Part 2
The kernel method for (reflected) 2-D random walks

Overview

(1) Nice solutions

- Lattice path counting
- A tandem queue with priority
- A weird example
(2) Singularity analysis
- Demonstration by example
(3) Ugly solutions (dark side of the kernel method)
- Boundary value problems
- Asymptotics for rare events

Example from combinatorics

See Knuth (1973) or Prodinger (2004).

- Start from the origin. Move from (n, i) to $(n+1, i \pm 1)$, except in the case $i=0$, when you can only go to $(n+1,1)$.
- How many paths leads from the origin to (n, i) ?
- Let the generating function $f_{i}(u)$ describe all walks leading to (n, i). Then $\left[u^{n}\right] f_{i}(u)$ represents the number of walks from $(0,0)$ to (n, i).

We can see that

$$
\begin{aligned}
f_{i}(u) & =u f_{i-1}(u)+u f_{i+1}(u), \quad i \geq 1 \\
f_{0}(u) & =1+u f_{1}(u)
\end{aligned}
$$

and with $F(u, z)=\sum_{i \geq 0} f_{i}(u) z^{i}$ this gives

$$
F(u, z)-f_{0}(u)=u z F(u, z)+\frac{u}{z}\left[F(u, z)-f_{0}(u)-z f_{1}(u)\right]
$$

$$
F(u, z)=u z F(u, z)+\frac{u}{z}[F(u, z)-F(u, 0)]+1
$$

or better:

$$
F(u, z)=\frac{u F(u, 0)-z}{u z^{2}-z+u} .
$$

The denominator vanishes for

$$
z(u)=\frac{1 \pm \sqrt{1-4 u^{2}}}{2 u} .
$$

The root $z_{0}(u)=\frac{1-\sqrt{1-4 u^{2}}}{2 u}$ is the bad one, so for this root the numerator should vanish as well:

$$
u F(u, 0)=z_{0}(u)
$$

leading to an explicit representation of $F(u, z)$.

A tandem queue with coupled processors

- Customers arrive at queue 1 according to a Poisson process with rate λ
- Each customer requires a two-stage service with exponential service times with mean ν_{1}^{-1} and ν_{2}^{-1}
- The total service rate is constant, 1 say
- Queue 1 gets p and queue 2 gets 1 - p of the service rate
- If one of the queues is empty, the other queue gets service rate 1

Preliminaries

Let $N_{1}(t)$ and $N_{2}(t)$ denote the queue lengths at time t. Let

$$
\mathbb{P}\left(N_{1}=n, N_{2}=k\right)=\lim _{t \rightarrow \infty} \mathbb{P}\left(N_{1}(t)=n, N_{2}(t)=k\right)
$$

We then aim at determining the bivariate generating function

$$
P(x, y)=\mathbb{E}\left(x^{N_{1}} y^{N_{2}}\right)=\sum_{n \geq 0} \sum_{k \geq 0} \mathbb{P}\left(N_{1}=n, N_{2}=k\right) x^{n} y^{k}
$$

Key functional equation

$$
h_{1} P(x, y)=h_{2} P(x, 0)+h_{3} P(0, y)+h_{4} P(0,0)
$$

where

$$
\begin{aligned}
& h_{1}(x, y)=\left(\lambda+p \nu_{1}+(1-p) \nu_{2}\right) x y-\lambda x^{2} y-p \nu_{1} y^{2}-(1-p) \nu_{2} x \\
& h_{2}(x, y)=(1-p)\left[\nu_{1} y(y-x)+\nu_{2} x(y-1)\right] \\
& h_{3}(x, y)=p\left[\nu_{2} x(1-y)+\nu_{1} y(x-y)\right] \\
& h_{4}(x, y)=p \nu_{2} x(y-1)+(1-p) \nu_{1} y(x-y)
\end{aligned}
$$

Key functional equation

$$
h_{1} P(x, y)=h_{2} P(x, 0)+h_{3} P(0, y)+h_{4} P(0,0)
$$

where

$$
\begin{aligned}
& h_{1}(x, y)=\left(\lambda+p \nu_{1}+(1-p) \nu_{2}\right) x y-\lambda x^{2} y-p \nu_{1} y^{2}-(1-p) \nu_{2} x \\
& h_{2}(x, y)=(1-p)\left[\nu_{1} y(y-x)+\nu_{2} x(y-1)\right] \\
& h_{3}(x, y)=-p \cdot h_{2}(x, y) /(1-p) \\
& h_{4}(x, y)=\nu_{2} x(y-1)-h_{2}(x, y)
\end{aligned}
$$

With

$$
\gamma(y)=\nu_{1} y^{2} /\left(\nu_{1} y-\nu_{2} y+\nu_{2}\right)
$$

we have $h_{2}(\gamma(y), y)=0$ and hence

$$
P(\gamma(y), y)=\frac{h_{4}(\gamma(y), y)}{h_{1}(\gamma(y), y)} P(0,0)
$$

Letting $y \uparrow 1$ yields

$$
P(0,0)=1-\frac{\lambda}{\nu_{1}}-\frac{\lambda}{\nu_{2}}
$$

The ergodicity condition is therefore

$$
\rho=\frac{\lambda}{\nu_{1}}+\frac{\lambda}{\nu_{2}}<1
$$

Kernel method

This is just one of various ways that zero-pairs (x, y) will let vanish parts of the functional equation

$$
h_{1} P(x, y)=h_{2} P(x, 0)+h_{3} P(0, y)+h_{4} P(0,0)
$$

The function h_{1} is referred to as kernel, and choosing zeropairs (x, y) such that $h_{1}(x, y)=0$ is known as the kernel method

Priority for queue $1(p=1)$

$$
h_{1} P(x, y)=h_{2} P(x, 0)+h_{3} P(0, y)+h_{4} P(0,0)
$$

$$
\begin{aligned}
& h_{1}(x, y)=\left(\lambda+p \nu_{1}+(1-p) \nu_{2}\right) x y-\lambda x^{2} y-p \nu_{1} y^{2}-(1-p) \nu_{2} x \\
& h_{2}(x, y)=(1-p)\left[\nu_{1} y(y-x)+\nu_{2} x(y-1)\right] \\
& h_{3}(x, y)=p\left[\nu_{2} x(1-y)+\nu_{1} y(x-y)\right] \\
& h_{4}(x, y)=p \nu_{2} x(y-1)+(1-p) \nu_{1} y(x-y)
\end{aligned}
$$

