds. By
concentrating on a few models at a time, validation by stakeholders becomes possible.

As the project proceeds, the aspect models will be integrated, which may lead to the discovery
of inconsistencies. Early detection of such inconsistencies will help to reduce development costs,
so the software industry is hard-pressed for methods to determine and preserve the consistency
between the various models. We believe that there is no ‘‘silver bullet’’ for achieving this. The
proper way is by providing a single model that integrates all aspects modeled so far. From this
integrated model, the aspect models should be derivable as projections. If and only if such an inte-
grated model can be found, the models made so far are consistent.

In this paper, we indicate how integrated models can be derived from aspect models in early
stages of the development process. We represent various use cases and object life cycles as (simple)
Petri nets and use synchronization (place fusion) to integrate them into a more complex net. The
integrated model can be verified. Validation by stakeholders is possible by generating scenarios
(connected event sequences). By using high-level Petri net tools, like ExSpect [7] or CPN [9], this
approach can even be followed to derive a functional prototype of the system.

The synchronization operator can be implemented by the call mechanism for methods, so it will
be possible to support the design and implementation phases. We illustrate our proposal with a
case study of the well-known library system, which is just large enough to illustrate the key aspects
of our method.

In Section 2, we introduce WF nets, the subclass of Petri nets that we will use for our models.
Also we define our operators for composing and decomposing WF nets. In Section 3, we indicate
the steps taken for modeling, verification, and validation and the order in which to take them, i.e.
the (user and system) requirement engineering process. In Section 4, we illustrate our approach
with a library case study. We conclude with a comparison with related work.
2. Petri net models, synchronization and projection

We recall some basic facts about place-transition nets. A place-transition net is a bipartite di-
rected graph. Its nodes are called places and transitions, depicted by circles and squares, respec-
tively. A place p is an input place of transition t if there is an arrow leading from p to t. It is
an output place if the arrow points from t to p. A state (also called marking) assigns a number
of tokens to each place. A transition t is enabled if every input place of t is marked by one or more
tokens. An enabled transition can fire, that is, it takes one token from each of its input places and
adds a token to each of its output places. By firing a transition t in marking M, the marking
becomes now M 0. A net defines a reachability relation between its markings: a marking M 0 is
reachable from a marking M iff a finite sequence of firings exists starting in M and ending in M 0.

We use a subclass called WF (workflow) nets (cf. [1]) for our models. WF nets can be compared
to UML activity diagrams. A WF net possesses a unique source and a unique sink place. A WF
net possesses an initial marking (one token in the source place) and a final marking (one token in
the sink place). It is called sound iff (1) from the initial marking it is possible for every transition t

to reach a marking where t may fire and (2) the final marking is reachable from any marking M
that is reachable from the initial marking. WF nets can be used to model use cases and object
life cycles; these models should all be sound (cf. [4]). When creating WF nets for use cases, the
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Fig. 1. Example of a WF net.
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transitions describe events that can occur. If a net models an object life cycle, the transitions rep-
resent methods of the object�s class.

In Fig. 1 a WF net is depicted. The places i, f are, respectively the source and sink places. This
net is sound, which can be verified by examining the reachable markings. For example, from the
initial marking [i], the marking [r,q] is reached by firing transition b. Next, by firing transition c,
then twice d, the marking [p2] with only two tokens in p can be reached. From this marking, it is
possible to reach the final marking by firing a, then e.

For convenience, we omit in this paper the source and sink place from the WF nets. Thus a WF
net has one or more start transitions (without input places) and end transitions (without output
places). The firing of transitions corresponds to the occurrence of events. The firing of a start (end)
transition corresponds to an initial (final) create (destroy) event. We assume that initial events
occur at and only at the start of an event sequence. Terminating event sequences are those
sequences that end with a final event. If a WF net is sound, any possible event sequence can be
continued to constitute a terminating sequence.

The simplest class of WF nets is the class of state machine WF nets. The start (end) transitions
of such nets have one output (input) place and the other transitions have one input and one
output place. State machine WF nets are sound, which is easy to prove since the reachable states
correspond to singleton markings.

