
8 G/M/1 type models with linear rates

In the previous chapter we have seen that there are two problems for the application of
the spectral expansion method: (i) proof of the existence of sufficiently many roots of the
determinantal equation, and (ii) the computation of these roots. In this chapter we will
consider a special (but rich) class of G/M/1 type models for which both problems can be
solved completely. The models in this class have the property that the transition rates are
linear in one of the state variables.

8.1 The G/M/1 model with linear rates

We consider a Markov process the state space of which can be partitioned into two parts:
a finite set V plus a semi-infinite strip of states (i, j), where i ranges from 0 to ∞ and
j from 0 to m. The number of states in V is n. The states on the strip are ordered
lexicographically, that is, (0, 0), (0, 1), . . . , (0,m), (1, 0), . . . , (1,m), . . .. The set of states
{(i, 0), (i, 1), . . . , (i,m)}, i ≥ 1, will be called level i. The states in V are all put to-
gether into level −1. We partition the state space according to these levels, and for this
partitioning we assume that the generator Q is of the form

Q =



B−1,−1 B−1,0 0 0 0 · · ·
B0,−1 A1 A0 0 0 · · ·
B1,−1 A2 A1 A0 0 · · ·
B2,−1 A3 A2 A1 A0 · · ·
B3,−1 A4 A3 A2 A1 · · ·

...
...

...
...

...


,

where the matrix B−1,−1 is of dimension (n+1)×(n+1), B−1,0 of dimension (n+1)×(m+1),
the matrices Bi,−1, i ≥ 0, of dimension (m+1)× (n+1), and Ai, i ≥ 0, are square matrices
of dimension m+ 1. Further we assume that the Markov process Q is irreducible.

This is still the standard set-up for G/M/1 type models, as we have seen in the previous
chapter. In addition we are now going to impose more structure on the transition rates.
More specifically, in state (i, j) with i ≥ 0 the following transitions are possible (k =
−i,−i+ 1, . . . , 0, 1):

• From (i, j) to (i+ k, j + 1) with rate ak(m− j);

• From (i, j) to (i+ k, j) with rate bk(m− j) + ckj;

• From (i, j) to (i+ k, j − 1) with rate dkj;

• From (i, j) to level −1 with total rate
∑−i

k=−∞[ak(m− j) + bk(m− j) + ckj + dkj].

Clearly, the rates ak and bk are scaled by a factor (m − j), and the rates ck and dk are
scaled by a factor j. The last requirement has been added to guarantee that the total
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outflow from state (i, j) is the same for each i > 1. The above structure implies that the
blocks Ak are tri-diagonal; for example, A0 has the form

A0 =



b1m a1m 0
d1 b1(m− 1) + c1 a1(m− 1)
0 d12 b1(m− 2) + c12

. . . . . . . . .

b12 + c1(m− 2) a12 0
d1(m− 1) b1 + c1(m− 1) a1

0 d1m c1m


.

The transition rate diagram is shown in figure 1; so, looking in the vertical direction, the
upward rates are linear in (m− j) (and thus vanish for j = m) and the downward rates are
linear in j (and thus vanish for j = 0). Further, the size of upward and downward jumps
and the size of jumps to the right are at most one, whereas jumps to the left are unlimited.
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Figure 1: Transition rate diagram for the G/M/1 type model with linear rates

To exclude exceptional cases we impose some more conditions on the rates of the Markov
process. First we introduce the generating functions

A(x) :=
1∑

k=−∞
akx

1−k, B(x) :=
1∑

k=−∞
bkx

1−k,

C(x) :=
1∑

k=−∞
ckx

1−k, D(x) :=
1∑

k=−∞
dkx

1−k.

The extra conditions on the rates are the following:
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Condition 8.1

(i) A(1), B(1), C(1) and D(1) are finite;
(ii) A(1) > 0 and D(1) > 0;

(iii) A′(1), B′(1), C ′(1) and D′(1) are finite;
(iv) (A(0) = 0 or D(0) = 0) and (C(0) = B(0) 6= 0).