Priority for queue $1(p=1)$

$$
h_{1} P(x, y)=h_{3} P(0, y)+h_{4} P(0,0)
$$

$$
\begin{aligned}
& h_{1}(x, y)=\left(\lambda+\nu_{1}\right) x y-\lambda x^{2} y-\nu_{1} y^{2} \\
& h_{2}(x, y)=0 \\
& h_{3}(x, y)=\nu_{2} x(1-y)+\nu_{1} y(x-y) \\
& h_{4}(x, y)=\nu_{2} x(y-1)
\end{aligned}
$$

Priority for queue $1(p=1)$

$$
-y\left(\lambda x^{2}-\left(\lambda+\nu_{1}\right) x+\nu_{1} y\right) \cdot P(x, y)=h_{3} P(0, y)+h_{4} P(0,0)
$$

Now use

$$
\xi(y)=\frac{\lambda+\nu_{1}-\sqrt{\left(\lambda+\nu_{1}\right)^{2}-4 \lambda \nu_{1} y}}{2 \lambda}
$$

for which $h_{1}(\xi(y), y)=0$. This yields

$$
P(0, y)=-\frac{h_{4}(\xi(y), y)}{h_{3}(\xi(y), y)} P(0,0)
$$

and

$$
P(x, y)=\frac{h_{3}(x, y)}{h_{1}(x, y)} P(0, y)+\frac{h_{4}(x, y)}{h_{1}(x, y)} P(0,0)
$$

The latter implies (with $\rho_{1}=\lambda / \nu_{1}$)

$$
P(x, 1)=\frac{1-\rho_{1}}{1-\rho_{1} x} \Rightarrow \mathbb{P}\left(N_{1}=n\right)=\left(1-\rho_{1}\right) \rho_{1}^{n}
$$

Priority for queue $2(p=0)$

Again the functional equation greatly simplifies due to $h_{3}(x, y)=0$. Then, for $\eta(x)=\nu_{2} /\left(\lambda+\nu_{2}-\lambda x\right)$, we see that $h_{1}(x, \eta(x))=0$ and hence

$$
\begin{aligned}
P(x, 0) & =-\frac{h_{4}(x, \eta(x)) P(0,0)}{h_{2}(x, \eta(x))} \\
& =\frac{\left(\nu_{1} \nu_{2}-\lambda \nu_{1} x\right)(1-\rho)}{\lambda^{2}\left(x-x_{*}\right)\left(x-x^{*}\right)}=\frac{c_{1}}{x-x_{*}}+\frac{c_{2}}{x-x^{*}},
\end{aligned}
$$

with

$$
x^{*}=\frac{\lambda+\nu_{1}+\nu_{2}-\sqrt{\left(\lambda+\nu_{1}+\nu_{2}\right)^{2}-4 \nu_{1} \nu_{2}}}{2 \lambda}
$$

and

$$
c_{1}=\frac{\left(\nu_{1} \nu_{2}-\lambda \nu_{1} x_{*}\right)(1-\rho)}{\lambda^{2}\left(x_{*}-x^{*}\right)}, \quad c_{2}=\frac{\left(\nu_{1} \nu_{2}-\lambda \nu_{1} x^{*}\right)(1-\rho)}{\lambda^{2}\left(x_{*}-x^{*}\right)} .
$$

Priority for queue $2(p=0)$

This gives

$$
P(x, 1)=\frac{\nu_{1}}{\lambda x}\left[\frac{c_{1}}{x-x_{*}}+\frac{c_{2}}{x-x^{*}}-(1-\rho)\right]
$$

and

$$
\mathbb{P}\left(N_{1}=n\right) \sim \frac{\nu_{1}^{2} \lambda x^{*}-\nu_{1}^{2} \nu_{2}}{\lambda^{3}\left(x^{*}-x_{*}\right)\left(x^{*}\right)^{2}}(1-\rho)\left(\frac{1}{x^{*}}\right)^{n} .
$$

A weird example

Consider the following random walk in the quarter plane

- In the interior of the state space, the walk steps $(1,0)$ w.p. $\frac{1-p}{3},(0,-1)$ w.p. $\frac{1+p}{3}$ and $(-1,1)$ w.p. $\frac{1}{3}$.
- On the horizontal axis, the walk steps $(1,0)$ w.p. $\frac{1}{2}$ and $(-1,1)$ w.p. $\frac{1}{2}$.
- On the vertical axis, the walk steps $(1,0)$ w.p. $\frac{1-p}{2}$ and $(0,-1)$ w.p. $\frac{1+p}{2}$.

Aziz, Starobinski and Thiran (2008):
Theorem
This model is unstable for $p=0$ and stable for $p \in(0,1]$.

Denote the joint stationary probabilities by $\mathbb{P}\left(N_{1}=n, N_{2}=k\right)$ and let

$$
P(x, y)=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \mathbb{P}\left(N_{1}=n, N_{2}=k\right) x^{n} y^{k}
$$

for which we have
$h_{1}(x, y) P(x, y)=h_{2}(x, y) P(x, 0)+h_{3}(x, y) P(0, y)+h_{4}(x, y) P(0,0)$,
with

$$
\begin{aligned}
& h_{1}(x, y)=6 x y-2(1-p) x^{2} y-2 y^{2}-2(1+p) x \\
& h_{2}(x, y)=(1+2 p) x^{2} y+y^{2}-2(1+p) x \\
& h_{3}(x, y)=(1-p) x^{2} y-2 y^{2}+(1+p) x \\
& h_{4}(x, y)=(2+p) x^{2} y-y^{2}-(1+p) x
\end{aligned}
$$

See FIM, Section 1.3, for a general description of how to derive such functional equations.