Petri nets can be analyzed in various ways. Structural properties refer to the structure of the
Petri net, whereas behavioral methods use the state space (possible markings) and firings connect-
ing the states. Generally, structural analysis methods are much more efficient than behavioral
methods, due to the so-called state explosion that may occur. Soundness of a WF net is a behav-
ioral property; despite the possibility of a state explosion, analyzing it is feasible for many nets
occurring in practice (cf. [14]). Also, restricting oneself to a small set of construction patterns will
lead to WF nets that are sound by construction [1]. In addition to the checking for soundness, we
use the structural T-invariant analysis. The T-invariants can be computed by standard linear alge-
bra techniques; they relate to sequences of transitions that lead from a certain state to itself. For
example, a + d constitutes a T-invariant in Fig. 1.

The main reason for using Petri net models is the existence of composition and decomposition
operators. Transitions may possess (synchronous) ports and synchronization will occur for transi-
tions whose ports are connected. When transitions in a net are synchronized, they must fire con-
currently. Synchronizing transitions in two WF nets results in a WF net that can be obtained by
transition fusion, as shown in Fig. 2. The two nets (with ports indicated) are shown at the left and
the synchronization result is the net in the middle, which is obtained by fusing the transitions par-
ticipating in synchronization. Usually we do not depict ports; rather we assume that they must
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Fig. 2. Example of synchronization and projection.
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exist when synchronization occurs. The synchronization operator in nets closely resembles the
synchronization operator within process calculi like CCS [10]. Synchronization between sound
nets does not always result in a sound net; the middle net in Fig. 2 is not sound (despite the appar-
ent soundness of the original nets), since transition cd cannot fire. Any WF net can be constructed
from state machine WF nets by the appropriate synchronizations. Models containing synchroniz-
ing state machine WF nets are equivalent to UML state chart diagrams.

The decomposition operator is called projection. Projection of a net w.r.t. a subset S of the net�s
places is obtained by removing all the places not in S plus the edges leading to and from them.
Transitions that become isolated are removed as well. The right-hand net shows the projection
of the middle net w.r.t. the set {p,q, r}. If N is a connected net, P its set of places, and S � P, then
N is equal to the synchronizing related transitions from the respective projections of N w.r.t. S and
PnS.

Modeling by ‘‘classical’’ place-transition nets is appropriate in the early modeling stages, since
it abstracts from details about object attributes. As the project proceeds, these details should be
gradually added to the models. This is possible by using high-level nets (cf. [7,9]). Tokens model-
ing objects obtain attributes with values attached to them. Also, transitions possess typed ports
that are used to exchange values with synchronizing transitions or with e.g. the user interface.
Transitions obtain firing relations, allowing to formulate pre- and postconditions for firing. This
firing relation involves the values of tokens (objects) consumed and/or produced and of values re-
ceived or sent through its ports. Synchronization occurs only if the received value at the one port
equals the sent value at the other port connected to it. The implementation of synchronization by
the call mechanism of programming thus becomes possible.

The following rule describes the essence of our approach: deriving an integrated model from
aspect models and checking their consistency:

• The integrated model is derived from the aspect models (use cases and life cycles) by
synchronization.

• All aspect models should be derivable from the integrated model by projection.
3. Modeling process

We focus on deriving an integrated logical model that captures the functionality of the system
and have left out other engineering activities. In general, we have a succession of elicitation,
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modeling, verification and validation steps. We split the modeling step into three steps: process
modeling, data modeling, and transformation modeling. In the elicitation steps the stakeholders
play an important role. There are several techniques to obtain useful information from a group
of stakeholders. Well-known are ‘‘brown paper sessions’’ where stakeholders write down individ-
ually the most important items, like issues, functions, scenarios, or objects. These items are dis-
played and grouped into related groups by the moderator. Then the items are discussed and
terminology is fixed. These sessions are repeated with different topics. Group decision support sys-
tems [11] provide computerized support. The modeling step is done by system architects, using
patterns that are correct by construction wherever possible. Verification is performed where
needed e.g. verifying soundness of the integrated model. After modeling and verification comes
validation with the help of stakeholders. As a result, a redesign may be needed.

The modeling, verification and validation steps are iterated until the stakeholders are satisfied
with the logical model. At some stage when use cases have become stable, user interface designers
can start their activities. After having established the logical model, it is extended to accommo-
date for the designed user interface. We will describe the successive phases and steps in more
detail.

Step 1: Elicitation

(a) Make a list of use cases, each with its identification and a description by the
stakeholders.

(b) Define some allowed and explicitly forbidden scenarios (event sequences) for each use
case.

(c) Identify the classes of objects that play a role in the scenarios.
(d) List relationships between object classes. These relationships are often connected to

use case events that involve more than one object.
(e) Collect relevant attributes for the objects.
(f) Find static constraints that a system�s state (the set of all current objects) should satisfy

at any point in time.
Step 2: Process modeling

(a) Create WF nets for the use cases. Each WF net should combine the allowed scenarios
for a use case and disallow the forbidden ones.

