Resource-Constrained Workflow nets

Kees van Hee

Natalia Sidorova

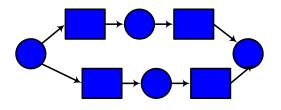
Marc Voorhoeve

Department of Mathematics and Computer Science Technische Universiteit Eindhoven The Netherlands

Workflow nets

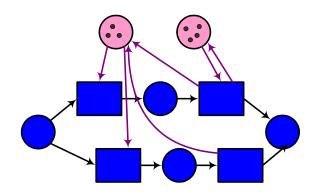
A Petri net *N* is a Workflow net (WF-net) iff:

- N has two special places (or transitions): an initial place (transition) i: $\bullet i = \emptyset$, and a final place (transition) f: $f^{\bullet} = \emptyset$.
- For any node $n \in (P \cup T)$ there exists a path from *i* to n and a path from n to f.



Applications: business process modelling, software engineering,

Resource-Constrained WF-nets



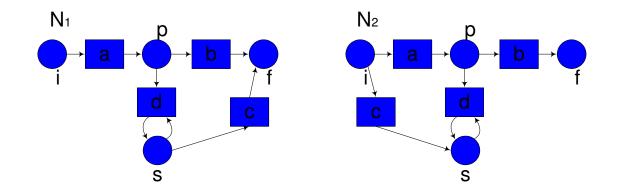
- A Petri net = $\langle P_p \cup P_r, T, F_p^+ \cup F_r^+, F_p^- \cup F_r^- \rangle$ is a Resource-Constrained Workflow net (RCWF-net) iff:
 - $P_r \neq \emptyset$ and $P_p \cap P_r = \emptyset$,

TU/e

- F_p^+ and F_p^- are mappings $(P_p \times T) \to \mathbb{N}$,
- F_r^+ and F_r^- are mappings $(P_r \times T) \to \mathbb{N}$, and

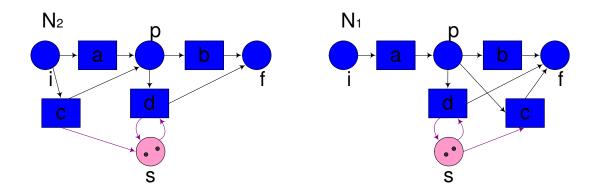
• $N_p = \langle P_p, T, F_p^+, F_p^- \rangle$ is a WF-net, which we call a production net of N.

Non-redundancy and non-persistency



- Non-redundancy: every transition can potentially fire and every production place can potentially obtain tokens, provided that there are enough tokens on the initial place and resource tokens.
- Non-persistency: it should be possible for every production place (except for *f*) to become unmarked again.

Redundancy and persistency



- Redundancy: no resource place can ever obtain tokens, if it was not marked initially.
- Persistency: every resource place should become marked again when the net terminates.

Formally:

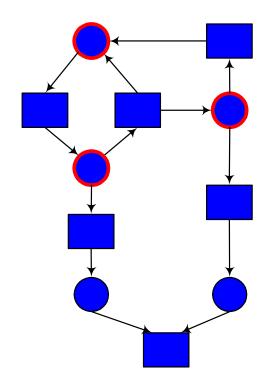
TU/e

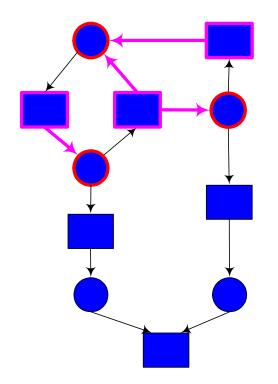
Let $N = \langle P, T, F \rangle$ be a WF-net.

