
Closing open SDL-systems for
model checking with DTSpin

Natalia Ioustinova Natalia Sidorova Martin Steffen

Dept. of Software Eng.
Centrum Wiskunde en Informatica

The Netherlands

Dept. of Math. and Comp. Science
Technische Universiteit Eindhoven

The Netherlands

Inst. für Informatik u. Prakt. Math.
Christian-Albrechts Univ. of Kiel

Germany

– p.1

Model checking
• pro: automatic (“push-button”) verification

method
• con: state-space explosion

Abstraction and decomposition techniques
• data abstraction:

replace concrete domains by finite, abstract ones
• control abstraction, i.e., add non-determinism
• assume-guarantee paradigm

– p.2

Model checking
• pro: automatic (“push-button”) verification

method
• con: state-space explosion

Abstraction and decomposition techniques

• data abstraction:
replace concrete domains by finite, abstract ones

• control abstraction, i.e., add non-determinism
• assume-guarantee paradigm

– p.2

Model checking
• pro: automatic (“push-button”) verification

method
• con: state-space explosion

Abstraction and decomposition techniques
• data abstraction:

replace concrete domains by finite, abstract ones

• control abstraction, i.e., add non-determinism
• assume-guarantee paradigm

– p.2

Model checking
• pro: automatic (“push-button”) verification

method
• con: state-space explosion

Abstraction and decomposition techniques
• data abstraction:

replace concrete domains by finite, abstract ones
• control abstraction, i.e., add non-determinism

• assume-guarantee paradigm

– p.2

Model checking
• pro: automatic (“push-button”) verification

method
• con: state-space explosion

Abstraction and decomposition techniques
• data abstraction:

replace concrete domains by finite, abstract ones
• control abstraction, i.e., add non-determinism
• assume-guarantee paradigm

– p.2

Model checking in theory

• cut out a sub-component
• model its environment abstractly, i.e.,

add an environment process which
• closes the sub-component
• shows more behavior than the real

environment ⇒ in extremis: add
chaos-process

• push the button. . .

– p.3

Model checking in theory
• cut out a sub-component

• model its environment abstractly, i.e.,
add an environment process which
• closes the sub-component
• shows more behavior than the real

environment ⇒ in extremis: add
chaos-process

• push the button. . .

– p.3

Model checking in theory
• cut out a sub-component
• model its environment abstractly, i.e.,

add an environment process which
• closes the sub-component
• shows more behavior than the real

environment ⇒ in extremis: add
chaos-process

• push the button. . .

– p.3

Model checking in theory
• cut out a sub-component
• model its environment abstractly, i.e.,

add an environment process which
• closes the sub-component
• shows more behavior than the real

environment ⇒ in extremis: add
chaos-process

• push the button. . .

– p.3

Model checking in theory
• cut out a sub-component
• model its environment abstractly, i.e.,

add an environment process which
• closes the sub-component
• shows more behavior than the real

environment ⇒ in extremis: add
chaos-process

• push the button. . .

– p.3

Model checking in practice
• components and interfaces might be large

• closing is tedious
• model checkers often don’t work with abstract

data
• with asynchronous communication adding

external chaotic process leads to state space
explosion

Embedding Chaos [Sidorova and Steffen, 2001]

– p.4

Model checking in practice
• components and interfaces might be large
• closing is tedious

• model checkers often don’t work with abstract
data

• with asynchronous communication adding
external chaotic process leads to state space
explosion

Embedding Chaos [Sidorova and Steffen, 2001]

– p.4

Model checking in practice
• components and interfaces might be large
• closing is tedious
• model checkers often don’t work with abstract

data

• with asynchronous communication adding
external chaotic process leads to state space
explosion

Embedding Chaos [Sidorova and Steffen, 2001]

– p.4

Model checking in practice
• components and interfaces might be large
• closing is tedious
• model checkers often don’t work with abstract

data
• with asynchronous communication adding

external chaotic process leads to state space
explosion

Embedding Chaos [Sidorova and Steffen, 2001]