(b) Create WF nets for the object life cycles. The transitions are the methods of the
classes.

(c) Integrate the workflows by identifying synchronizing ports within the transitions of
use cases and object life cycles. If necessary, adapt use cases and/or life cycles.
Step 3: Data modeling

(a) Construct the class model with relationships and attributes. We prefer functional
relationships.

(b) Formalize the static constraints as logical predicates that should hold in any state.
Translating them in natural language allows validation by stakeholders.

(c) Define global variables. Each class possesses a global variable called object store, con-
taining all current objects of that class. Other global variables like the current date or
time may be needed.
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Step 4: Transformation modeling

(a) Combine the process model and the data model. Establish the relationships between
object classes and methods. For each class we determine whether the methods create,
read, update, or destroy objects from it (a CRUD-matrix).

(b) Determine the input and output parameters of the methods: places, global variables
and ports.

(c) Determine pre- and postconditions of the methods. The end product is the high-level
integrated model.
Step 5: Verification

(a) Check the soundness of all workflows: use cases, object life cycles, and the integrated
model.

(b) Check that all use case nets can be derived from the integrated model by the proper
projection.

(c) Check that object pairs are added to each relationship in the class model.
(d) Check the preservation of the static constraints. Some constraints may be temporarily

violated, but should become valid again after the execution of a certain sequence of
transitions (transaction).

(e) If necessary, return to modeling.
Step 6: Validation

(a) Validate the integrated model by spawning new scenarios from T-invariants of the nets
(and checking them).

(b) Validate all static constraints.
(c) Present the scenarios with data transformations added (by projection from the high-

level integrated model).
(d) If necessary, return to one of the modeling steps.
Step 7: User interface integration

(a) Define additional classes and methods to accommodate the user interface. Typi-
cal classes contain session or dialogue objects that reflect the state of a user
dialogue.

(b) Synchronize the user interface with the functional model at the user interface ports. If
necessary, adapt either model.

The above steps need not be executed strictly, nor in the order presented. For instance, it is
important to verify and validate as soon as possible in order to reduce costs. For example, the
soundness check (step 5a) should immediately succeed WF net modeling (steps 2a,b,c), unless
sound-by-construction nets like state machine WF nets were used. Checking the integrated net
obtained in step 2c will often need tool support [14]. Step 6a can succeed step 2c after verification.
The partial ordering of the steps can in fact be represented by a WF net.

After the above steps, the logical model is translated into specifications for software compo-
nents. These components may need to be built, or may be assembled from preexisting compo-
nents. For very large systems, a top-down modular approach is advisable. By decomposing the
system into smaller subsystems, applying the above steps to each subsystem and synchronizing
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them afterwards, we obtain an integrated model of the full system, that should be verified and
validated as described above, concentrating on the interface between the subsystems.
4. Case study: A library system

We consider a more or less standard library system. Stakeholders are personnel and members
that lend books. Several copies of the same book may exist. Members can reserve books that are
not available. We focus on the modeling steps, in particular the process-modeling step. Therefore
we treat the other steps rather superficially.

4.1. Elicitation

Fig. 3 depicts typical use cases like lending a book (possibly after reserving it), ordering a book,
and maintaining the member file and book catalogue. In Fig. 4, the loan-and-reserve use case net
is given. The initial transition (event) is s, which creates a token in place b denoting the reservation
by a member of a book in the catalogue. If a copy of that book is available, a loan is started (tran-
sition ld). If no copy is available, the token stays in place b and if a matching book is returned, the
reservation object can go to the notified state d by transition n (notification). From this state, tran-
sition lr can occur resulting in a loan (a token in f). A lent book can get lost (transition lo) or it will
be returned (transition re).

Similar use cases can be found for maintenance and ordering activities. We aim for so-called
state machine nets for modeling use cases. By synchronizing two or more state machines, we
Librarymember
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obtain nets that model concurrent behavior. So far we encountered objects of two classes, reser-
vations in places b,d, and loans in place f. When treating the other use cases, we encounter mem-
bers, book orders, book copies, and book titles. It is necessary to distinguish book titles and
copies, since several copies can exist for the same title. The classes and relations we determine
are shown in Fig. 5.
4.2. Process modeling

The next phase is the modeling of each object�s life cycle. A life cycle is composed of create,
update and destroy methods, drawn as transitions. The objects correspond to tokens within
places; an object class ranges over a set of places.

