
Embedding Chaos

Natalia Sidorova Martin Steffen

Dept. of Math. and Computer Science

Eindhoven University of Technology

Inst. für Informatik u. Prakt. Mathematik

Christian-Albrechts Universtität zu Kiel

Embedding Chaos, SAS’01 – p.1

http://www.informatik.uni-kiel.de/~ms

Motivation & starting point

� verification/model
checking of Mascara

� wireless ATM
medium-access
protocol for LANs

� developed within
Wand industrial board

� given in SDL

Layer Control
Protocol

Message
Encapsulation Unit

MASCARA
Control

Control Segmentation &
Reassembly

Wireless Data Link Control

MAC Data Pump

ATM Layer

Physical Medium Dependent Layer

MASCARA Layer

ICC

Embedding Chaos, SAS’01 – p.2

Model checking

� pro: automatic (“push-button”) verification method

�
�

� con:

� state-space explosion

� how to obtain the model from a piece of software?

Embedding Chaos, SAS’01 – p.3

Specification Description Language
(SDL)

� standardized (in various versions)

� standard spec. language for telecom applications

� characteristics:

� control structure: communicating finite-state
machines

� communication: asynchonous message passing

� data: various basic and composed types

� timers and time-outs

� bells and whistles: graphical notation, structuring
mechanisms, OO, � � �

Embedding Chaos, SAS’01 – p.4

Model checking SDL

� various aggravations
1. it’s about software (data)
2. it’s about large software
3. it’s about open systems

� approaches:
1. abstraction:

(a) data abstraction: replace concrete domains by
finite, abstract ones

(b) control abstraction, i.e., add non-determinism
2. decompose system along SDL-blocks

Embedding Chaos, SAS’01 – p.5

Model checking SDL in theory (and
practice)

� in theory
1. cut out a sub-component
2. model it’s environment abstractly, i.e.,

� add an enviroment process which

� closes the sub-component

� shows more behavior than the real environment

� in extremis: add chaos-process
3. push the button � � �

� in practice

� components and interfaces might be large

� closing is tedious

�

SDL-tools don’t often work with abstract data

Embedding Chaos, SAS’01 – p.6

Model checking open SDL systems

� three more specific problems
1. infinite data domains
2. asynchronous input queues: � state explosion
3. chaotic timer behavior

� three specific solutions
1. one-valued data abstraction

��� no external data
2. no external chaos process

“embedding chaos”

3. three-valued timer abstraction

Embedding Chaos, SAS’01 – p.7

Goal

� automatic transformation

� yielding a closed system

� safe abstraction

� executable with standard SDL-semantics � source
code transformation.

Embedding Chaos, SAS’01 – p.8

Roadmap

1. (sketch of) syntax

2. SO-semantics of SDL

(a) local and global rules
(b) semantics of timers

3. closing the system via data-flow analysis

4. dealing with chaotic timers

Embedding Chaos, SAS’01 – p.9

Syntax: Example
RCM Tue May 30 08:18:18 2000

/scratch2/sidorova/rcm_abstr.pr View: 2 / Page: 2

process RCM

TIMER T_RCM;

Idle

ACQUIRE_NEW_AP

SET (NOW +k, T_RCM)

busy

busy

T_RCM

’non-deterministic choice’

’success’

ACQUIRE_NEW_AP_OK

’failure’

ACQUIRE_NEW_AP_KO

Idle

Embedding Chaos, SAS’01 – p.10

Syntax

� guarded, labelled edges

� � ���
��

connecting locations

� actions �: (with guards �)

input

�	�
��

output � � � � �
��

assignment � � �� � �

Embedding Chaos, SAS’01 – p.11

Semantics (local)

� straightforward operational small-step semantics

� interleaving semantics

� top-level concurrency

� local process configuration:
1. location/control state
2. valuation of variables
3. content of input-queue

� labelled steps between configuations, e.g.