– p.4

Model checking in practice
• components and interfaces might be large
• closing is tedious
• model checkers often don’t work with abstract

data
• with asynchronous communication adding

external chaotic process leads to state space
explosion

Embedding Chaos [Sidorova and Steffen, 2001]

– p.4

Goal
• a tool implementing embedding closing ideas

• experiments to corroborate the usfulness of the
approach

• the tool is targeted towards the verification of
SDL components with DTSpin

– p.5

Goal
• a tool implementing embedding closing ideas
• experiments to corroborate the usfulness of the

approach

• the tool is targeted towards the verification of
SDL components with DTSpin

– p.5

Goal
• a tool implementing embedding closing ideas
• experiments to corroborate the usfulness of the

approach
• the tool is targeted towards the verification of

SDL components with DTSpin

– p.5

SDL
(Specification and Description Language)

• standardized (in various versions)
• standard spec. language for telecom applications
• characteristics:

• control structure:
communicating finite-state machines

• communication:
asynchronous message passing

• data: various basic and composed types
• timers and timeouts
• bells and whistles: graphical notation,

structuring mechanisms, OO, . . .

– p.6

Model checking SDL systems
• three more specific problems

1. asynchronous input queues: ⇒ state explosion
2. infinite data domains
3. chaotic timer behavior

• three specific solutions
1. embedding environment into the system
2. one-valued data abstraction no external data
3. three-valued timer abstraction

– p.7

Model checking SDL systems
• three more specific problems

1. asynchronous input queues: ⇒ state explosion
2. infinite data domains
3. chaotic timer behavior

• three specific solutions
1. embedding environment into the system
2. one-valued data abstraction

��� no external data
3. three-valued timer abstraction

– p.7

Roadmap
1. (sketch of) syntax
2. SO-semantic rules
3. eliminating external data via data-flow analysis
4. dealing with chaotic timers
5. eliminating communication with environment
6. tools overview
7. experimental results

– p.8

Syntax: Example
RCM Tue May 30 08:18:18 2000

/scratch2/sidorova/rcm_abstr.pr View: 2 / Page: 2

process RCM

TIMER T_RCM;

Idle

ACQUIRE_NEW_AP

SET (NOW +k, T_RCM)

busy

busy

T_RCM

’non-deterministic choice’

’success’

ACQUIRE_NEW_AP_OK

’failure’

ACQUIRE_NEW_AP_KO

Idle

– p.9

Syntax
• labelled edges

�

−→ �
��

connecting locations
• actions �:

input

��� 	�
 �

output

B

� � � 	�� �
assignment

B

 � � �
with guards
, signals � , processes

�

– p.10

Semantics (local)
• straightforward operational small-step semantics

• interleaving semantics
• top-level concurrency

• local process configuration:
1. location/control state
2. valuation of variables
3. an input queue

⇒ labelled steps between configurations, e.g.

�
−→ �� �� � ��

∈

� ���

INPUT� ��� � ! �#" $
:: % $ −→ �� �� � � ��� &� 7→ ' (� % $

– p.11

Modelling SDL Timers
• discrete-time semantics

⇒ time evolves by ticking down (active) timer
variables

• timer: active or deactivated
• timeout possible: if active timer has reached

)

• modelled by timeout guards

– p.12

Syntax for timers
• guarded actions involving timers

set

B

*+ ,- � � � (re-)activate timer

-

for a period given by�

reset

B

.+ *+ ,-
deactivate

-

timeout
/ B .+ *+ ,-

perform a timeout,
thereby deactivate

-

• note: timeout is guarded by “timer-guard”
/ :- �)
– p.13

Parallel composition
• standard product construction
• message passing using the labelled steps
• note: tick step = counting down active timers:

• is taken only when no other move is possible

0→ 1 23 4 0 5/

7→

6 /
−

7 89 iff

:;=< > ?+ @ 	 0 �

– p.14

What’s next
Goal:

• abstract data from outside:
chaotic data value >>

• no external communication

Side-condition
• verification with DTSpin model checker:

• there are no abstract data
• we cannot re-implement tick

• keep it simple

– p.15

What’s next
Goal:

• abstract data from outside:
chaotic data value >>

• no external communication
Side-condition

• verification with DTSpin model checker:
• there are no abstract data
• we cannot re-implement tick

• keep it simple

– p.15

The need for data-flow analysis

• abstractly: replace external by receiving
>>

• better: remove communication parameters
⇒ remove all variable instances (potentially)

influenced by as well (and transitively so)
forward slice/cone of influence

eliminating external data

1. data-flow analysis: mark all variable instances
potentially influenced by chaos

2. transform the program, using that marking

– p.16

The need for data-flow analysis
• abstractly: replace external

�� 	�
 �

by receiving�� 	

>>

�

• better: remove communication parameters
⇒ remove all variable instances (potentially)

influenced by as well (and transitively so)
forward slice/cone of influence

eliminating external data

1. data-flow analysis: mark all variable instances
potentially influenced by chaos

2. transform the program, using that marking

– p.16

The need for data-flow analysis
• abstractly: replace external

�� 	�
 �

by receiving�� 	

>>

�

• better: remove communication parameters

⇒ remove all variable instances (potentially)
influenced by as well (and transitively so)
forward slice/cone of influence

eliminating external data

1. data-flow analysis: mark all variable instances
potentially influenced by chaos

2. transform the program, using that marking

– p.16

The need for data-flow analysis
• abstractly: replace external

�� 	�
 �

by receiving�� 	

>>

�

• better: remove communication parameters
⇒ remove all variable instances (potentially)

influenced by
 as well (and transitively so)

forward slice/cone of influence

eliminating external data

1. data-flow analysis: mark all variable instances
potentially influenced by chaos

2. transform the program, using that marking

– p.16

The need for data-flow analysis
• abstractly: replace external

�� 	�
 �

by receiving�� 	

>>

�

• better: remove communication parameters
⇒ remove all variable instances (potentially)

influenced by
 as well (and transitively so)

��� forward slice/cone of influence

eliminating external data

1. data-flow analysis: mark all variable instances
potentially influenced by chaos

2. transform the program, using that marking

– p.16

The need for data-flow analysis
• abstractly: replace external

�� 	�
 �

by receiving�� 	

>>

�

• better: remove communication parameters
⇒ remove all variable instances (potentially)

influenced by
 as well (and transitively so)

��� forward slice/cone of influence

eliminating external data

1. data-flow analysis: mark all variable instances
potentially influenced by chaos

2. transform the program, using that marking

– p.16

Data-flow analysis
• control-flow given by SDL-automata
• propagate >> through control-flow graph, via

abstract effect per action = node, e.g.:

A 	 ��� 	�
 ���B � �
C B � 5ED 7→>

9 � ∈

FGEH IJ

B � 5ED 7→

K
{

55EL 99NM O | �#P ′

Q R

B

S TVU 6 L 8

}

9 else

• constraint solving: minimal solution for

B �XWYZ 1 	�[�

≥
A]\ 	B �XW^ I
	[� �

B �XW^ I
	�[�

≥

_

{B
�XWYZ 1 	[′ �

|

	�[′` [�

in flow relation}

– p.17

Worklist algo (pseudo-code)
input : the flow−graph of the program
output : a bdcef g a b chi j ;a b �k �ml a bonp n j �k �

;qr l {k | st l � � �� � g � ∈

uvw fx j};
repeat

pick k ∈

q r

;
let

yl {k ′ ∈ z{| | �k �

|

}t � a b �k �

6≤ a b �k ′

�

}

in
for all k ′ ∈

y

: a b �k ′

�~ l } � a b �k � �
;

if k l �

B

� � � �� �

then let

y

′l {k ′ ∈

�

| k ′l � � �� � g a b �k � �� � 6≤ a b � k ′

� �� �

}qr ~ l q r

\k ∪

y

∪

y

′;
until

q r l ∅;a b�cef �k �ml a b �k �

;a b�ch i j �k �ml }t � a b �k � �

– p.18

What about time?
• so far: we ignored timers
• timers can be influenced by external data
• chaotic timeout for an active timer:

1. it can happen now, or
2. eventually in the future

• remember: time steps (ticks) have least priority!