Denote the joint stationary probabilities by

$$
\pi(n, k)=\mathbb{P}\left(N_{1}=n, N_{2}=k\right)=\lim _{t \rightarrow \infty} \mathbb{P}\left(N_{1}(t)=n, N_{2}(t)=k\right)
$$

Theorem

For the case $p=1$ the stationary distribution of the random walk has a closed-form solution with $\pi(0,0)=\pi(0,1)=(2-\sqrt{2}) / 6$, $\pi(1,0)=(\sqrt{2}-1) / 3$ and

$$
\begin{align*}
& \pi(n, k)=\left(\frac{1}{\sqrt{2}}\right)^{n}\left(1-\frac{1}{\sqrt{2}}\right)^{k+1}, \quad n, k \geq 1 \tag{2}\\
& \pi(n, 0)=\frac{2}{3}\left(1-\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)^{n}, \quad n \geq 2 \tag{3}\\
& \pi(0, k)=\frac{1}{3}\left(1-\frac{1}{\sqrt{2}}\right)^{k}, \quad k \geq 2 . \tag{4}
\end{align*}
$$

Proof

For the case $p=1$ the balance equations for $n \geq 2$ read

$$
\begin{align*}
\pi(n, k) & =\frac{1}{3} \pi(n+1, k-1)+\frac{2}{3} \pi(n, k+1), \quad k \geq 2 \tag{5}\\
\pi(n, 1) & =\frac{1}{2} \pi(n+1,0)+\frac{2}{3} \pi(n, 2) \tag{6}\\
\pi(n, 0) & =\frac{2}{3} \pi(n, 1)+\frac{1}{2} \pi(n-1,0) \tag{7}
\end{align*}
$$

First substitute a trial solution $\pi(n, k)=C \cdot \alpha^{n} \beta^{k}$ and $\pi(n, 0)=C \cdot d \cdot \alpha^{n} \beta^{k}$ into (5) and (6), and divide by $\alpha^{n} \beta^{k-1}$ to obtain

$$
\begin{align*}
& \beta=\frac{1}{3} \alpha+\frac{2}{3} \beta^{2} \tag{8}\\
& \beta=\frac{1}{2} d \alpha+\frac{2}{3} \beta^{2} \tag{9}
\end{align*}
$$

and hence $d=\frac{2}{3}$. Substituting the same trial solution into (7) yields (upon some rewriting)

$$
\begin{equation*}
\alpha=\alpha \beta+\frac{1}{2} . \tag{10}
\end{equation*}
$$

Note that it follows from (10) and $\alpha<1$ that $\beta<\frac{1}{2}$.

Combining these equations gives an equation for β

$$
\begin{equation*}
2 \beta^{3}-5 \beta^{2}+3 \beta-\frac{1}{2}=0 \tag{11}
\end{equation*}
$$

with solutions $\frac{1}{2}(2-\sqrt{2}), \frac{1}{2}, \frac{1}{2}(2+\sqrt{2})$. Therefore, the values of α and β that lead to a convergent solution of the stationary distribution are given by

$$
\begin{equation*}
\alpha=\frac{1}{\sqrt{2}}, \quad \beta=1-\frac{1}{\sqrt{2}} . \tag{12}
\end{equation*}
$$

We now need to match this trial solution with the remaining balance equations:

$$
\begin{align*}
\pi(0, k) & =\frac{1}{3} \pi(1, k-1)+\pi(0, k+1), \quad k \geq 2 \tag{13}\\
\pi(0,1) & =\frac{1}{2} \pi(1,0)+\pi(0,2) \tag{14}\\
\pi(1,0) & =\frac{2}{3} \pi(1,1)+\pi(0,0) \tag{15}
\end{align*}
$$

Substituting the trial solution $\pi(n, k)=C \cdot \gamma \cdot \beta^{k}$ into (13) yields $\gamma \beta=\gamma \beta^{2}+\frac{1}{3} \alpha$ and hence (with α, β as in (12))

$$
\gamma=\frac{\alpha}{3 \beta(1-\beta)}=\frac{2}{6-3 \sqrt{2}} .
$$

Combining (14), (15) and $\pi(0,0)=\pi(0,1)$ yields $\pi(0,0)=\frac{1}{3} C$. Summing over all probabilities identifies the normalization constant as $C=1-\frac{1}{\sqrt{2}}$, which completes the proof.

Corollary
For the case $p=1$ we have the marginal distributions

$$
\begin{align*}
& \mathbb{P}\left(N_{1}=n\right)=\frac{7 \sqrt{2}-8}{6}\left(\frac{1}{\sqrt{2}}\right)^{n}, \quad n \geq 1 \tag{16}\\
& \mathbb{P}\left(N_{2}=k\right)=\left(\frac{1}{3}+\frac{1}{\sqrt{2}}\right)\left(1-\frac{1}{\sqrt{2}}\right)^{k}, \quad k \geq 1, \tag{17}
\end{align*}
$$

$\mathbb{P}\left(N_{1}=0\right)=\frac{1}{3 \sqrt{2}} \approx 0.2357$ and $\mathbb{P}\left(N_{2}=0\right)=\frac{2+\sqrt{2}}{6} \approx 0.5690$.

In terms of generating functions we thus find that

$$
\begin{equation*}
P(x, y)=\frac{2}{3} \frac{2-\sqrt{2}+(\sqrt{2}-1)(x+y)-(3-2 \sqrt{2}) x y}{(2-\sqrt{2} x)(2-(2-\sqrt{2}) y)} \tag{18}
\end{equation*}
$$

and
$P(x, 0)=\frac{2-\sqrt{2}+(\sqrt{2}-1) x}{6-3 \sqrt{2} x}, \quad P(0, y)=\frac{2-\sqrt{2}+(\sqrt{2}-1) y}{6-3(2-\sqrt{2}) y}$,
and it is straightforward to check that these functions satisfy the functional equation (1). Starting from the functional equation (1) and deriving, in a direct way, (18) as its solution is an open problem and would be of interest from a methodological perspective. Who can tell me how to do this?