� � ��� � � � �
�� � � �
	

INPUT
 ��
�
�

 � � �
� � �
 ���

 ���
�
 � � � �� � � �

Embedding Chaos, SAS’01 – p.12

Timers in SDL

� no real-time

� discrete-time semantics, as in the DTSpin (“discrete
time Spin”) model-checker [BD98, DTS00]

� time evolves by ticking down (active) timer variables

� timer: active or deactivated

� timeout possible: if active timer has reached

�

� modelled by time-out guards (cf. [BDHS00])

Embedding Chaos, SAS’01 – p.13

Syntax for timers

� guarded actions involving timers

set � � � � � �� � � (re-)activate timer for pe-
riod given by � .

reset � � � � � � � �

: deactivate

timeout ��� � � � � � � �
perform a timeout, thereby
deactivate

�

� note: timeout is guarded by “timer-guard” � �

Embedding Chaos, SAS’01 – p.14

Parallel composition

� standard product construction

� message passing using the labelled steps

� note: tick step = counting down active timers:

� can be taken only when no other move possible

� tick step has least priority!

�� �� �
�
�
 ��
�
� �

TICK
 ��
�
� �
 ��� �	�

 ��
�
 � � � � � � � � � � � �

Embedding Chaos, SAS’01 – p.15

What’s next

� goal:

� no external communication

� abstract data from outside: chaotic data value

� �

� side-condition

� use official/implemented SDL-semantics (tools):

� there are no abstracted data in SDL

� we cannot re-implement tick

� keep it simple

Embedding Chaos, SAS’01 – p.16

The need for data-flow analysis

� abstractly: replace external

�	�
��

by receiving

� �

� better: remove external reception actions � replace it
by �-actions (in SDL: NONE-transitions)

� remove all variables (potentially) influenced by � , as
well (and transitively so)

�� forward slice/cone of influence

closing the program

1. data-flow analysis: mark all variable instances
potentially influenced by chaos

2. transform the program, using that marking

Embedding Chaos, SAS’01 – p.17

Data-flow analysis

� control-flow (almost) directly given by SDL-automata

� propagate

� �

through control-flow graph, via abstract
effect per action = node, e.g.:

�
 �	�
��

� �

� � � � � � �

� � � � � � � � ��� � ��� � 	 �
 � �
 � � � � � � � �

� external
else

� constraint solving: minimal solution for

�� �� �

��
 � ���

��� �

��

��� �

��
 � �
�� �� �

�� �
�
�� �
� �

in flow relation

�

Embedding Chaos, SAS’01 – p.18

Worklist algo (pseudo-code)

input : the flow �graph of the program
output: � ����� � � ���� � 	 ;

� � � � � � � ��

�
 	 � � �

;�� � � � 	 �
 �� � � � � � � � � ��� �� 	 �;

repeat
pick � � ��

;
let

� � � � � � �� � � � � � 	�
 � � � � � ��� � � � � � � �

in
for all � � � �

: � � � � � ��� �� � � � � � � �

;�� � � �� � � � �

;
until

�� � �;

� � ��� � � � � � � � � �

;� �!�� � 	 � � � ��
 � � � � � � �

Embedding Chaos, SAS’01 – p.19

What about time?

� so far: we ignored timers

� chaos � also chaotic timed behaviour

� remember: time steps (ticks) have least priority!

� new � steps make ticks impossible!

�

chaos = at arbitrary points
1. sending any possible value, and
2. refusing to send something (lest to get less

ticks and thus less timeouts)

Embedding Chaos, SAS’01 – p.20

Timer abstraction

� three abstract values:

1. de-activated

2. arbitrarily active

3. active, but not

�

(no time-
out possible)

�� � � � �

�

��

�

����
�
�
�
�
�
�
�
�

� � � � � � � � �

� �	�

XX

� arbitrary expiration time � non-deterministic setting
from ��
 � �

to � �
 � � �

.