– p.19

Timer abstraction
Three abstract values:

1. < �

: deactivated
2. �[

>>

�

: arbitrarily active

3. �[

>>

� �

: active, but not
)

(no time-out possible)

Y� 6

>>

8

�

��

�

����
�
�
�
�
�
�
�
�

Y � Y� 6

>>

� 8

1 23 4

YY

• arbitrary expiration time ⇒ non-deterministic
setting from< � 	>>

�

to< � 	>>

� �

Implementation: <
�` < �) �` < � 	� �

– p.20

Transformation rules
• using result of the flow analysis
• inference rule(s) for each syntax construct, e.g.,

� �� � � a b�� � >
T-NOTIMEOUT�

−→ ��

B

�� z � �� −→ z � �� ~ l � �

∈
� � � �

Y� 6� 8

�

��

�

����
�
�
�
�
�
�
�
�

Y � Y� 6 7 8

1 23 4

XX

• transformation yields a safe abstraction

– p.21

What we have now

• A safe abstraction of a given system
• No data involved in the communication with the

environment
• But: the system is still open

– p.22

What we have now
• A safe abstraction of a given system

• No data involved in the communication with the
environment

• But: the system is still open

– p.22

What we have now
• A safe abstraction of a given system
• No data involved in the communication with the

environment

• But: the system is still open

– p.22

What we have now
• A safe abstraction of a given system
• No data involved in the communication with the

environment
• But: the system is still open

– p.22

Embedding chaos
Environment sends signals arbitrarily

⇒ Inputs from the environment are always
potentially enabled

⇒ Replace them by

� �< �+ inputs ???

Time won’t progress!
⇒ Regulate inputs from the environment by means

of a special timer added to each process

−→ ∈ >> ∈
T-INPUT

−→ B −→ ∈

T-NOINPUT
−→ B −→ ∈

– p.23

Embedding chaos
Environment sends signals arbitrarily

⇒ Inputs from the environment are always
potentially enabled

⇒ Replace them by

� �< �+ inputs ???
Time won’t progress!

⇒ Regulate inputs from the environment by means
of a special timer added to each process

−→ ∈ >> ∈
T-INPUT

−→ B −→ ∈

T-NOINPUT
−→ B −→ ∈

– p.23

Embedding chaos
Environment sends signals arbitrarily

⇒ Inputs from the environment are always
potentially enabled

⇒ Replace them by

� �< �+ inputs ???
Time won’t progress!

⇒ Regulate inputs from the environment by means
of a special timer added to each process

−→ ∈ >> ∈
T-INPUT

−→ B −→ ∈

T-NOINPUT
−→ B −→ ∈

– p.23

Embedding chaos
Environment sends signals arbitrarily

⇒ Inputs from the environment are always
potentially enabled

⇒ Replace them by

� �< �+ inputs ???
Time won’t progress!

⇒ Regulate inputs from the environment by means
of a special timer added to each process

�

−→ �� � � � ��

∈
� � � >> ! ∈ �� � �� �

T-INPUT�

−→ ��� B

�� z � �� � −→ z � �� � ~ l � ��

∈

� � � �

T-NOINPUT�

−→ ��� B

�� z � �� � −→ z � �� � ~ l �

∈

� ��� �

– p.23

Extending Vires toolset

ObjectGeode

sdl2if LIVE if2pml

pml2pml

Spin/DTSpin

IF

– p.24

Experimental results
Steady State Control of Mascara

¡

closed with
embedded chaos and model checked with DTSpin

System with ext. chaos System with embedded chaos

States 2.68938e+07 467555

Transitions 1.04753e+08 2.30307e+06

Memory 944.440 14.499

Time 1:59:39.76 2:12.91

¢

[Guoping and Graf],[Sidorova and Steffen, 2001b], [Bošnački et al., 2000]