The conditions (i) and (iii) are obvious; the other two are imposed to exclude special
cases, but both can be relaxed (see [2] for a more complete picture). Below we present
some queueing models that fit into this class of G/M/1 type models.

Example 8.2 The M/E2/m queue (see [5]).
Jobs arrive according to a Poisson process with rate λ and have service times consisting of
two exponential phases with parameter µ. In this example, the set V consists of all states
in which at least one server is idle and the strip contains all states in which all servers are
busy. The variable i represents the number of jobs waiting in the queue, and j the number
of servers working on a second service phase. We have a0 = µ, b1 = c1 = λ/m, d−1 = µ
and all other coefficients are equal to zero.

Example 8.3 The M/C2/m queue (see [3]).
Like the previous example, but now the service times of jobs have a Coxian distribution
with two phases. Denoting the parameter of the i-th exponential phase by µi, i = 1, 2,
and the probability of bypassing the second phase by 1 − p, we have a0 = µ1p, b1 = c1 =
λ/s, b−1 = µ1(1− p), d−1 = µ2 and all other coefficients are equal to zero.

Example 8.4 The M/H2/m queue (see [6, 7]).
Like Example 8.2, but now the service times of jobs have a hyper-exponential distribution
of order 2. Denoting the parameters of the two exponentials by µ1 and µ2, respectively,
the branching probabilities by p1 and p2 (with of course p1 + p2 = 1) and letting i be
the number of servers working on an exponential service with parameter µ1, we have
a−1 = µ2p1, b1 = c1 = λ/s, b−1 = µ2p2, c−1 = µ1p1, d−1 = µ1p2 and all other coefficients
are equal to zero.

Example 8.5 The M/M/m queue with service interruptions (see [4]).
Jobs arrive according to a Poisson process with rate λ. Each server, when operative,
serves jobs with rate µ. However, the servers are subject to breakdowns. The times that
servers are operative are exponentially distributed with parameter α. The repair times
are exponentially distributed with parameter β. In this case, j represents the number of
servers that are operative. We have a0 = β, c−1 = µ, b1 = c1 = λ/m, d0 = α and all other
coefficients are equal to zero.

Example 8.6 The multi-server queue with locking (see [1]).
Customers arrive according to a Poisson process with rate λ. Service times are exponen-
tially distributed with parameter µ. There are m groups of servers, each group consisting
of two servers (see figure 2).
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Figure 2: The multi-server queue with locking

Within a group, one of the servers is called the front server and the other one is called
the back server. Customers are served by front servers as long as these are available. If all
front servers are occupied, new customers are served by back servers. If the service of a
customer at the front server has been completed and there is another customer in service at
the back server, the customer can not leave the system until also the service of the customer
at the back server has been completed. During this period the front server is blocked and
can not serve a new customer. The model is motivated by a situation encountered at a
maintenance facility for trains.

In this example, the set V consists of the states in which not all server positions are
occupied. The strip contains the states in which all server positions are occupied. The
variable j denotes the number of customers that already completed their service but that
are locked in by a customer at the back server and i denotes the number of customers
waiting in the queue. We have a0 = µ, b1 = c1 = λ/m, b−1 = µ, d−2 = µ and all other
coefficients are equal to zero.

8.2 Stability condition

Now we will determine the stability condition of the process. Because the process is a
Markov process of the GI/M/1 type, we can use Neuts’ mean drift condition to obtain the
stability condition. Here, the mean drift condition reads

1∑
k=−∞

k

s∑
i=0

πi[(s− i)(ak + bk) + i(ck + dk)] < 0, (1)

where π is the limiting distribution of the Markov process, the transition rate diagram of
which is shown in Figure 3.