Intermezzo

The tandem queue with $p=0,1$ are typical examples of the kernel method as it is known in the field of combinatorics:

- Prodinger (2004), Pemantle \& Wilson (2008), Flajolet \& Sedgewick (2008), Bousquet-Melou (2000-2008) and many many more works

The kernel method has also a long history in two-queue models:

- join-the-shortest-queue Kingman (1961), serve-the-longest-queue Flatto (1989), coupled processors Fayolle \& lasnogorodski (1979)

These queueing models are among the most difficult random walks in the quarter plane and typically lead to a solution in terms of (Riemann-Hilbert) boundary value problems:

- Malyshev (1972, pioneering work), Cohen (1988, survey) and textbooks by Cohen \& Boxma (1983), Fayolle, Iasnogorodski \& Malyshev (1999), JvL (2005), JvL \& Resing (2006), JvL \& Guillemin (2009)

The tandem queue with $p \in(0,1)$ yields a random walk that requires the boundary value technique

The solution of $P(x, y)$ will be difficult and does not allow for explicit inversion

We therefore aim at deriving expressions of the type

$$
\mathbb{P}\left(N_{1}=n\right) \sim f(n) \cdot \zeta^{-n}
$$

This requires:
(1) A full solution of $P(x, y)$, and $P(x, 1)=\sum_{n=0}^{\infty} \mathbb{P}\left(N_{1}=n\right) x^{n}$
(2) Determining the dominant singularity ζ of $P(x, 1)$
(3) Obtaining asymptotics using singularity analysis

Asymptotics for priority case

Change the notation (my sincere apologies!) according to $\nu_{1}=\nu_{2}=\mu_{1}+\mu_{2}$ and $p=\mu_{1} /\left(\mu_{1}+\mu_{2}\right)$ and assume $\lambda+\mu_{1}+\mu_{2}=1$ The functional equation becomes
$h_{1}(x, y) P(x, y)=h_{2}(x, y) P(x, 0)+h_{3}(x, y) P(0, y)+h_{4}(x, y) P(0,0)$
where

$$
\begin{aligned}
& h_{1}(x, y)=x y-\lambda x^{2} y-\mu_{1} y^{2}-\mu_{2} x \\
& h_{2}(x, y)=\mu_{2}\left(y^{2}-x\right) \\
& h_{3}(x, y)=\mu_{1}\left(x-y^{2}\right) \\
& h_{4}(x, y)=\mu_{1} x(y-1)+\mu_{2} y(x-y)
\end{aligned}
$$

and in case we give priority to station $1, \mu_{2}=0$ and things simplify.

As earlier, we find that

$$
\begin{equation*}
P(x, y)=\frac{\rho_{1} x(1-\xi(y))+x-y}{\left(\rho_{1}+1\right) x-\rho_{1} x^{2}-y} P(0, y), \tag{19}
\end{equation*}
$$

where $\rho_{i}=\lambda / \mu_{i}$ and

$$
\begin{equation*}
P(0, y)=\frac{(1-y) P(0,0)}{1-y-\rho_{2} y(1-\xi(y))}, \tag{20}
\end{equation*}
$$

$\left(P(0,0)=1-\rho_{1}-\rho_{2}\right)$ and

$$
\begin{equation*}
\xi(y)=\frac{1+\rho_{1}}{2 \rho_{1}}\left(1-\sqrt{1-4 \rho_{1} y /\left(1+\rho_{1}\right)^{2}}\right) . \tag{21}
\end{equation*}
$$

From this it follows that

$$
\begin{equation*}
P(1, y)=\frac{1-y+\rho_{1}(1-\xi(y))}{1-y} P(0, y) . \tag{22}
\end{equation*}
$$

The function $\xi(y)$ represents the pgf of the number of customers served in a busy period of an $M / M / 1$ queue with arrival rate λ and service rate μ_{1}. Denote this random variable by ξ. Then:

$$
\begin{equation*}
\mathbb{P}(\xi=n)=\frac{1}{n}\binom{2 n-2}{n-1} \frac{\rho_{1}^{n-1}}{\left(1+\rho_{1}\right)^{2 n-1}}, \quad n=1,2, \ldots \tag{23}
\end{equation*}
$$

Stirling's approximation $n!\sim n^{n} e^{-n} \sqrt{2 \pi n}$ yields

$$
\begin{equation*}
\binom{2 n}{n} \sim \frac{2^{2 n}}{\sqrt{\pi n}} \tag{24}
\end{equation*}
$$

and thus

$$
\begin{align*}
\mathbb{P}(\xi=n) & \sim \frac{1}{n} \frac{2^{2 n-2}}{\sqrt{\pi(n-1)}} \frac{1+\rho_{1}}{\rho_{1}} \frac{\rho_{1}^{n}}{\left(1+\rho_{1}\right)^{2 n}} \\
& =\frac{1+\rho_{1}}{2 \rho_{1}} \frac{1}{2 \sqrt{\pi n^{3}}} \frac{\sqrt{n}}{\sqrt{n-1}}\left(\frac{4 \rho_{1}}{\left(1+\rho_{1}\right)^{2}}\right)^{n} \\
& \sim \frac{1+\rho_{1}}{2 \rho_{1}} \frac{1}{2 \sqrt{\pi n^{3}}}\left(\frac{4 \rho_{1}}{\left(1+\rho_{1}\right)^{2}}\right)^{n} . \tag{25}
\end{align*}
$$

We are primarily interested in $\mathbb{P}\left(N_{2}=n\right)$ for n large, but we don't have an explicit inversion of the pgf. Therefore, we resort to singularity analysis.
For general α we have that

$$
\begin{equation*}
\left[z^{n}\right](1-z)^{-\alpha}=(-1)^{n}\binom{\alpha}{n}=\binom{n+\alpha-1}{n}=\frac{\Gamma(n+\alpha)}{\Gamma(\alpha) \Gamma(n+1)}, \tag{26}
\end{equation*}
$$

where $\Gamma(z)$ is the Gamma function defined for $\operatorname{Re}(z)>0$ as

$$
\begin{equation*}
\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} \mathrm{~d} t \tag{27}
\end{equation*}
$$

Applying Stirling's approximation $\Gamma(n+1) \sim n^{n} e^{-n} \sqrt{2 \pi n}$ then gives (see e.g. Flajolet \& Sedgewick 2009)

$$
\begin{equation*}
\left[z^{n}\right](1-z)^{-\alpha}=\frac{n^{\alpha-1}}{\Gamma(\alpha)}(1+\mathcal{O}(1 / n)) \tag{28}
\end{equation*}
$$