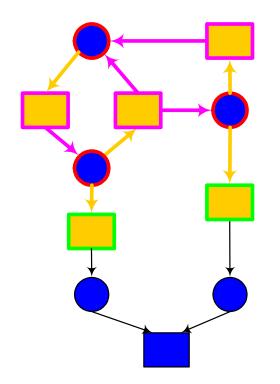
- A place $p \in P$ is non-redundant iff $\exists k \in \mathbb{N}, m \in \mathbb{N}^P : k[i] \xrightarrow{*} m \land p \in m.$
- A place $p \in P$ is non-persistent iff $\exists k \in \mathbb{N}, m \in \mathbb{N}^P : p \in m \land m \xrightarrow{*} k[f].$
- A transition *t* is non-redundant iff $\exists k \in \mathbb{N}, m \in \mathbb{N}^P : k[i] \xrightarrow{*} m \xrightarrow{t}$.

All production places should be non-redundant and non-persistent;

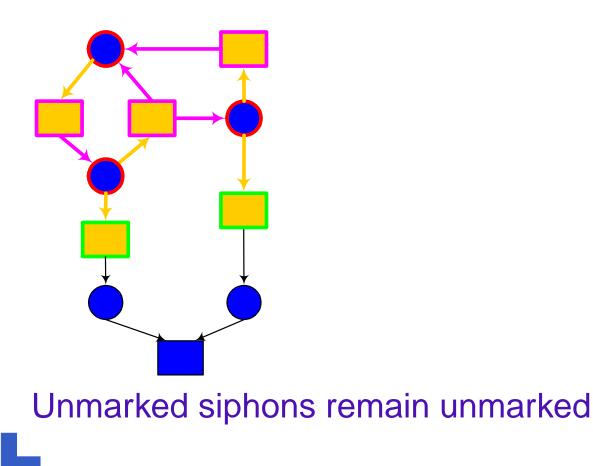
all resource places should be redundant and persistent.







A set *R* of places is a siphon if $\bullet R \subseteq R^{\bullet}$. A siphon is a proper siphon if it is not empty.

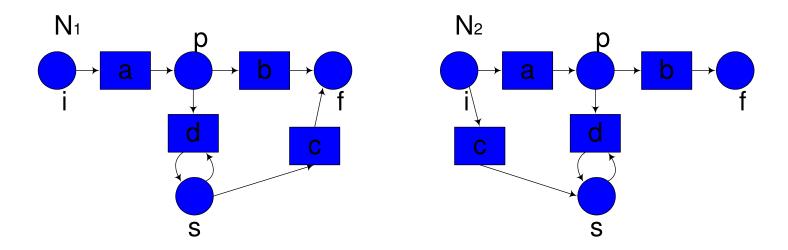


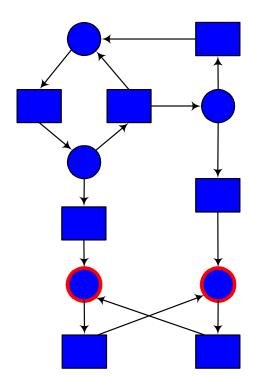
TU/e

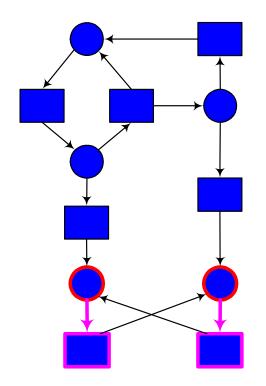
— p

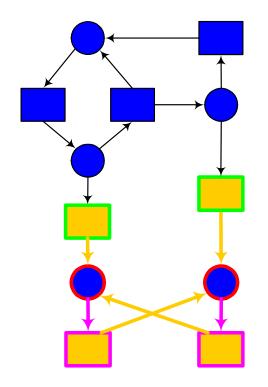
Non-redundancy criterion

- A WF-net has no redundant places iff $P \setminus \{i\}$ contains no proper siphon.
- A WF-net has no redundant places iff it has no redundant transitions.