Clearly, π is equal to a binomial distribution with parameters s and A(1)/(A(1)+D(1)).
Using this fact, we obtain, after a bit of rewriting, the following result.
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Figure 3: Transition rate diagram

Lemma 8.7 The Markov process Q is ergodic if and only if

D(1)(A′(1)− A(1) +B′(1)−B(1)) + A(1)(C ′(1)− C(1) +D′(1)−D(1)) > 0. (2)

From now on we assume that condition (2) holds.

8.3 Equilibrium equations

In this section we formulate the equilibrium equations for levels i with i > 0. By equating
in each state (i, j) with i > 0 the flow out of and into that state, we obtain the following
balance equations for the equilibrium probabilities p(i, j),

1∑
k=−∞

(
(ak + bk)(m− j) + (ck + dk)j

)
p(i, j) =

1∑
k=−∞

(
dk(j + 1)p(i− k, j + 1)

+(bk(m− j) + ckj)p(i− k, j) + ak(m− j + 1)p(i− k, j − 1)
)
,

i = 1, 2, . . . , j = 0, 1, . . . ,m, (3)

where by convention p(i,−1) = p(i,m+ 1) = 0. To solve the equilibrium equations we are
going to use the spectral expansion method. That is, we try to find m+ 1 basis solutions
of the form

pi = yxi, i = 0, 1, . . . , (4)

where y = (y(0), y(1), . . . , y(m)) 6= 0 and |x| < 1. Substitution of this form into (3) and
dividing by the common power xi−1 yields, for j = 0, · · · ,m,

0 = (j + 1)D(x)y(j + 1) + ((m− j)B(x) + jC(x))y(j)−
((m− j)(A(1) +B(1)) + j(C(1) +D(1)))xy(j) + (m− j + 1)A(x)y(j − 1), (5)

where by convention y(−1) = y(m + 1) = 0. For given x, this is a system of linear
homogeneous equations for y(0), . . . , y(m). Now we have to find the values of x for which
this system has a non-null solution. It has a non-null solution if and only if the determinant
of this system is equal to zero. Hence, the desired values of x are the zeros inside the unit
circle of this determinant. If it has m+ 1 different zeros, then the corresponding solutions
(4) are independent, and thus form a basis, in terms of which we can express the equilibrium
distribution. However, it is difficult to prove directly that there are s + 1 zeros inside the
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unit circle and to numerically determine these zeros. Therefore we employ an idea of
[5, 3, 1] to transform the difference equations (5) into a single differential equation for the
generating function of the sequence y(i). This approach, in fact, reduces the determinantal
equation for m + 1 roots inside the unit circle to m + 1 equations for a single root in the
interval (0, 1).

8.4 Generating function approach

We transform the difference equations (5) into a differential equation for the generating
function

Y (z) =
m∑
i=0

y(j)zj

of the sequence y(j). Multiplying (5) by zj and adding with respect to j we obtain

D(x)Y ′(z) +mB(x)Y (z) + (C(x)−B(x))zY ′(z)− (A(1) +B(1))mxY (z)

+(A(1) +B(1)− C(1)−D(1))xzY ′(z) +mA(x)zY (z)− A(x)z2Y ′(z) = 0,

which may be rewritten in the form

Y ′(z)

Y (z)
=

m[A(x)z +B(x)− (A(1) +B(1))x]

A(x)z2 − ((A(1) +B(1)− C(1)−D(1))x+ C(x)−B(x))z −D(x)
(6)

=
E(x)

z − z1(x)
+
m− E(x)

z − z2(x)
,

where z1(x) and z2(x) are the roots (z1(x): + sign, z2(x): − sign) of the denominator of
(6) and E(x) satisfies the equation

2E(x)−m = m · B(x) + C(x)− x (A(1) +B(1) + C(1) +D(1))√
F (x)2 + 4A(x)D(x)

, (7)

where
F (x) = (A(1) +B(1)− C(1)−D(1))x+ C(x)−B(x).