� embedding the timer: one additional timer

� � within
each process

Embedding Chaos, SAS’01 – p.21

Transformation rules

� using result of the flow analysis

� inference rule(s) for each syntax construct

� e.g.,

� � � � � � �
�

� �

T-NOTIMEOUT� � �
 �

�� �� �� � � � � �� �� � �

� � � �
	
�

� � � � �

�

��

�

����
�
�
�
�
�
�
�
�

� � �� � � �

� �	�

WW

Embedding Chaos, SAS’01 – p.22

Transformation rule: in SDL

process timer_before 1(1)

S A

M T1

SET
(Now+y,T1)

y is a vari−
able instance
influenced by
the environment

‘series of
actions’

Q B

process timer_after 1(1)

S A

M T1

SET
(Now,T1) ‘expir−

ation?’
non−determ.
decision

Q

‘series of
actions’

SET
(Now+1,T1)

B A

’now’ ’later’

Embedding Chaos, SAS’01 – p.23

Soundness result

Theorem: The transformed system is closed, and a safe
abstraction of the original one.

� safe abstraction, i.e.,

if

� �� � � then
�� � �

,

where � is an LTL-formula

Proof:

� transformed system and original in simulation relation

� � �

shows more behavior than

�

, i.e., it has more traces.

Embedding Chaos, SAS’01 – p.24

Related work

� software testing

� VERISOFT, C, untimed [CGJ98]

� filtering = “refined” chaos, but external [DP98] [Pas00]

� module checking:

� checking open systems

� e.g. MOCHA [AHM

�

98]

Embedding Chaos, SAS’01 – p.25

Future work

� implementation

� embedding “refined” chaos

� specified properties by LTL

� arbitrarily chaotic timer exporation � calculated by
data-flow analysis

Embedding Chaos, SAS’01 – p.26

References

[AHM � 98] Rajeev Alur, Thomas A. Henzinger, F.Y.C. Mang,

Shaz Qadeer, Sriram K. Rajamani, and Serdar

Tasiran. Mocha: Modularity in model checking. In

Alan J. Hu and Moshe Y. Vardi, editors, Proceed-

ings of CAV ’98, volume 1427 of Lecture Notes

in Computer Science, pages 521–525. Springer-

Verlag, 1998.

[BD98] Dragan Bošnački and Dennis Dams. Integrat-

ing real time into Spin: A prototype implementa-

tion. In S. Budkowski, A. Cavalli, and E. Najm,

editors, Proceedings of Formal Description Tech-

niques and Protocol Specification, Testing, and

Verification (FORTE/PSTV’98). Kluwer Academic

Publishers, 1998.

[BDHS00] Dragan Bošnački, Dennis Dams, Leszek Holender-

ski, and Natalia Sidorova. Verifying SDL in Spin.

In S. Graf and M. Schwartzbach, editors, TACAS

2000, volume 1785 of Lecture Notes in Computer

Science. Springer-Verlag, 2000.

[CGJ98] C. Colby, P. Godefroid, and L. J. Jagadeesan. Auto-

matically closing of open reactive systems. In Pro-

ceedings of 1998 ACM SIGPLAN Conference on

26-1

Programming Language Design and Implementa-

tion. ACM Press, 1998.

[DP98] M. B. Dwyer and C. S. Pasareanu. Filter-based

model checking of partial systems. In Proceedings

of the 6th ACM SIGSOFT Symposium on the Foun-

dations of Software Engineering (SIGSOFT ’98),

pages 189–202, 1998.

[DTS00] Discrete-time Spin. http://win.tue.nl/˜dragan/DTSpin.html,

2000.

[Pas00] Corina S. Pasareanu. DEAO kernel: Environment

modeling using LTL assumptions. Technical Report

SASA-ARC-IC-2000-196, NASA Ames, 2000.

[SDL92] Specification and Description Language SDL, blue

book. CCITT Recommendation Z.100, 1992.

26-2

	Motivation & starting point
	Model checking
	Specification Description Language ({SDL })
	Model checking SDL
	Model checking SDL {} in theory �romSlide {2}{(and practice)}
	Model checking open SDL {} systems
	Goal
	Roadmap
	Syntax: Example
	Syntax
	Semantics (local)
	Timers in SDL
	Syntax for timers
	Parallel composition
	What's next
	The need for data-flow analysis
	Data-flow analysis
	Worklist algo (pseudo-code)
	What about time?
	Timer abstraction
	Transformation rules
	Transformation rule: in SDL
	Soundness result
	Related work
	Future work