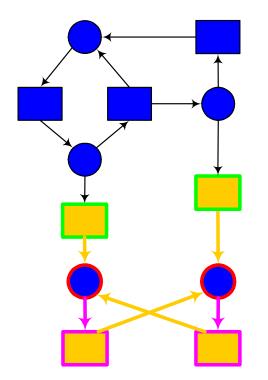








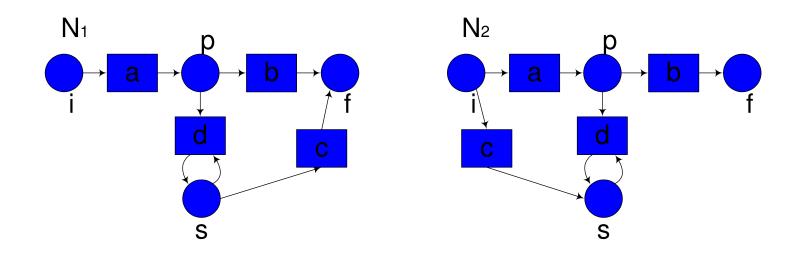
A set *R* of places is a trap if $R^{\bullet} \subseteq {}^{\bullet}R$. A trap is a proper trap if it is not empty.



Marked traps remain marked. TU/e

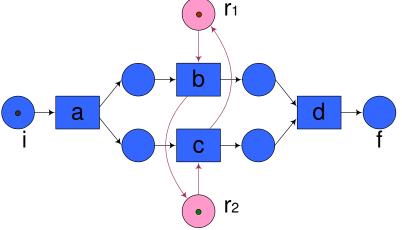
Non-persistency criterion

• A WF-net has no persistent places iff $P \setminus \{f\}$ contains no proper trap.

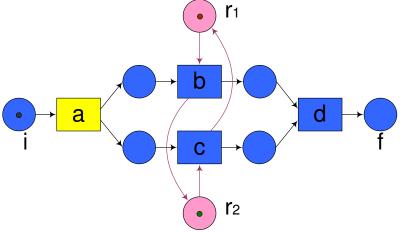


- Check that the production net has no redundant places and no persistent places;
- Check that all resource places are redundant and persistent;
- Check whether resources are independent of each other, if necessary: resource *r* is independent of other resources iff place *r* is redundant and persistent in the net with all other resource places removed.

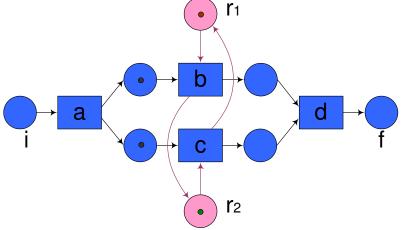
- Check that the production net has no redundant places and no persistent places;
- Check that all resource places are redundant and persistent;
- Check whether resources are independent of each other, if necessary: resource *r* is independent of other resources iff place *r* is redundant and persistent in the net with all other resource places removed.



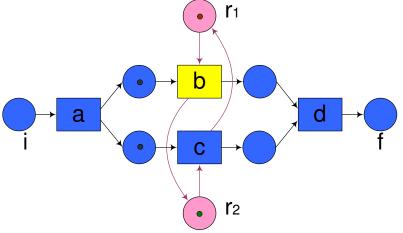
- Check that the production net has no redundant places and no persistent places;
- Check that all resource places are redundant and persistent;
- Check whether resources are independent of each other, if necessary: resource *r* is independent of other resources iff place *r* is redundant and persistent in the net with all other resource places removed.



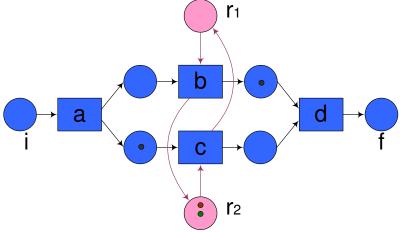
- Check that the production net has no redundant places and no persistent places;
- Check that all resource places are redundant and persistent;
- Check whether resources are independent of each other, if necessary: resource *r* is independent of other resources iff place *r* is redundant and persistent in the net with all other resource places removed.