Note that we have divided numerator and denominator of (6) by A(x), and hence, we
implicitly assume here that A(x) 6= 0; this indeed holds, since, as we will see later on, the
desired roots x are positive. The general solution of the differential equation (6) is

Y (z) = K(z − z1(x))E(x)(z − z2(x))m−E(x), (8)

with K a constant. Now the key idea to proceed is that, since Y (z) is a polynomial
in z, the exponents E(x) and m − E(x) should be equal to a non-negative integer, i.e.
E(x) = k, k = 0, . . . ,m. Hence, for each k we get an equation in x, for which we will
prove that, under the ergodicity condition (2), there is exactly one solution, xk say, in the
interval (0, 1).
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Lemma 8.8 For each k = 0, . . . ,m the equation

2k −m
m

=
B(x) + C(x)− x (A(1) +B(1) + C(1) +D(1))√

F (x)2 + 4A(x)D(x)
, (9)

has a unique solution x = xk in the interval (0, 1).

Proof: Let G(x) denote the function on the right-hand side of (9). Then, it is straightfor-
ward to check that G(1) = −1, G′(1) > 0 (which holds if and only if ergodicity condition
(2) is satisfied) and limx↓0G(x) = +∞, which follows from the condition 8.1(iv). The
existence of a root now follows from a continuity argument; its uniqueness follows from the
observation that, since the equilibrium distribution is unique, there can be at most m+ 1
basis solutions of the form (4). 2

Example 8.9 The M/M/m queue with service interruptions.
Let us consider the multi-server queue with unreliable servers, described in example 8.5.
For this model we have

A(x) = θx, B(x) =
λ

m
, C(x) =

λ

m
+ µx2, D(x) = ηx.

Thus F (x) and G(x) are given by

F (x) = x(θ − η + µ(x− 1)),

G(x) =
2
λ

m
+ µx2 − x(θ − η + µ(x− 1))

x
√

(θ − η + µ(x− 1))2 + 4θη
.

In figure 4 we show the function G(x) for the parameter values λ = 1, µ = 2, η = 3, θ = 4
and m = 4. The intersections of G(x) with the horizontal lines provide the desired xk,
k = 0, 1, 2, 3, 4.

Hence, according to the lemma above, there are m+ 1 basis solutions of the form (4).
The equilibrium probabilities p(i, j) can be expressed as a linear combination of these basis
solutions, the coefficients of which follow from the equilibrium equations at the levels 0
and 1 (the so-called boundary equations) and the normalization equation. These findings
are summarized in the following theorem.

Theorem 8.10 The equilibrium probabilities p(i, j) can be expressed as

p(i, j) =
m∑
k=0

ckyk(j)x
i
k, i = 0, 1, . . . , j = 0, 1, . . . ,m,

where xk is the unique root of equation (9) in the interval (0, 1), and the corresponding
yk(j) are a non-null solution of system (5) with x = xk. The coefficients ck are uniquely
determined from the boundary equations and the normalization equation.
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Figure 4: The function G(x) for the multi-server queue with service interruptions, for
λ = 1, µ = 2, η = 3, θ = 4 and m = 4

8.5 Absorption times

In this section we consider processes for which A0 is of the special form

A0 = λI, (10)

for some λ. In fact, in all examples 8.2 up to 8.6 the transition matrix A0 is of this form,
where λ is the arrival rate of the Poisson stream of customers. For these processes we
are going to study the time until absorption in the set V , given that at time t = 0, the
process starts in state (i, j) and there are no new arrivals for t ≥ 0; this means that for
t ≥ 0 transitions from state (i, j) to (i+ 1, j) are not possible. Thus we consider a Markov
process with generator

B−1,−1 B−1,0 0 0 0 · · ·
B0,−1 A1 + A0 0 0 0 · · ·
B1,−1 A2 A1 + A0 0 0 · · ·
B2,−1 A3 A2 A1 + A0 0 · · ·
B3,−1 A4 A3 A2 A1 + A0 · · ·

...
...

...
...

...


.

