## Soundness and Separability of Workflow Nets in the Stepwise Refinement Approach

Kees van Hee

Natalia Sidorova

Marc Voorhoeve

Department of Mathematics and Computer Science Technische Universiteit Eindhoven The Netherlands



#### **Workflow nets**

A Petri net N is a Workflow net (WF-net) iff:

- N has two special places (or transitions): an initial place (transition) i: •i = Ø, and a final place (transition) f: f• = Ø.
- For any node  $n \in (S \cup T)$  there exists a path from *i* to *n* and a path from *n* to *f*.



Applications: business process modelling, software engineering, ....



#### Soundness

Desired property: proper completion

Classical definition of soundness for WF-nets ([vdAalst]): A WF-net N is sound iff:

- For every marking M reachable from [i], there exists firing sequence leading to [f].
- Marking [f] is the only reachable from [i] with at least one token in [f].
- There are no dead transitions in (N, [i]).



## **Refinement of Workflow Nets**

Place refinement:  $N = L \otimes_p M$ Being at some location (place of the net) resources (tokens) undergo a number of operations.

Transition refinement:  $N = L \otimes_t M$ A single task on a higher level becomes a sequence of subtasks also involving choice and parallelism.









































































































































N and M are "sound", but  $N \otimes_d M$  is not!



## New definition of soundness

A sWF-net N with initial and final places i and f resp. is k-sound for  $k \in \mathbb{N}$  iff  $[f^k]$  is reachable from all markings m from  $\mathcal{M}(N, [i^k])$ .

A tWF-net N with initial and final transitions  $t_i, t_f$ respectively is k-sound iff the sWF-net formed by adding to  $S_N$  places  $p_i, p_f$  with • $p_i = \emptyset, p_i^{\bullet} = [t_i], \bullet p_f = [t_f], p_f^{\bullet} = \emptyset$  is k-sound.

A WF-net is *sound* iff it is *k*-sound for every natural *k*.



#### **Bisimulation of WF-nets**



 $(N, [i_N])$  and  $(M, [i_M])$  are bisimilar. But they should not be WF-bisimilar!



#### **Bisimulation of WF-nets**

N:  $\bullet a \rightarrow f$  M:  $\bullet a \rightarrow b \rightarrow b \rightarrow f$ i f f i p f

 $(N, [i_N])$  and  $(M, [i_M])$  are bisimilar. But they should not be WF-bisimilar!

Extra-condition for strong bisimulation:  $\forall k, x : [i_N^k] \ R \ x : x = [i_M^k] \text{ and}$   $\forall k, x : [f_N^k] \ R \ x : x = [f_M^k] \text{ and}$   $\forall k, x : x \ R \ [i_M^k] : x = [i_N^k] \text{ and}$  $\forall k, x : x \ R \ [f_M^k] : x = [f_N^k].$ 



#### **Bisimulation of WF-nets**

N:  $\bullet \rightarrow a \rightarrow f$  M:  $\bullet \rightarrow a \rightarrow b \rightarrow f$ i f f i p f

 $(N, [i_N])$  and  $(M, [i_M])$  are bisimilar. But they should not be WF-bisimilar!

Extra-conditions for weak bisimulation:  $\forall k, x : [i_N^k] R x : [i_M^k] \Rightarrow_M x$  and  $\forall k, x : [f_N^k] R x : x \Rightarrow_M [f_M^k]$  and  $\forall k, x : x R [i_M^k] : [i_N^k] \Rightarrow_N x$  and  $\forall k, x : x R [f_M^k] : x \Rightarrow_N [f_N^k].$ 

 $\forall k : [i_N^k] \ R \ [i_M^k] \land [f_N^k] \ R \ [f_M^k].$ 



#### **Bisimulation and refinements**

#### Place refinement

Let L be a WF-net with a place p and M be a sound sWF-net with all transitions  $\tau$ -labelled. Then L and  $N = L \otimes_p M$  are weakly WF-bisimilar.

#### Transition refinement

Let L be a WF-net with transition t and M a sound tWF-net with all transitions except  $i_M$ labelled with  $\tau$ . Then L and  $N = L \otimes_t M$  are weakly WF-bisimilar.

Soundness preservation Let  $N = L \otimes_n M$  be a refinement built of sound WF-nets L, M. Then N is sound.



































Let N be a Petri net, m an id-marking, and  $\alpha(m)$  its uncoloured abstraction. Then there exists a simulation relation between (N, m) and  $(N, \alpha(m))$ . The reverse does not hold.



## Serialisability

Is there a class of nets whose behaviour is *trace equivalent* to the behaviour of nets with id-tokens?

An sWF-net N is serialisable iff for any  $k \in \mathbb{N}$ , any firing sequence  $\sigma$  such that  $[i^k] \xrightarrow{\sigma}$ there exist firing sequences  $\sigma_1, \ldots, \sigma_k$  such that  $[i] \xrightarrow{\sigma_1}, \ldots, [i] \xrightarrow{\sigma_k}$  and  $\sigma \in (\sigma_1 || \ldots || \sigma_k)$ .

**Theorem.** An sWF-net N is serialisable iff for any id-marking M s.t.  $\alpha(M) = [i^k]$  for some  $k \ge 0$ , we have  $\{\sigma \mid [i^k] \xrightarrow{\sigma} N\} = \{\sigma \mid M \xrightarrow{\sigma} N\}$ .