We now apply the above result to $\xi(y)$. Denote by \mathbb{C}_{y} the complex y-plane and observe that the function $\xi(y)$ is analytic in $\mathbb{C}_{y} \backslash\left[\left(1+\rho_{1}\right)^{2} /\left(4 \rho_{1}\right), \infty\right)$, i.e. it has a branch point at

$$
\begin{equation*}
y_{B}=\frac{\left(1+\rho_{1}\right)^{2}}{4 \rho_{1}} \tag{29}
\end{equation*}
$$

This particular case is covered by (28) with $\alpha=-1 / 2$, which gives

$$
\begin{aligned}
\mathbb{P}(\xi=n)=\left[y^{n}\right] \xi(y) & =-\frac{1+\rho_{1}}{2 \rho_{1}}\left[y^{n}\right] \sqrt{1-4 \rho_{1} y /\left(1+\rho_{1}\right)^{2}} \\
& =-\frac{1+\rho_{1}}{2 \rho_{1}}\left(\frac{4 \rho_{1}}{\left(1+\rho_{1}\right)^{2}}\right)^{n}\left[y^{n}\right] \sqrt{1-y} \\
& =-\frac{1+\rho_{1}}{2 \rho_{1}}\left(\frac{4 \rho_{1}}{\left(1+\rho_{1}\right)^{2}}\right)^{n} \frac{n^{-3 / 2}}{\Gamma(-1 / 2)}(1+\mathcal{O}(1 / n)) \\
& =\frac{1+\rho_{1}}{2 \rho_{1}}\left(\frac{4 \rho_{1}}{\left(1+\rho_{1}\right)^{2}}\right)^{n} \frac{1}{2 \sqrt{\pi n^{3}}}(1+\mathcal{O}(1 / n))(30)
\end{aligned}
$$

Note that (30) yields (25).

We now turn to the function $P(1, y)$ and study the asymptotic behavior of

$$
\left[y^{n}\right] P(1, y)=\mathbb{P}\left(N_{2}=n\right)
$$

by means of singularity analysis. The singularities of $P(1, y)$ consist of the branch point y_{B} and zeros of the denominator of the right-hand side of (20):

$$
\begin{equation*}
1-y-\rho_{2} y(1-\xi(y))=0 \tag{31}
\end{equation*}
$$

The question then is which singularity has the smallest modulus, since the singularity of $P(1, y)$ with the smallest modulus is dominant and determines the asymptotic behavior of the coefficients of $P(1, y)$, i.e. $\mathbb{P}\left(N_{2}=n\right)$, for large values of n. Because we already know that $P(1, y)$ has a branch point in y_{B}, it remains to be investigated whether $P(1, y)$ has a pole in $1<|y|<y_{B}$, so whether (31) has a solution in $1<|y|<y_{B}$.

First observation

Lemma
If

$$
\begin{equation*}
\rho_{2}<\frac{2 \rho_{1}\left(1-\rho_{1}\right)}{\left(1+\rho_{1}\right)^{2}}=: \rho_{c} \tag{32}
\end{equation*}
$$

then the only solution to (31) in the region $|y|<y_{B}$ is given by $y=1$.
Proof Rouché's theorem.

Candidate solutions

We seek for solutions to (31), or

$$
\begin{equation*}
1-\frac{4 \rho_{1}}{\left(1+\rho_{1}\right)^{2}} y=\left(\frac{2 \rho_{1}}{1+\rho_{1}}\left(\frac{1}{\rho_{2} y}-\frac{1}{\rho_{2}}-1\right)+1\right)^{2} . \tag{33}
\end{equation*}
$$

The relevant solution is given by

$$
\begin{equation*}
y_{P}=\frac{\rho_{2}-\rho_{1}-\rho_{1} \rho_{2}+\sqrt{4 \rho_{1} \rho_{2}^{2}+\left(\rho_{2}-\rho_{1}-\rho_{1} \rho_{2}\right)^{2}}}{2 \rho_{2}^{2}} \tag{34}
\end{equation*}
$$

Lemma
If $\rho_{2}<\rho_{c}$, the dominant singularity of the function $P(1, y)$ is the branch point y_{B}. If $\rho_{2}>\rho_{C}$, the dominant singularity of the function $P(1, y)$ is the pole y_{P}. If $\rho_{2}=\rho_{c}$, the dominant singularity of the function $P(1, y)$ is $y_{B}=y_{P}$.

Lemma

$$
P(1, y) \approx \begin{cases}P\left(1, y_{B}\right)+\gamma_{1} \sqrt{1-y / y_{B}}, & \rho_{2}<\rho_{c} \tag{35}\\ \gamma_{2} / \sqrt{1-y / y_{B}}, & \rho_{2}=\rho_{c} \\ \gamma_{3} /\left(1-y / y_{P}\right), & \rho_{2}>\rho_{c}\end{cases}
$$

where $P(1, y) \approx f(y)$ indicates that $P(1, y) / f(y) \rightarrow 1$ when y tends to its dominant singularity y_{B} or y_{P}, and

$$
\begin{aligned}
\gamma_{1} & =-\frac{2 P(0,0) \rho_{1}\left(1+\rho_{1}\right)\left(\rho_{2}+2 \rho_{1} \rho_{2}+\rho_{1}^{2}\left(4+\rho_{2}\right)\right)}{\left(\rho_{2}+\rho_{1}^{2}\left(2+\rho_{2}\right)-2\left(1-\rho_{2}\right) \rho_{1}\right)^{2}} \\
\gamma_{2} & =\frac{2 P(0,0) \rho_{1}\left(1-\rho_{1}\right)}{\rho_{2}\left(1+\rho_{1}\right)^{2}} \\
\gamma_{3} & =\frac{P(0,0)}{y_{P}} \cdot \frac{1-y_{P}+\rho_{1}\left(1-\xi\left(y_{P}\right)\right)}{-1-\rho_{2}\left(1-\xi\left(y_{P}\right)\right)+\rho_{2} y_{P} \xi^{\prime}\left(y_{P}\right)} .
\end{aligned}
$$