The simple MEM objects only have one state a. Other objects may have more states, e.g. BCPY
objects may be available for lending (h) or not (g).

Life cycle modeling starts with projecting the use cases onto the places from a single class.
The transition ld of our example use case thus becomes split into ln (creating a loan), regl
(recording the loan of a book title) and stal (creating a loan object). By concentrating on
one class, one is likely to find ‘‘gaps’’ in the life cycles found so far, which need to be filled
by adding transitions.

The integrated model in Fig. 6 is obtained by synchronizing the transitions from life cycles that
have been split (and possibly transitions that were added). Every life cycle produced so far should
be obtainable by projection from the synchronization result. If not, the inconsistencies should be
repaired (and discussed with the stakeholders).

The dashed lines indicating synchronizations, which are labeled. We assume the existence at
both ends of ports with the same label, which will identify the data exchanged during synchroni-
zation. Also, some transitions communicate with transitions from e.g. the user interface layer.
These transitions have thick borders, indicating that they have ports that will be connected to
the user interface. The transitions, indicated by mnemonics, are explained in Table 1.

In Fig. 7, the synchronizations have been spelled out for the model without the classes MEM,
ORD and TITLE.
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4.3. Process verification and validation

A verification and validation step is possible before the data modeling. The object life cycles
and use case models are sound, being state machine WF nets. Also, the use cases can be obtained
by projection. For instance projecting the net in Fig. 7 on the places b, d and f will result in the use
case net in Fig. 4.

Next, we turn to validation of the process model. It is possible to spawn ‘‘completed’’ scenarios
by considering T-invariants of the net. A T-invariant is related to sequences of transitions, the exe-
cution of which produces and consumes the same tokens. T-invariant analysis is performed by
standard linear algebraic techniques. Since completion of a T-invariant leaves no active token
(case) in the net, all cases that were started have been completed, which makes T-invariants good
candidates for validation. One rather intricate T-invariant is:
2ðrtiþ starÞ þ ðlnþreglþ stalÞ þ retuþ ðresd þ notiÞ þ ðfrbþ starlÞ þ retuþ ðnreþ regrÞ.
This invariant indicates a scenario where two different members request the same book; one
obtains a loan and the other a reservation. When the book is returned, the second member lends
and finally returns it. The scenario is depicted as a sequence diagram in Fig. 8 and validated as
such.

While validating the model in this way, omissions may be discovered. It turns out that mem-
bers, after having received a notification, may fail to turn up and claim the reserved book. After
three days, the reservation expires and it is examined anew whether other reservations exist.
Another omission is that after receiving an ordered copy from the bookstore, it should be exam-
ined for reservations just like returned lent copies.



Table 1

Mnemonics for the transitions in the model

MEM join Start membership

upd Update member details

rti Request title

term Terminate membership

RSV star Start reservation

ln Immediate loan

car Cancel reservation

noti Notify member

frb Fetch reserved book

LOAN stal Start immediate loan

starl Start reservation loan

lose Lent book lost

retu Book return

nre Title not reserved

resd Title reserved

BCPY stac Start copy

regr Register return

lost Register loss

regl Register loan

obso Write off

ORD stao Start order

cano Cancel order

rec Receive

TITLE add Add title

rtit Read title

otit Order title

rem Remove
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This leads to a redesign of the model: a loan terminates when the book is returned and the
BCPY class is extended with states and transitions. This redesign is displayed in Fig. 9. The states
of BCPY now become:

e to be checked for reservations
k awaiting notified member
h free for lending
g lent

The transitions resd and nre move from class LOAN to BCPY and BCPY is extended with the
transition lres, a reservation becoming a loan.

The loan-after-reservation sequence T-invariant now becomes
2ðrtiþ starÞ þ ðlnþreglþ stalÞ þ ðretuþ regrÞ þ ðresd þ notiÞ
þ ðfrbþ lresþ starlÞ þ ðretuþ regrÞ þ nre;
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which translates to the sequence diagram in Fig. 10. New T-invariants arise, like
2ðrtiþ starÞ þ ðlnþreglþ stalÞ þ ðretuþ regrÞ þ ðresd þ notiÞ þ ðfg þ timoÞ þ ðnreþ regrÞ;
which indicates the scenario where a reservation notification times out. These new scenarios
deserve careful validation.
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4.4. Data modeling

After constructing and validating the ‘‘classical’’ Petri net model, data will be added. The use
case models and the events (transitions) that occur in them do help to elicit the data involved.
Input data of a transition consists of attribute values of objects related to consumed tokens
and input parameters (from the user interface or from synchronizations). Output data are attri-
bute values of objects related to production and output parameters.