#### **Serialisable WF-nets**

A Petri net  $N = \langle S, T, F \rangle$  is a state machine (SM) iff  $\forall t \in T : |\bullet t| \le 1 \land |t^{\bullet}| \le 1$ .

A Petri net  $N = \langle S, T, F \rangle$  is a marked graph (MG) iff  $\forall p \in S : |\bullet p| \le 1 \land |p^{\bullet}| \le 1$ .

SMWF-nets are sound and serialisable.

Cycle-free MGWF-nets are sound and serialisable.

















































































## Weak separability

If we look at the markings of the net only:

An sWF-net N is weakly separable iff for any  $k \in \mathbb{N}$ and any marking m,  $[i^k] \xrightarrow{*} m$  implies that there exist markings  $m_1, \ldots, m_k$  such that  $m = m_1 + \ldots + m_k$  and  $[i] \xrightarrow{*} m_j$  for  $j = 1, \ldots, k$ .

Serialisability implies weak separability.



# Weakly separable + 1-sound $\Rightarrow$ sound

Consider a marking m reachable from  $[i^k]$ . Since N is weakly separable, there exist  $m_1, \ldots, m_k$ such that  $m = m_1 + \ldots + m_k$  and  $[i] \xrightarrow{*} m_1, \ldots, [i] \xrightarrow{*} m_k$ . Since N is 1-sound,  $m_1 \xrightarrow{*} [f], \ldots, m_k \xrightarrow{*} [f]$ , which means that  $m \xrightarrow{*} [f^k]$ . So N is sound.

Weakly separable but *not* 1-sound net:







TU/e

#### Is weak separability compositional?

Weak separability is a congruence with respect to the place refinement:

Let L, M be weakly separable WF-nets, M a sound sWF-net and  $p \in P_L$ . Then the net  $N = L \otimes_p M$  is weakly separable.

Transition refinement does not necessarily result in a weakly separable net:





TU

#### Is weak separability compositional?

Weak separability is a congruence with respect to the place refinement:

Let L, M be weakly separable WF-nets, M a sound sWF-net and  $p \in P_L$ . Then the net  $N = L \otimes_p M$  is weakly separable.

Transition refinement does not necessarily result in a weakly separable net:





## Separability

What would be a notion stronger than weak separability but not as restrictive as serialisability?

An sWF-net N is separable iff for any  $k \in \mathbb{N}$ , any firing sequence  $\sigma$  such that  $[i^k] \xrightarrow{\sigma}$ , there exist firing sequences  $\sigma_1, \ldots, \sigma_k$  such that  $[i] \xrightarrow{\sigma_1}, \ldots, [i] \xrightarrow{\sigma_k}$  and  $\overrightarrow{\sigma} = \overrightarrow{\sigma_1} + \ldots + \overrightarrow{\sigma_k}$ .

(1) Serialisability implies separability.(2) Separability implies weak separability.



## **Separability** $\Rightarrow$ **Serialisability**



The problematic trace aecabf can now be separated into aebf and ac.



## Is separability compositional?

Separability is a congruence w.r.t. the place refinement: Let L, M be separable WF-nets. If  $p \in P_L$  and M is a sound sWF-net then  $L \otimes_p M$  is separable.

Transition refinement is still a problem:



TU/e

Trace *abicg* cannot be separated.

## **Split-separability**

Transition t is replaced with the tWF-net  $\Sigma_t$  with places  $\{p_t\}$  and transitions  $\{i_t, f_t\}$  such that • $i_t = f_t^{\bullet} = \emptyset, i_t^{\bullet} = {}^{\bullet}f_t = [p_t].$ 

An sWF-net N is split-separable iff  $S(N) = (\dots (N \otimes_{t1} \Sigma_{t1}) \otimes_{t2} \dots) \otimes_{tn} \Sigma_{tn},$  $T_N = \{t_1, \dots, t_n\}$ 

(the net obtained by applying the split-refinement to every transition of N), is separable.



## **Split-separable nets**

Split-separability implies separability.

Any split refinement of a split-separable net is split-separable.

Let L, M be split-separable WF-nets. (1) If  $p \in P_L$  and M is a sound sWF-net then  $L \otimes_p M$  is split-separable. (2) If  $t \in T_L$  and M is a sound tWF-net then  $L \otimes_t M$  is split-separable.

Split-separability is compositional!



#### **ST-nets**

Can we find classes of nets that are sound and (split-) separable by construction?

SMWF-nets and acyclic MGWF-nets are sound.

They are serialisable, hence separable. The classes of SMWF-nets and acyclic MGWF-nets are closed under the split-refinement operation, hence, these nets are split-separable.

So, nets constructed from state machines and acyclic marked graphs by means of refinement are sound and split-separable.

We call these nets ST-nets.



## Conclusions

- Bisimilarity results speed up verification of composite nets.
- Separability can be used to provide cost-effective management.
  If costs are associated to every transition firing, the total cost of processing of k orders given by a trace in a WF-net is equal to the sum of costs of processing of k individual orders, each given by a trace with 1 initial token.
- Weakly-separable 1-sound nets are (strongly) sound.
- ST-nets are "sound by construction" and (split-)separable.

#### **Future work**

- Are the problems of soundness and separability decidable in general?
- Can we identify other classes of sound (split-)separable WF-nets?
- Can we adapt this framework to deal with communicating WF-nets?
- *k*-separability?