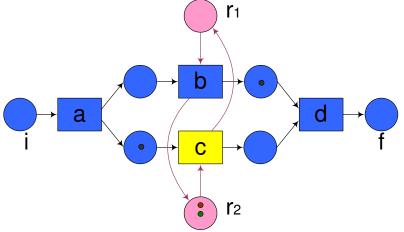
- Check that the production net has no redundant places and no persistent places;
- Check that all resource places are redundant and persistent;
- Check whether resources are independent of each other, if necessary: resource *r* is independent of other resources iff place *r* is redundant and persistent in the net with all other resource places removed.



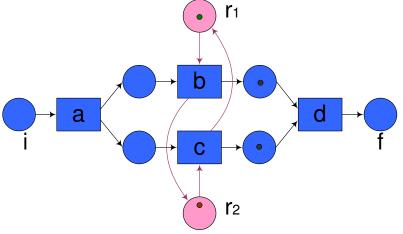
- Check that the production net has no redundant places and no persistent places;
- Check that all resource places are redundant and persistent;
- Check whether resources are independent of each other, if necessary: resource *r* is independent of other resources iff place *r* is redundant and persistent in the net with all other resource places removed.



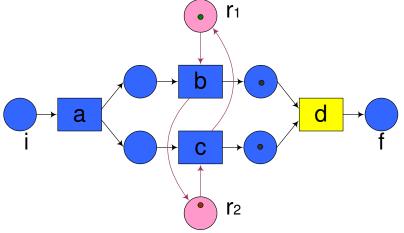
- Check that the production net has no redundant places and no persistent places;
- Check that all resource places are redundant and persistent;
- Check whether resources are independent of each other, if necessary: resource *r* is independent of other resources iff place *r* is redundant and persistent in the net with all other resource places removed.



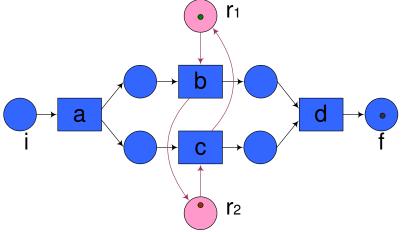
- Check that the production net has no redundant places and no persistent places;
- Check that all resource places are redundant and persistent;
- Check whether resources are independent of each other, if necessary: resource *r* is independent of other resources iff place *r* is redundant and persistent in the net with all other resource places removed.



- Check that the production net has no redundant places and no persistent places;
- Check that all resource places are redundant and persistent;
- Check whether resources are independent of each other, if necessary: resource *r* is independent of other resources iff place *r* is redundant and persistent in the net with all other resource places removed.



- Check that the production net has no redundant places and no persistent places;
- Check that all resource places are redundant and persistent;
- Check whether resources are independent of each other, if necessary: resource *r* is independent of other resources iff place *r* is redundant and persistent in the net with all other resource places removed.



Soundness

Desired property: proper completion

```
Soundness for WF-nets:
```

A WF-net N with initial and final places i and f resp. is k-sound for $k \in \mathbb{N}$ iff $[f^k]$ is reachable from all markings m from $\mathcal{M}(N, [i^k])$.

A WF-net is (generalised) sound iff it is k-sound for every natural k.

Generalised soundness is decidable [van Hee, Sidorova, Voorhoeve 2004]

Soundness of RCWF-nets

 $N \text{ is } (k, m_r)\text{-sound for some } k \in \mathbb{N}, m_r \in \mathbb{N}^{P_r} \text{ iff for all}$ $m \in \mathcal{R}(k[i] + m_r), m \xrightarrow{*} (k[f] + m_r).$

N is *k*-sound iff there exists $m_r \in \mathbb{N}^{P_r}$ such that it is (k, m')-sound for all $m' \ge m_r$.

N is sound iff there exists $m_r \in \mathbb{N}^{P_r}$ such that it is (k, m')-sound for all $k \in \mathbb{N}, m' \ge m_r$.