The motivation for studying the absorption time is that in each of the examples 8.2 up
to 8.6 this time is exactly the waiting time of a customer, arriving in state (i, j); see also
example 8.11. Let Fij(t) denote the probability that the time to reach the set V is geater
than t, given that the process starts in state (i, j) at time t = 0.
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Example 8.11 Consider the M/E2/m system described in example 8.2. Let W denote
the waiting time of a customer. By conditioning on the state seen on arrival and using
PASTA and theorem 8.10 we obtain

P (W > t) =
∞∑
i=0

m∑
j=0

p(i, j)Fij(t)

=
m∑
k=0

ck

m∑
j=0

yk(j)
∞∑
i=0

xikFij(t).

Hence, once Fij(t) is known, we can determine the waiting time distribution.

Below we derive a set of differential equations for the probabilities Fij(t). For small
∆t ≥ 0 it holds that

Fi(t+ ∆t) = Fi(t) + ∆t(A1 + A0)Fi(t) + ∆t
i−1∑
j=0

Ai+1−jFj(t),

where Fi(t) = (Fi0(t), Fi1(t), . . . , Fim(t))′. Dividing these equations by ∆t and letting ∆t
tend to zero, yields

F ′i (t) = (A1 + A0)Fi(t) +
i−1∑
j=0

Ai+1−jFj(t), i = 0, 1, 2, . . . , (11)

with initial condition Fi(0) = 1. To solve these differential equations we are going to use
Laplace transforms. Let

F ∗i (s) =

∫ ∞
t=0

Fi(t)e
−stdt, s ≥ 0.

Transforming the differential equations (11) for Fi(t) and using that∫ ∞
t=0

F ′i (t)e
−stdt = −e+ sF ∗i (s),

gives

(sI − A1 − A0)F
∗
i (s) = e+

i−1∑
j=0

Ai+1−jF
∗
j (s). (12)

From these equations, the Laplace transforms F ∗i (s) may be solved recursively. Example
8.11 suggests that in many applications the function

F (t) =
m∑
k=0

ckyk

∞∑
i=0

xikFi(t), t ≥ 0, (13)
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corresponds to the complementary waiting time distribution, i.e., P (W > t). Below we
show that F (t) can be determined explicitly. Define for s ≥ 0,

G∗k(s) =
∞∑
j=0

xjkF
∗
j (s), k = 0, . . . ,m

F ∗(s) =

∫ ∞
t=0

F (t)e−stdt

=
m∑
k=0

ckykG
∗
k(s).

Multiplying (12) with ykx
i
k and adding over all i leads to

yk (sI − A1 − A0)G
∗
k(s) =

yke

1− xk
+
∞∑
i=0

i−1∑
j=0

ykAi+1−jx
i
kF
∗
j (s)

=
yke

1− xk
+
∞∑
j=0

( ∞∑
i=2

ykAix
i−1
k

)
xjkF

∗
j (s).

Since

0 =
∞∑
i=0

ykAix
i
k = yk(A0 + A1xk) + xk

∞∑
i=2

ykAix
i−1
k ,

we get

yk (sI − A1 − A0)G
∗
k(s) =

yke

1− xk
− yk

(
1

xk
A0 + A1

)
G∗k(s),

and thus
yk (sI − (1− 1/xk)A0)G

∗
k(s) =

yke

1− xk
.

Now, by substituting the special form (10), we obtain

ykG
∗
k(s) =

yke

1− xk
· 1

s− λ+ λ/xk
.

Multiplying by ck and adding over all k finally yields

F ∗(s) =
m∑
k=0

ckyke

1− xk
· 1

s− λ+ λ/xk
.

The inverse of this transform is readily obtained; the result is summarized in the following
theorem.

Theorem 8.12 The function F (t), defined by (13), is given by

F (t) =
m∑
k=0

ckyke

1− xk
eλ(1−1/xk)t, t ≥ 0.
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Example 8.13 Let us again consider the M/E2/m queueing model in example 8.11. Since
F (t) = P (W > t) we may immediately conclude from Theorem 8.12 that the waiting time
distribution for the M/E2/m is a mixture of exponentials.
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