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Model checking
• pro: automatic (“push-button”) verification

method
• con: state-space explosion

Abstraction and decomposition techniques
• data abstraction:

replace concrete domains by finite, abstract ones
• control abstraction, i.e., add non-determinism
• assume-guarantee paradigm
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Model checking in theory

• cut out a sub-component
• model its environment abstractly, i.e.,

add an environment process which
• closes the sub-component
• shows more behavior than the real

environment ⇒ in extremis: add
chaos-process

• push the button. . .
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Model checking in practice
• components and interfaces might be large

• closing is tedious
• model checkers often don’t work with abstract

data
• with asynchronous communication adding

external chaotic process leads to state space
explosion

Embedding Chaos [Sidorova and Steffen, 2001]

– p.4



Model checking in practice
• components and interfaces might be large
• closing is tedious

• model checkers often don’t work with abstract
data

• with asynchronous communication adding
external chaotic process leads to state space
explosion

Embedding Chaos [Sidorova and Steffen, 2001]

– p.4



Model checking in practice
• components and interfaces might be large
• closing is tedious
• model checkers often don’t work with abstract

data

• with asynchronous communication adding
external chaotic process leads to state space
explosion

Embedding Chaos [Sidorova and Steffen, 2001]

– p.4



Model checking in practice
• components and interfaces might be large
• closing is tedious
• model checkers often don’t work with abstract

data
• with asynchronous communication adding

external chaotic process leads to state space
explosion

Embedding Chaos [Sidorova and Steffen, 2001]

– p.4



Model checking in practice
• components and interfaces might be large
• closing is tedious
• model checkers often don’t work with abstract

data
• with asynchronous communication adding

external chaotic process leads to state space
explosion

Embedding Chaos [Sidorova and Steffen, 2001]

– p.4



Goal
• a tool implementing embedding closing ideas

• experiments to corroborate the usfulness of the
approach

• the tool is targeted towards the verification of
SDL components with DTSpin
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SDL
(Specification and Description Language)

• standardized (in various versions)
• standard spec. language for telecom applications
• characteristics:

• control structure:
communicating finite-state machines

• communication:
asynchronous message passing

• data: various basic and composed types
• timers and timeouts
• bells and whistles: graphical notation,

structuring mechanisms, OO, . . .
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Model checking SDL systems
• three more specific problems

1. asynchronous input queues: ⇒ state explosion
2. infinite data domains
3. chaotic timer behavior

• three specific solutions
1. embedding environment into the system
2. one-valued data abstraction no external data
3. three-valued timer abstraction
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Roadmap
1. (sketch of) syntax
2. SO-semantic rules
3. eliminating external data via data-flow analysis
4. dealing with chaotic timers
5. eliminating communication with environment
6. tools overview
7. experimental results
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Syntax: Example
RCM  Tue May 30 08:18:18 2000

/scratch2/sidorova/rcm_abstr.pr View: 2 / Page: 2

process  RCM

TIMER  T_RCM;

Idle

ACQUIRE_NEW_AP

SET  (NOW +k, T_RCM)

busy

busy

T_RCM

’non-deterministic choice’

’success’

ACQUIRE_NEW_AP_OK

’failure’

ACQUIRE_NEW_AP_KO

Idle

– p.9



Syntax
• labelled edges

�

−→ �
��

connecting locations
• actions �:

input

��� 	�
 �

output 


B

� � � 	�� �
assignment 


B


 � � �
with guards 
, signals � , processes

�
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Semantics (local)
• straightforward operational small-step semantics

• interleaving semantics
• top-level concurrency

• local process configuration:
1. location/control state
2. valuation of variables
3. an input queue

⇒ labelled steps between configurations, e.g.

�
−→ �� �� � ��

∈

� ���

INPUT� ���  � ! �#" $
:: % $ −→ �� �� � � ���  &� 7→ ' ( � % $
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Modelling SDL Timers
• discrete-time semantics

⇒ time evolves by ticking down (active) timer
variables

• timer: active or deactivated
• timeout possible: if active timer has reached

)

• modelled by timeout guards
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Syntax for timers
• guarded actions involving timers

set 


B

*+ ,- � � � (re-)activate timer

-

for a period given by�

reset 


B

.+ *+ ,-
deactivate

-

timeout 
/ B .+ *+ ,-

perform a timeout,
thereby deactivate

-

• note: timeout is guarded by “timer-guard” 
/ :- � )
– p.13



Parallel composition
• standard product construction
• message passing using the labelled steps
• note: tick step = counting down active timers:

• is taken only when no other move is possible

0→ 1 23 4 0 5/

7→

6 /
−

7 89 iff

:;=< > ?+ @ 	 0 �
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What’s next
Goal:

• abstract data from outside:
chaotic data value >>

• no external communication

Side-condition
• verification with DTSpin model checker:

• there are no abstract data
• we cannot re-implement tick

• keep it simple
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The need for data-flow analysis

• abstractly: replace external by receiving
>>

• better: remove communication parameters
⇒ remove all variable instances (potentially)

influenced by as well (and transitively so)
forward slice/cone of influence

eliminating external data

1. data-flow analysis: mark all variable instances
potentially influenced by chaos