– p.25

Conclusion
• pml2pml automatically translates an open

DTPromela model into

• a closed model
• which is a safe abstraction of the original one

• experiments on Mascara confirm the usefulness
of the embedding chaos approach

– p.26

Conclusion
• pml2pml automatically translates an open

DTPromela model into
• a closed model

• which is a safe abstraction of the original one
• experiments on Mascara confirm the usefulness

of the embedding chaos approach

– p.26

Conclusion
• pml2pml automatically translates an open

DTPromela model into
• a closed model
• which is a safe abstraction of the original one

• experiments on Mascara confirm the usefulness
of the embedding chaos approach

– p.26

Conclusion
• pml2pml automatically translates an open

DTPromela model into
• a closed model
• which is a safe abstraction of the original one

• experiments on Mascara confirm the usefulness
of the embedding chaos approach

– p.26

Related work
• software testing
• VERISOFT, C, untimed [Colby et al., 1998]
• filtering [Dwyer and Pasareanu, 1998]

[Pasareanu, 2000]
• module checking:

• checking open systems
• e.g. MOCHA [Alur et al., 1998]

– p.27

On-going work
• More refined abstractions

• wrt. data abstraction
• wrt. environment behaviour

• extension of the approach to handle
• procedures
• dynamic process creation

• extension of pml2pml implementing synchronous
closing [Sidorova and Steffen, 2002]

– p.28

On-going work
• More refined abstractions

• wrt. data abstraction

• wrt. environment behaviour
• extension of the approach to handle

• procedures
• dynamic process creation

• extension of pml2pml implementing synchronous
closing [Sidorova and Steffen, 2002]

– p.28

On-going work
• More refined abstractions

• wrt. data abstraction
• wrt. environment behaviour

• extension of the approach to handle
• procedures
• dynamic process creation

• extension of pml2pml implementing synchronous
closing [Sidorova and Steffen, 2002]

– p.28

On-going work
• More refined abstractions

• wrt. data abstraction
• wrt. environment behaviour

• extension of the approach to handle

• procedures
• dynamic process creation

• extension of pml2pml implementing synchronous
closing [Sidorova and Steffen, 2002]

– p.28

On-going work
• More refined abstractions

• wrt. data abstraction
• wrt. environment behaviour

• extension of the approach to handle
• procedures

• dynamic process creation
• extension of pml2pml implementing synchronous

closing [Sidorova and Steffen, 2002]

– p.28

On-going work
• More refined abstractions

• wrt. data abstraction
• wrt. environment behaviour

• extension of the approach to handle
• procedures
• dynamic process creation

• extension of pml2pml implementing synchronous
closing [Sidorova and Steffen, 2002]

– p.28

On-going work
• More refined abstractions

• wrt. data abstraction
• wrt. environment behaviour

• extension of the approach to handle
• procedures
• dynamic process creation

• extension of pml2pml implementing synchronous
closing [Sidorova and Steffen, 2002]

– p.28

References
[Alur et al., 1998] Alur, R., Henzinger, T. A., Mang, F., Qadeer, S.,

Rajamani, S. K., and Tasiran, S. (1998). Mocha: Modularity in
model checking. In Hu, A. J. and Vardi, M. Y., editors, Proceedings
of CAV ’98, volume 1427 of Lecture Notes in Computer Science,
pages 521–525. Springer-Verlag.

[Bošnački and Dams, 1998] Bošnački, D. and Dams, D. (1998). Inte-
grating real time into Spin: A prototype implementation. In Bud-
kowski, S., Cavalli, A., and Najm, E., editors, Proceedings of For-
mal Description Techniques and Protocol Specification, Testing, and
Verification (FORTE/PSTV’98). Kluwer Academic Publishers.