By considering the synchronizations between transitions connected to a certain class and use
case transitions, we produce a list of attributes for each class (Table 2). Each object should contain
key attributes (indicated in boldface); many-to-one relations are implemented by including the
(foreign) key of the ‘‘one’’ object within the ‘‘many’’ object. We forgo a more sophisticated
OCL-like notation that could have been used equally well.

We can formulate constraints: for example, the ‘‘key constraint’’ that a member cannot have
two reservations for the same title. We use the Z notation (cf. [8]) to formulate this constraint,
but any predicate language will serve as well.
Table

Attrib

MEM

RSV

LOAN

BCPY

ORD

TITL
8r; r0 : RSV jr 6¼ r0 � r.lcode 6¼ r0.lcode _ r.ISBN 6¼ r0.ISBN .
Each synchronization in the integrated model will correspond to some method call where para-
meters and return values are exchanged. Therefore, for each synchronization the values below
must be specified:
2

utes of library classes

lcode: Tcode Membership nr

name: Tname Name of member

address: Taddr Address

lcode: Tcode Foreign key MEM

ISBN: TISBN Foreign key TITLE

date: Tdate Date of reservation

state: {b,d}

bcode: Tcode Foreign key BCPY

lcode: Tcode Foreign key MEM

date: Tdate Loan date

bcode: Tcode Key

ISBN: TISBN Foreign key TITLE

free: Boolean Available indicator

indate: Tdate Date of acquisition

state: {e,g,h,k}

ISBN: TISBN Foreign key TITLE

date: Tdate Order date

E ISBN: TISBN Key

titdat: Ttitdat Author(s)/publisher/year/title



K. van Hee et al. / Data & Knowledge Engineering 56 (2006) 4–22 17
p,v lcode + bcode
q, t,y,z ISBN
r,u lcode + ISBN
w,x bcode

Note that in deriving method calls from synchronizations a choice has to be made which object
takes the initiative. By looking at synchronizations that connect objects from different classes, we
can verify the modeled relations. An object is often related to objects that are involved in its cre-
ation. For example, an ORD object is created from a TITLE object, which accounts for their rela-
tion in Fig. 5. Relations can be transferred when creating an object involves destroying another
one. For example, a BCPY object is created from an ORD object and it ‘‘inherits’’ its relation
to TITLE. The existence of a relation is often the condition for synchronization. The synchroni-
zations t, q and u between RSV and BCPY transitions all have the condition that the book�s title
matches the reserved title.

4.5. Transformation modeling

The places in the WF nets contain tokens that correspond to objects. If object life cycles have
been modeled as state machine WF nets, there is a 1–1 correspondence between objects and
tokens. When consumption and/or production of tokens occurs, the corresponding objects are
created, destroyed, read or updated. When synchronization between methods occurs, two or
more objects are simultaneously accessed. Occasionally, a method (transition) needs to inspect
all current objects of a given class. A global read-only variable with the same name as the class
is assumed to contain this set of current objects.

For example, resd synchronizes with noti if a reservation exists and nre inspects the RSV vari-
able to make sure that there are no reservations of the given title. If there are several reservations
for the considered title, noti picks the oldest one, which also requires a global access. A third type
of global access occurs when destroying MEM and TITLE objects, which may only occur if there
are no other objects (i.e. book copies resp. reservations and loans) that refer to it. Another global
variable is day, the current date. Table 3 lists which transitions create, read, update, and/or delete
objects of each variable.

We are now in a position to specify the methods (transition) by giving pre- and postcondi-
tions. To this end, we use the Z language [8]. Each transition specification consists of a header
and a body. The header contains a short description, followed by an indication of the consumed
and produced token objects (indicated by the place name decorated with a question mark (?)
respectively, exclamation mark (!) symbol), the parameters stemming from the synchronization
ports (not decorated) and the user interface input and output ports (named in and out,
respectively).