Applying (28) for $\alpha=-1 / 2,1 / 2$ and 1 then yields
Theorem
(a) If $\rho_{2}<\rho_{c}$,

$$
\mathbb{P}\left(N_{2}=n\right) \sim \gamma_{1} \frac{-1}{2 \sqrt{\pi n^{3}}}\left(\frac{1}{y_{B}}\right)^{n} .
$$

(b) If $\rho_{2}=\rho_{c}$,

$$
\mathbb{P}\left(N_{2}=n\right) \sim \gamma_{2} \frac{1}{2 \sqrt{\pi n}}\left(\frac{1}{y_{B}}\right)^{n} .
$$

(c) If $\rho_{2}>\rho_{c}$,

$$
\mathbb{P}\left(N_{2}=n\right) \sim \gamma_{3}\left(\frac{1}{y_{P}}\right)^{n}
$$

Back to the tandem queue, and rare events

Methods for tail asymptotics

- Generating function methods: Malyshev 1972, 1973; Flatto and McKean 1977; Fayolle and lasnogorodski 1979; Fayolle, King and Mitrani 1982; Cohen and Boxma 1983; Flatto and Hahn 1984; Flatto 1985; Fayolle, lasnogorodski and Malyshev 1991; Wright 1992; Kurkova and Suhov 2003; JvL 2005; Morrison 2007; JvL-Guillemin 2009;
- Probabilistic methods: McDonald 1999; Borovkov and Mogul'skii 2001; Foley and McDonald 2001, 2005-2009, Miyazawa 2008-2009
- Matrix analytic methods: Takahashi, Fujimoto and Makimoto 2001; Haque 2003; Miyazawa 2004; Miyazawa and Zhao 2004; Kroese, Scheinhardt and Taylor 2004; Haque, Liu and Zhao 2005; Motyer and Taylor 2006; Li, Miyazawa and Zhao 2007; He, Li and Zhao 2008
- Combinatorics: Bousquet-Melou 2005-2009; Mishna 2006-2009; Hou and Mansour 2008, and many more...

Key functional equation

$$
h_{1} P(x, y)=h_{2} P(x, 0)+h_{3} P(0, y)+h_{4} P(0,0)
$$

where

$$
\begin{aligned}
& h_{1}(x, y)=\left(\lambda+p \nu_{1}+(1-p) \nu_{2}\right) x y-\lambda x^{2} y-p \nu_{1} y^{2}-(1-p) \nu_{2} x \\
& h_{2}(x, y)=(1-p)\left[\nu_{1} y(y-x)+\nu_{2} x(y-1)\right] \\
& h_{3}(x, y)=-p \cdot h_{2}(x, y) /(1-p) \\
& h_{4}(x, y)=\nu_{2} x(y-1)-h_{2}(x, y)
\end{aligned}
$$

A closer look at the kernel

We have that $h_{1}\left(X_{ \pm}(y), y\right)=0$ with

$$
X_{ \pm}(y)=\frac{1}{2 y}\left(\left(\hat{r} y-1 / r_{2}\right) \pm \sqrt{d_{2}(y)}\right)
$$

where $\hat{r}=1+1 / r_{1}+1 / r_{2}, r_{1}=\lambda /\left(p \nu_{1}\right), r_{2}=\lambda /\left((1-p) \nu_{2}\right)$ and $d_{2}(y)=\left(\hat{r} y-1 / r_{2}\right)^{2}-4 y^{3} / r_{1}$

- $d_{2}(y)$ has three roots in $\mathbb{R}: 0<y_{1}<y_{2} \leq 1<y_{3}$
- $d_{2}(y)>0$ for $y \in\left(-\infty, y_{1}\right) \cup\left(y_{2}, y_{3}\right)$
- $d_{2}(y)<0$ for $y \in\left(y_{1}, y_{2}\right) \cup\left(y_{3}, \infty\right)$

Similarly, $h_{1}\left(x, Y_{ \pm}(x)\right)=0$ for

$$
Y_{ \pm}(x)=\frac{r_{1}}{2}\left((\hat{r}-x) x \pm \sqrt{d_{1}(x)}\right)
$$

where $d_{1}(x)=((\hat{r}-x) x)^{2}-4 x /\left(r_{1} r_{2}\right)$

- $d_{1}(x)$ has four real roots: $x_{1}=0<x_{2} \leq 1<x_{3}<x_{4}$
- $d_{1}(x)>0$ for $x \in\left(-\infty, x_{1}\right) \cup\left(x_{2}, x_{3}\right) \cup\left(x_{4}, \infty\right)$
- $d_{1}(x)<0$ for $x \in\left(x_{1}, x_{2}\right) \cup\left(x_{3}, x_{4}\right)$.

Analytic continuation

Lemma
The function $X^{*}(y)$ defined in $\mathbb{C} \backslash\left(\left[y_{1}, y_{2}\right] \cup\left[y_{3}, \infty\right)\right)$ by
$X^{*}(y)= \begin{cases}X_{+}(y) & \text { when } y \in\left\{z: \Re(z) \leq y_{2}, \Im\left(d_{2}\left(z^{+}\right)\right)<0\right\} \cup\left(-\infty, y_{1}\right) \\ X_{-}(y) & \text { otherwise }\end{cases}$
where $z^{+}=\Re(z)+i|\Im(z)|$, is analytic
Lemma
The function $Y^{*}(x)$ defined in $\mathbb{C} \backslash\left(\left[x_{1}, x_{2}\right] \cup\left[x_{3}, x_{4}\right]\right)$ by
$Y^{*}(x)= \begin{cases}Y_{+}(x) & \text { when } x \in\left\{z: \Re(z) \leq x_{2}, \Im\left(d_{1}\left(z^{+}\right)\right)<0\right\} \cup\left(-\infty, x_{1}\right) \\ Y_{+}(x) & \text { when } x \in\left\{z: \Re(z) \geq x_{3}, \Im\left(d_{2}\left(z^{+}\right)\right)>0\right\} \cup\left(x_{4}, \infty\right) \\ Y_{-}(x) & \text { otherwise }\end{cases}$
is analytic