2. transform the program, using that marking
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Data-flow analysis
• control-flow given by SDL-automata
• propagate >> through control-flow graph, via

abstract effect per action = node, e.g.:

A 	 ��� 	�
 ���B � �
C B � 5ED 7→>

9 � ∈

FGEH IJ

B � 5ED 7→

K
{

55EL 99NM O | �#P ′

Q R

B

S TVU 6 L 8

}

9 else

• constraint solving: minimal solution for

B �XWYZ 1 	�[ �

≥
A]\ 	B �XW^ I
	[ � �

B �XW^ I
	�[ �

≥

_

{B
�XWYZ 1 	[ ′ �

|

	�[ ′` [ �

in flow relation}
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Worklist algo (pseudo-code)
input : the flow−graph of the program
output : a bdcef g a b chi j ;a b �k �ml a bonp n j �k �

;qr l {k | st l � � �� � g � ∈

uvw fx j};
repeat

pick k ∈

q r

;
let

yl {k ′ ∈ z{| | �k �

|

}t � a b �k �

6≤ a b �k ′

�

}

in
for all k ′ ∈

y

: a b �k ′

�~ l } � a b �k � �
;

if k l �

B

� � � �� �

then let

y

′l {k ′ ∈

�

| k ′l � � �� � g a b �k � �� � 6≤ a b � k ′

� �� �

}qr ~ l q r

\k ∪

y

∪

y

′;
until

q r l ∅;a b�cef �k �ml a b �k �

;a b�ch i j �k �ml }t � a b �k � �
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What about time?
• so far: we ignored timers
• timers can be influenced by external data
• chaotic timeout for an active timer:

1. it can happen now, or
2. eventually in the future

• remember: time steps (ticks) have least priority!
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Timer abstraction
Three abstract values:

1. < �

: deactivated
2. �[ 	

>>

�

: arbitrarily active

3. �[ 	

>>

� �

: active, but not
)

(no time-out possible)

Y� 6

>>

8

�

��

�

����
�
�
�
�
�
�
�
�

Y � Y� 6

>>

� 8

1 23 4

YY

• arbitrary expiration time ⇒ non-deterministic
setting from< � 	>>

�

to< � 	>>

� �

Implementation: <
�` < � 	 ) �` < � 	� �
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Transformation rules
• using result of the flow analysis
• inference rule(s) for each syntax construct, e.g.,

� �� � � a b�� � >
T-NOTIMEOUT�

−→ ��

B

�� z � �� −→ z � �� ~ l � �

∈
� � � �

Y� 6� 8

�

��

�

����
�
�
�
�
�
�
�
�

Y � Y� 6 7 8

1 23 4

XX

• transformation yields a safe abstraction
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What we have now

• A safe abstraction of a given system
• No data involved in the communication with the

environment
• But: the system is still open
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Embedding chaos
Environment sends signals arbitrarily

⇒ Inputs from the environment are always
potentially enabled

⇒ Replace them by

� �< �+ inputs ???

Time won’t progress!
⇒ Regulate inputs from the environment by means

of a special timer added to each process

−→ ∈ >> ∈
T-INPUT

−→ B −→ ∈

T-NOINPUT
−→ B −→ ∈
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Embedding chaos
Environment sends signals arbitrarily

⇒ Inputs from the environment are always
potentially enabled

⇒ Replace them by

� �< �+ inputs ???
Time won’t progress!

⇒ Regulate inputs from the environment by means
of a special timer added to each process

�

−→ �� � � � ��

∈
� � � >> ! ∈ �� � �� �

T-INPUT�

−→ ��� B

�� z � �� � −→ z � �� � ~ l � ��

∈

� � � �

T-NOINPUT�

−→ ��� B

�� z � �� � −→ z � �� � ~ l   �

∈

� ��� �
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Extending Vires toolset

ObjectGeode 

sdl2if LIVE if2pml

pml2pml

Spin/DTSpin

IF
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Experimental results
Steady State Control of Mascara

¡

closed with
embedded chaos and model checked with DTSpin

System with ext. chaos System with embedded chaos

States 2.68938e+07 467555

Transitions 1.04753e+08 2.30307e+06

Memory 944.440 14.499

Time 1:59:39.76 2:12.91

¢

[Guoping and Graf],[Sidorova and Steffen, 2001b], [Bošnački et al., 2000]
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Conclusion
• pml2pml automatically translates an open

DTPromela model into

• a closed model
• which is a safe abstraction of the original one

• experiments on Mascara confirm the usefulness
of the embedding chaos approach
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Related work
• software testing
• VERISOFT, C, untimed [Colby et al., 1998]
• filtering [Dwyer and Pasareanu, 1998]

[Pasareanu, 2000]
• module checking:

• checking open systems
• e.g. MOCHA [Alur et al., 1998]
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On-going work
• More refined abstractions

• wrt. data abstraction
• wrt. environment behaviour

• extension of the approach to handle
• procedures
• dynamic process creation

• extension of pml2pml implementing synchronous
closing [Sidorova and Steffen, 2002]
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