Z requires that parameters be typed. Table 2 gives the types associated with the object attri-
butes. The body contains a list of conditions, which determine the firing relation. The transition
may fire iff all conditions in its body hold. Often, the conditions are divided into preconditions
and postconditions. Preconditions contain only input variables and state when a firing can
occur. Postconditions state how the values of the output parameters are determined by the input



Table 3

CRUD matrix with transitions from the revised model

MEM RSV BCPY LOAN ORD TITLE Day

MEM join c

upd u

rti r r

term d r r

RSV star c r

car d

noti u r

fg d r

frb d

BCPY stac c r

resd u

timo u

nre r u

obso d

regl u

regr u

lost d

lres u

LOAN stal c r

star c r

retu d

lose d

ORD stao c r

cano d

rec d

TITLE add c

otit r

rtit r

rem r r r d
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parameters. Below we give the specifications for three transitions of the RSV class. The star tran-
sition for example has the precondition 9=x : RSV • x.lcode = s.lcode ^ x.ISBN = s.ISBN and
postconditions fixing the attributes of the new token b!.
star

a reservation object is created from the synchronization parameter s, with date and state added
s : [l:Tcode,t:TISBN]; b! : RSV
9= x : RSV • x.lcode = s.lcode ^ x.ISBN = s.ISBN
b!.lcode = s.l ^ b!.ISBN = s.t ^ b!.date = day ^ b!.state = b



noti

the oldest RSV object matching synchronization parameter t is selected and updated; the member
and title id are output to the user interface
t : TISBN; b?,d! : RSV; out : [l:Tcode,t:TISBN]
9= r : RSV • r.ISBN = b?.ISBN ^ r.date < b?.date ^ r.state = b
t.ISBN = b?.ISBN
d! = b? � [state:d, date:day] ^ out = [l:b?.lcode,t:b?.ISBN]

fg

an RSV object in state d waiting for more that 3 days is destroyed; its ISBN synchronizes via q

q : TISBN; d? : RSV
d?.ISBN = q ^ d?.date < day-3
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It can be verified that e.g. the reservation key constraint is preserved: when a new reservation id
is created by transition star, the precondition ensures that no reservation with the same member
and title code exists.

4.6. User interface integration

While architects and stakeholders were busy with the logical model, another team of engineers
has defined the user interface. It is now time to integrate the two models. For instance, the ‘‘re-
quest title’’ (rti) transition requires the ISBN number of the requested title as input parameter.
The user interface engineers have designed title selection screens and dialogues to achieve this.
These screens deal with a user interface object of class TQRY that allows a user to find out the
ISBN number of a book he or she is interested in. The class TQRY has the following transitions
(methods):
mqry Make query The user describes his wishes
dres Display results A list of titles matching the query is displayed
rqry Renew query A new (or refinement of the original) query is given
selt Select title A title is chosen from the list
The selt transition synchronizes with the rti transition defined earlier. In Fig. 11, the life cycle of
a TQRY object is given. As attributes, it has a predicate and a set of titles found so far that satisfy
the predicate. The ports r and z of the rti transition are connected to the selt transition and dres

(and maybe also the query transitions) access the global TITLE class variable to select and/or dis-
play titles. Synchronization thus allows integration of the model to the user interface components
selected and installed in the technical design phase. In the implementation, the seltmethod of class
TRQY will call method rti of class MEM with the lcode of the member and the ISBN of the
selected title.



rtiseltmqry
dres

b

rqry

a

TRQY
r

z

MEM

Fig. 11. The subnet for the request-title (rti) transition.
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This example is typical for the integration of the user interface to the functional model. Simi-
larly, other systems or components can be integrated, like EDI method calls, applets or servlets.
5. Related work and conclusion

The use of Petri nets for the integration of UML models has been recommended by various
authors. In all cases, some kind of composition operator is used to connect the various models.
In [15], use case modeling with Petri nets is treated in conjunction with transition fusion (extended
with place fusion). In [5], UML sequence diagrams that model scenarios are integrated within
high-level Petri nets and used for prototyping. In [13], high-level nets are used for prototyping
based upon state charts and collaboration diagrams. In [6], a thorough comparison of Petri nets
and activity diagrams is given.

In our approach, the combination of synchronization and projection allows to move back and
forth between aspect and integrated models, thus improving the consistency between the various
aspect models. Current high-level Petri net tools like CPN [9] use token passing (i.e. place fusion)
as composition operator. Token passing adapts itself more easily to collaboration diagrams while
the synchronization operator (transition fusion) makes it easier to work with use cases, class and
sequence diagrams. Synchronization also smoothens the transition to the design phases where
method calls are used. Many modeling paradigms (cf. [2,12]) allow synchronization and projec-
tion within Petri nets. Any such paradigm will do for the purpose described here.
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