Theorem
The function $X^{*}(y)$ is a conformal mapping from D_{y} onto D_{x}.
The reciprocal function is $Y^{*}(x)$
Lemma
We have $X^{*}\left(\partial D_{y}\right) \subset\left[x_{1}, x_{2}\right]$ and $Y^{*}\left(\partial D_{x}\right) \subset\left[y_{1}, y_{2}\right]$

Boundary value problem

When $h_{1}(x, y)=0$ we have that

$$
P(x, 0)=\frac{p}{1-p} P(0, y)-(1-\rho) \frac{h_{4}(x, y)}{h_{2}(x, y)}
$$

and hence for $x \in \partial D_{x}$ and $y=Y^{*}(x)$

$$
\Im(P(x, 0))=\Im\left(-\frac{(1-\rho) h_{4}(x, y)}{h_{2}(x, y)}\right)
$$

This is a classical Riemann-Hilbert problem. Simple calculations yield

$$
\Im\left(\frac{h_{4}(x, y)}{h_{2}(x, y)}\right)=\frac{\nu_{2} \lambda y\left(r_{1} x^{2}-y\right)}{2 i_{1} x(1-p) \mathcal{Q}_{x}(y)}
$$

where $\mathcal{Q}_{x}(y)=\lambda \nu_{1} y^{2}+\nu_{2}\left(\nu_{2}-\nu_{1}+\lambda\right) y-\nu_{2}^{2}$

Theorem

The function $P(x, 0)$ is given by

$$
P(x, 0)= \begin{cases}\frac{1}{2 \pi i} \int_{\partial D_{x}} \frac{g_{x}(z)}{z-x} d z & \text { for } x \in D_{x} \tag{36}\\ g_{x}(x)+\frac{1}{2 \pi i} \int_{\partial C_{x}} \frac{g_{x}(z)}{z-x} d z & \text { for } x \in \mathbb{C} \backslash D_{x}\end{cases}
$$

where C_{x} is a contour in D_{x} surrounding the slit $\left[x_{1}, x_{2}\right]$ and such that the function g_{x} given by

$$
\begin{equation*}
g_{x}(x)=(1-\rho) \frac{\nu_{2} Y^{*}(x)\left(p \nu_{1} Y^{*}(x)-\lambda x^{2}\right)}{(1-p) x \mathcal{Q}_{x}\left(Y^{*}(x)\right)} \tag{37}
\end{equation*}
$$

The function $P(x, 0)$ is a meromorphic function in $\mathbb{C} \backslash\left[x_{3}, x_{4}\right]$ with singularities at the solutions to the equation $\mathcal{Q}_{x}\left(Y^{*}(x)\right)=0$ if they exist

Resultants

When $h_{1}(x, y)=0$ we have that

$$
P(x, 0)=\frac{p}{1-p} P(0, y)-(1-\rho) \frac{h_{4}(x, y)}{h_{2}(x, y)}
$$

The common solutions of the equations $h_{1}(x, y)=0$ and $h_{2}(x, y)=0$ are then potential singularities for the function $P(x, 0)$

The resultant in x of the polynomials $h_{1}(x, y)$ and $h_{2}(x, y)$ is a polynomial of degree 5

$$
Q_{y}(x)=-\nu_{2} \nu_{1}(1-p)^{2} x^{2}(x-1) \mathcal{Q}_{y}(x)
$$

where $\mathcal{Q}_{y}(x)=\lambda^{2} x^{2}-\left(\lambda+\nu_{1}+\nu_{2}\right) \lambda x+\nu_{1} \nu_{2}$. This quadratic polynomial has two roots, one of which

$$
x^{*}=\frac{\lambda+\nu_{1}+\nu_{2}-\sqrt{\left(\lambda+\nu_{1}+\nu_{2}\right)^{2}-4 \nu_{1} \nu_{2}}}{2 \lambda} \in\left(1, x_{3}\right]
$$

The resultant in y of the polynomials $h_{1}(x, y)$ and $h_{2}(x, y)$ is a polynomial of degree 5

$$
Q_{x}(y)=-\nu_{1}(1-p)^{2} y^{2}(y-1) \mathcal{Q}_{x}(y)
$$

where $\mathcal{Q}_{x}(y)=\lambda \nu_{1} y^{2}+\nu_{2}\left(\nu_{2}-\nu_{1}+\lambda\right) y-\nu_{2}^{2}$. This quadratic polynomial has two roots, one of which

$$
y^{*}=\frac{\nu_{2}}{2 \lambda \nu_{1}}\left(-\left(\nu_{2}-\nu_{1}+\lambda\right)+\sqrt{\left(\nu_{2}-\nu_{1}+\lambda\right)^{2}+4 \lambda \nu_{1}}\right) \in\left(1, y_{3}\right]
$$

Lemma

The equation $Q_{x}\left(Y^{*}(x)\right)=0$ has a solution in $\left(-\infty, x_{3}\right]$, which is necessarily equal to $x^{*} \in\left(1, x_{3}\right]$, if and only if $y^{*}=Y^{*}\left(x^{*}\right)$

What were we doing again?

Let us return to

$$
P(x, 1)=\sum_{n=0}^{\infty} \mathbb{P}\left(N_{1}=n\right) x^{n}
$$

for which the key functional equation gives

$$
P(x, 1)=\nu_{1} \frac{(1-p) P(x, 0)-p P(0,1)-(1-p)(1-\rho)}{\lambda x-p \nu_{1}}
$$

The dominant singularity of $P(x, 1)$ will thus be one of the following three candidates:
(1) $x=x_{3}$
(2) $x=x^{*}$
(3) $x=\frac{p \nu_{1}}{\lambda}=\frac{1}{r_{1}}$

Lemma

If $r_{2} \leq 1$, then

$$
(1-p) P\left(r_{1}^{-1}, 0\right)-p P(0,1)-(1-p)(1-\rho)=0
$$

and $1 / r_{1}$ is removable. If $r_{2}>1$ (and then $r_{1} \leq 1$ by stability) we have

$$
(1-p) P\left(r_{1}^{-1}, 0\right)-p P(0,1)-(1-p)(1-\rho)<0
$$

and the point $1 / r_{1}$ is a singularity of $P(x, 1)$

Theorem

I. If $y^{*}=Y^{*}\left(x^{*}\right)$ and $x^{*}<x_{3}$, which can occur only if $r_{1} \leq 1$, then

$$
\mathbb{P}\left(N_{1}=n\right) \sim \kappa_{1}^{(1)}\left(\frac{1}{x^{*}}\right)^{n}
$$