[Bošnački et al., 2000] Bošnački, D., Dams, D., Holenderski, L., and
Sidorova, N. (2000). Verifying SDL in Spin. In Graf, S. and
Schwartzbach, M., editors, TACAS 2000, volume 1785 of Lecture
Notes in Computer Science. Springer-Verlag.

[Colby et al., 1998] Colby, C., Godefroid, P., and Jagadeesan, L. J.
(1998). Automatically closing of open reactive systems. In Pro-
ceedings of 1998 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. ACM Press.

[Guoping and Graf] J. Guoping and S. Graf. Verification experiments
on the Mascara protocol. In M. B. Dwyer, editor, Model Check-
ing Software, Proceedings of the 8th International SPIN Workshop
(SPIN 2001), Toronto, Canada, Lecture Notes in Computer Science,
pages 123–142. Springer-Verlag, 2001.

[DTSpin2000, 2000] DTSpin2000 (2000). Discrete-time Spin.
http://win.tue.nl/˜dragan/DTSpin.html.

[Dwyer and Pasareanu, 1998] Dwyer, M. B. and Pasareanu, C. S.
(1998). Filter-based model checking of partial systems. In Pro-
ceedings of the 6th ACM SIGSOFT Symposium on the Foundations
of Software Engineering (SIGSOFT ’98), pages 189–202.

28-1

[ObjectGeode 4.] ObjectGeode 4. http://www.csverilog.com/products/geode.htm,
2000.

[Pasareanu, 2000] Pasareanu, C. S. (2000). DEAO kernel: Environ-
ment modeling using LTL assumptions. Technical Report SASA-
ARC-IC-2000-196, NASA Ames.

[SDL92, 1992] SDL92 (1992). Specification and Description Lan-
guage SDL, blue book. CCITT Recommendation Z.100.

[Sidorova and Steffen, 2001a] Sidorova, N. and Steffen, M. (2001a).
Embedding chaos. In Cousot, P., editor, Proceedings of the 8th
Static Analysis Symposium (SAS’01), volume 2126 of Lecture Notes
in Computer Science, pages 319–334. Springer-Verlag.

[Sidorova and Steffen, 2001b] Sidorova, N. and Steffen, M. (2001b).
Verifying large SDL-specifications using model checking. In Reed,
R. and Reed, J., editors, Proceedings of the 10th International SDL
Forum SDL 2001: Meeting UML, volume 2078 of Lecture Notes in
Computer Science, pages 403–416. Springer-Verlag.

[Sidorova and Steffen, 2001] N. Sidorova and M. Steffen. Embedding
chaos. In P. Cousot, editor, Proceedings of the 8th Static Analysis
Symposium (SAS’01), volume 2126 of Lecture Notes in Computer
Science, pages 319–334. Springer-Verlag, 2001.

[Sidorova and Steffen, 2002] Sidorova, N. and Steffen. M. (2002).
Synchronous Closing of Timed SDL Systems for Model Checking.
In Cortesi, editor, Proceedings of the Third International Workshop
on Verification, Model Checking and Abstract Interpretation, to ap-
pear in Lecture Notes in Computer Science. Springer-Verlag.

[TAU SDL] Telelogic TAU SDL Suite.
http://www.telelogic.com/products/sdl/, 2002.

[VIRES, 2000] VIRES (1998-2000). Verifying industial reactive
systems (VIRES), Esprit long-term research project LTR-23498.
http://radon.ics.ele.tue.nl/˜vires/.

28-1

	Model checking
	Model checking in theory
	Model checking in practice
	Goal
	SDL
	Model checking SDL {} systems
	Roadmap
	Syntax: Example
	Syntax
	Semantics (local)
	Modelling SDL Timers
	Syntax for timers
	Parallel composition
	What's next
	The need for data-flow analysis
	Data-flow analysis
	Worklist algo (pseudo-code)
	What about time?
	Timer abstraction
	Transformation rules
	What we have now
	Embedding chaos
	Extending Vires toolset
	Experimental results
	Conclusion
	Related work
	On-going work

