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Remarks

• This assignment should be done in group of two students. If a student
could not find a student to work with please inform us so we can find a
solution.

• Submit a decent report explaining the followed approach to find the an-
swers to the assignment questions at the end of the document.

• Submit the code of your algorithm used to solve the assignment. You can
implement your algorithm in a programming language of you preference.
For the teacher, the numerical tools such as Matlab and Mathematica are
the most easy to use for the assignment review.

1 Introduction

With the advancement of technology, advanced equipment are becoming more
capital intensive. Examples of advanced equipment are large airplanes, lithog-
raphy systems, and large computing servers. The unplanned downtime of these
advanced capital equipment can be extremely expensive. Consequently, these
unplanned downtimes should be avoided as much as possible and if they occur,
they should be kept as short as possible (by using optimal corrective mainte-
nance policies). The latter implies that malfunctioning parts or components
causing the system breakdown are immediately replaced by ready-for-use ones.
Such a policy in turn requires high availability of the resources (spare parts,
tools and service engineers) that are needed to complete the repair job. How-
ever, these resources are also expensive and need high investments. Therefore,
an optimal availability of resources in maintenance logistics is necessary to meet
the expected operational availability while minimizing the total costs.
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2 Assignment description

We consider a service region with a local inventory to store K different types
of spare parts. There are different types of repair calls in this service region
that arrive according to a Poisson process with a rate λ. Each repair call re-
quires a specific spare part. A repair call is of type-k if it requires one unit of
type-k spare part. Let pk denote the probability that a repair call is of type
k. For each repair call, a service engineer is also needed to do the job. A team
of service engineers of size E is located in the service region. In this model,
we assume that the service time of a repair call of type k (the time between
the moment the repair job is assigned to a service engineer and the moment
the job will be finished) is exponentially distributed with rate µk. The inven-
tory of type-k parts is managed according to the base-stock policy, referred
to as (Sk − 1, Sk), which means for every piece of spare parts consumed from
stock a replenishment order is issued. In such way, the total number of type-k
spare parts in stock and in replenishment is kept equal to Sk. For each type-k
spare part the replenishment lead time is exponentially distributed with rate νk.

Usually, service times of engineers take much less time than the spare parts
replenishment. Therefore, for systems for which a short waiting time is ac-
ceptable, it is rational to wait for service engineers if they are not immediately
available but use an emergency shipment for spare parts in case of no spare part
is available upon arrival of a repair call, called stock-out. When the requested
spare part is satisfied by an emergency shipment, there are a number of scenar-
ios for the service engineers that can be applied. In this assignment, we assume
that both spare parts and service engineers are satisfied via an emergency chan-
nel in case of a spare parts stock-out. In other words, internal service engineers
are not responsible for emergency repair calls.

When the spare part is available, the backlogging policy is followed by ser-
vice engineers. This means that when no service engineer is available upon a
repair call request (while the spare part is available), the spare part is reserved
and the repair call must wait until a service engineer becomes available. A max-
imum accepted average waiting time is defined for the total waiting time (not
per type of call) Wmax. The repair calls waiting for engineers will be served by
a FCFS policy.

In this assignment, we assume that the emergency replenishment rate is
much higher than the regular one, but still finite. This means, when a repair
call is satisfied by an emergency channel, there is still a waiting time until the
emergency shipment arrives. This waiting time is important for the service
policy and is included in Wmax, the maximum accepted average waiting time
of repair calls. For the parts that are requested by emergency shipment, the
average waiting time is equal to 1

νem
k

.

For each spare part, hk is the holding cost per piece per time unit. In
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addition, hiring costs of service engineers and emergency costs (a cost per re-
pair call that is satisfied via an emergency channel) are considered in this model.

3 Input data

We consider a small case consisting of 5(= K) different parts with λ = 9.1224
failures per year. An engineer’s service rate is equal to 50 repair calls per year
for all types of parts k = 1, . . . , 5. The rate of emergency is 101.3340 calls per
year for all types of parts k = 1, . . . , 5. The cost of hiring an engineer per year
is equal to 62500$ and the emergency cost per call is 250000$.

Table 1: Input data for the case with 5 types of spare parts.
k 1 2 3 4 5
pk 0.1757 0.0028 0.2435 0.2863 0.2917

νk (parts per year) 5.0667 1.9000 5.0667 5.0667 5.0667
hk (in $ per part per year) 6924.06 293.29 6262.62 6262.62 6262.62

4 Questions

The above problem can be modeled as a structured infinite state space contin-
uous time Markov chain, in particular as a Quasi-Birth-Death process.

1. Define the Quasi-Birth-Death process of the problem and give the input
matrices of the process generator.

2. Derive the stability condition of the system and explain how to find the
equilibrium probabilities in this case.

3. For E = 2 engineers and (S1, . . . , S5) = (2, 1, 2, 3, 4), compute the emer-
gency probability of an arbitrary repair call, the expected number of repair
calls waiting for an available engineer, the expected waiting time of a call
served locally or via an emergency channel, and the total expected cost
per year in steady state.

4. Starting with E = 2 engineers and (S1, . . . , S5) = (2, 1, 2, 3, 4), find which
resource (part or engineer) leads to the largest reduction in the expected
waiting per invested dollar.

5. Based on the above QBD process, propose a method to compute ana-
lytically the coefficient of variation of the inter-arrival times of the calls
joining the engineers queue. No calculation is required here only a method
description.
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