II. If $y^{*} \neq Y^{*}\left(x^{*}\right)$ and $r_{2}>1$ (and then $r_{1} \leq 1$),

$$
\mathbb{P}\left(N_{1}=n\right) \sim \kappa_{2}^{(1)}\left(r_{1}\right)^{n}
$$

III. If $y^{*} \neq Y^{*}\left(x^{*}\right)$ and $r_{2} \leq 1,1 / r_{1}$ is removable from $P(x, 1)$ and

$$
\mathbb{P}\left(N_{1}=n\right) \sim \kappa_{3}^{(1)} \frac{1}{n \sqrt{n}}\left(\frac{1}{x_{3}}\right)^{n}
$$

IV. If $y^{*}=Y^{*}\left(x^{*}\right)$ and $x^{*}=x_{3}$,

$$
\mathbb{P}\left(N_{1}=n\right) \sim \kappa_{4}^{(1)} \frac{1}{\sqrt{n}}\left(\frac{1}{x_{3}}\right)^{n}
$$

where

$$
\begin{aligned}
\kappa_{1}^{(1)} & =\frac{\nu_{1} \nu_{2}(1-\rho)\left((1-p) \nu_{2} x^{*}-p \nu_{1}\left(y^{*}\right)^{2}\right)}{\left(\lambda x^{*}-p \nu_{1}\right)\left(\nu_{2}^{2}+\lambda \nu_{1}\left(y^{*}\right)^{2}\right) x^{*}} \\
\kappa_{2}^{(1)} & =P(0,1)+\frac{1-p}{p}\left(1-\rho-P\left(r_{1}^{-1}, 0\right)\right) \\
\kappa_{3}^{(1)} & =\frac{(1-\rho) \lambda \nu_{1} \nu_{2}}{4 \sqrt{\pi}\left(\lambda x_{3}-p \nu_{1}\right)} \frac{\frac{\lambda^{2}(1-p)}{p \nu_{2}} x_{3}^{2}+2 \lambda x_{3}-\left(p \lambda+\nu_{1}\right)}{\mathcal{Q}_{y}\left(x_{3}\right) \mathcal{Q}_{y}^{*}\left(x_{3}\right)} \sqrt{x_{3}} \tau_{x} \\
\kappa_{4}^{(1)} & =\frac{(1-\rho) \lambda \nu_{1} \nu_{2}}{2 \sqrt{\pi}\left(\lambda x_{3}-p \nu_{1}\right)} \frac{\frac{\lambda^{2}(1-p)}{p \nu_{2}} x_{3}^{2}+2 \lambda x_{3}-\left(p \lambda+\nu_{1}\right)}{\sqrt{x_{3}} \mathcal{Q}_{y}^{\prime}\left(x_{3}\right) \mathcal{Q}_{y}^{*}\left(x_{3}\right)} \tau_{x}
\end{aligned}
$$

with $\tau_{x}=\sqrt{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(x_{4}-x_{3}\right)}$ and

$$
\mathcal{Q}_{y}^{*}(x)=\frac{1}{\lambda^{2}}\left(x-\frac{p \nu_{1} y^{*}}{x^{*}}\right)\left(x-\frac{p \nu_{1} y_{*}}{x_{*}}\right) .
$$

Example Case I

Take as parameter values

$$
\lambda=1.1, \nu_{1}=6, \nu_{2}=9, p=0.5, r_{1}=0.37, r_{2}=0.24, \rho=0.31
$$

for which

$$
x^{*}=4.3303, y^{*}=Y^{*}\left(x^{*}\right)=1.6864, \kappa_{1}^{(1)}=0.5392
$$

and

$$
\begin{array}{rcc}
n & \mathbb{P}\left(N_{1}=n\right) & \kappa_{1}^{(1)}\left(x^{*}\right)^{-n} \\
\hline 10 & 2.3921 \mathrm{e}-007 & 2.3261 \mathrm{e}-007 \\
20 & 1.0087 \mathrm{e}-013 & 1.0034 \mathrm{e}-013 \\
50 & 8.0560 \mathrm{e}-033 & 8.0552 \mathrm{e}-033 \\
100 & 1.2033 \mathrm{e}-064 & 1.2033 \mathrm{e}-064 \\
200 & 2.6854 \mathrm{e}-128 & 2.6854 \mathrm{e}-128 \\
300 & 5.9927 \mathrm{e}-192 & 5.9927 \mathrm{e}-192
\end{array}
$$

Example Case II

Take as parameter values
$\lambda=1.1, \nu_{1}=6, \nu_{2}=2, p=0.7, r_{1}=0.26, r_{2}=1.83, \rho=0.73$
for which

$$
x^{*}=1.4545, y^{*}=1.3333 \neq Y^{*}\left(x^{*}\right)=1.5584, \kappa_{2}^{(1)}=0.4620
$$

and

$$
\begin{array}{rcc}
n & \mathbb{P}\left(N_{1}=n\right) & \kappa_{2}^{(1)}\left(r_{1}\right)^{n} \\
\hline 10 & 7.9471 \mathrm{e}-007 & 7.0154 \mathrm{e}-007 \\
20 & 1.1343 \mathrm{e}-012 & 1.0653 \mathrm{e}-012 \\
50 & 3.7864 \mathrm{e}-030 & 3.7307 \mathrm{e}-030 \\
100 & 3.0200 \mathrm{e}-059 & 3.0127 \mathrm{e}-059 \\
200 & 1.9649 \mathrm{e}-117 & 1.9647 \mathrm{e}-117 \\
300 & 1.2813 \mathrm{e}-175 & 1.2813 \mathrm{e}-175
\end{array}
$$

- Similar results can be obtained for N_{2}
- The same technique applies to the general class of two-dimensional one-step random walks in the quarter plane
- Determining the dominant singularities could be done without resorting to the boundary value technique
- Many interesting and classical special cases