Soundness of RCWF-nets

 $N \text{ is } (k, m_r)\text{-sound for some } k \in \mathbb{N}, m_r \in \mathbb{N}^{P_r} \text{ iff for all}$ $m \in \mathcal{R}(k[i] + m_r), m \xrightarrow{*} (k[f] + m_r).$

N is *k*-sound iff there exists $m_r \in \mathbb{N}^{P_r}$ such that it is (k, m')-sound for all $m' \ge m_r$.

N is sound iff there exists $m_r \in \mathbb{N}^{P_r}$ such that it is (k, m')-sound for all $k \in \mathbb{N}, m' \ge m_r$.

TU/e

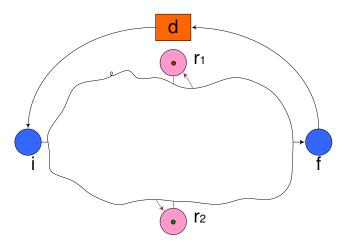
(1) If N is k-sound, the underlying production WF-net N_p is k-sound as well. (2) If N is sound, N_p is sound, too.

Soundness and transition invariants

Soundness includes the requirement to work correctly for all "large" markings.

Every transition invariant of the closure of the production net is a transition invariant of the the closure of the RCWF-net N.

 \downarrow



Soundness and transition invariants

Check that $\forall x \in \mathbb{Z}^T : F'_p \cdot x = 0 \Leftrightarrow F' \cdot x = 0.$

If not, the net is not sound.

TU/e

If yes, then if no deadlock or livelock occurs due to the lack of resources, then the RCWF-net terminates properly:

Let *N* be an RCWF-net such that its production net N_p has no redundant transitions, and for the closure nets *N'* and N'_p holds $\forall x \in \mathbb{Z}^T : F'_p \cdot x = 0 \Leftrightarrow F' \cdot x = 0$. Then for any $k \in \mathbb{N}, m_r \in \mathbb{N}^{P_r}, m' \in \mathbb{N}^P$, $k[i] + m_r \stackrel{*}{\longrightarrow} k[f] + m'$ implies $m_r = m'$.

Soundness and place invariants

Let *N* be a sound RCWF-net and *r* is a resource place. Then there exists a place invariant $I \in \mathcal{I}$ such that I(i) = I(f) = 0 and $I(r) \neq 0$.

An additional characterization of resource independence:

In a sound net, all invariants satisfy I(i) = I(f).

Decompose a linear space \mathcal{I} of all place invariants into the subspaces \mathcal{I}_P , the production invariants, and \mathcal{I}_R , the resource invariants satisfying I(i) = I(f) = 0.

If the resources are independent, \mathcal{I}_R is decomposable into subspaces \mathcal{I}_r for $r \in P_r$ such that

 $\forall I \in \mathcal{I}_r, q \in P_r : I(q) \neq 0 \iff q = r.$

Soundness and place invariants

A desirable property for RCWF-nets with independent resources is the existence of bases for the \mathcal{I}_r having nonnegative coefficients (i.e. resources can only become available when released after being claimed earlier).

RCWF-nets with this property are connected to the S^4PR nets of [Colom2003].

Conclusion

TU/e

- (Non-)redundancy and (non-)persistency: simple structural correctness checks with the use of traps and siphons
- Soundness of the production net is necessary for the soundness of the RCWF-net
- Transition invariants of the closure of the production net are the same as of the closure of the RCWF-net, if the RCWF-net is sound. (guarantee for the resource conservation)
- Soundness implies the existence of a resource place invariant for every resource place, which relates sound RCWF-nets to S⁴PR nets [Colom2003].

Related works

- Colom, Ezpeleta, Martinez, Silva, Turuel et al.
 Flexible manufacturing systems: the key issue is the construction of appropriate schedules.
- Barkaoui&Petrucci:
 - Nets with shared resources: structural soundness corresponds approx. to the existence of k, m_r such that the net is (k, m_r) sound.

Future work

- We gave only necessary conditions for soundness. What are sufficient conditions?
- Is the soundness problem decidable for RCWF-nets?
- What are the structural patterns for building sound-by-construction RCWF-nets?