

Technische Universiteit
Eindhoven
University of Technology

Matrix geometric approach for random walks in the quadrant

Stella Kapodistria

Joint work with Zbigniew Palmowski

ECQT, July 20, 2016

Motivation

Performance analysis of two coupled M / M /1 queues (in parallel), where the coupling occurs due to simultaneous abandonments

We transform the state space description $n = \min\{q_1, q_2\}$ and $m = q_1 - q_2$

Objective: determine the steady-state distribution $\pi(n, m)$

Background

Exact analysis techniques for random walks

- Boundary value method approach
 - [1] Cohen, J.W. and Boxma, O.J. (1983). Boundary Value Problems in Queueing System Analysis.
 - [2] Fayolle, G., Iasnogorodski, R. and Malyshev, V. (1999). Random Walks in the Quarter Plane.
- Matrix geometric approach

$$A_1 + RA_0 + R^2A_{-1} = 0$$

- Compensation approach
 - [3] Adan, I.J.B.F. (1991). A Compensation Approach for Queueing Problems.

[4] Smit, L.C. (2016). Steady State Analysis of Large-Scale Systems.

The above techniques have been developed separately and although there exists a set of models for which all aforementioned techniques are appropriate they haven't been connected!

Main results

We consider the class of nearest neighbour random walks (NNRW) and we connect

- Boundary value method approach
- Matrix geometric approach
- Compensation approach

Theorem 1

We consider the class of NNRW and we calculate the eigenvalues and

 $q_{-1.0}$

eigenvectors of R redursively.

For the class of NNRW the infinite dimension rate matrix R is "diagonalizable" and we can numerically approximate R using spectral truncation: $q_{0:1}$

We obtain the eigenvalues of the rate matrix for the original model.

Nearest neighbour random walk

We consider the class of nearest neighbour random walks (NNRW):

- 1st quadrant
- Homogeneous nearest neighbour
- No transitions to N, NE and E

$$\pi(n,m) \sim c\alpha^n \beta^m$$
 as $n,m \to \infty$

More concretely,

$$\pi(n,m) = \sum_{i} c_i \alpha_i^n \beta_i^m, n, m > 0$$

The limitations above are sufficient

[3] Adan, I.J.B.F. (1991). A Compensation Approach for Queueing Problems.

and necessary

[5] Chen, Y. (2015). Random Walks in the Quarter-Plane: invariant Measures and Performance Bounds.

Boundary value method approach

First, introduce

$$\Pi(x,y) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \pi(n,m) x^n y^m$$

then

$$K(x,y)\Pi(x,y) = A(x,y)\Pi(x,0) + B(x,y)\Pi(0,y) + C(x,y)\Pi(0,0)$$

where K(x, y), A(x, y), B(x, y), C(x, y) are known quadratic functions.

Choose
$$y = f(x)$$
, e.g. $y = \bar{x}$, and set $K(x, f(x)) = 0$

$$0 = A(x, f(x))\Pi(x, 0) + B(x, f(x))\Pi(0, f(x)) + C(x, f(x))\Pi(0, 0)$$

The above equation can be solved as a Riemann (Hilbert) boundary value problem.

Compensation approach

Aims at solving directly the balance equations of a random walk in the quadrant using a series (infinite or finite) of product-form solutions

Key idea:

Guess a product-form solution

$$\alpha^n \beta^m$$

- Check if it satisfies the boundaries
- If not start compensating by adding new product-form terms

Solution

Matrix geometric approach

We know that

$$\boldsymbol{\pi}_n = \boldsymbol{\pi}_{n-1} \boldsymbol{R}$$

where $\boldsymbol{\pi}_n = (\pi(n,0) \ \pi(n,1) \ \dots)$ and $\pi(n,m) = \sum_i c_i \alpha_i^n \beta_i^m$, n,m > 0.

Then,

$$\Pi(x,y) = \pi_0 y' + \pi_1 (x^{-1} I - R)^{-1} y'$$

where $y' = (1 y y^2 ...)$.

Substituting in the functional equation reveals

$$K(x,y)\Pi(x,y) = A(x,y)\Pi(x,0) + B(x,y)\Pi(0,y) + C(x,y)\Pi(0,0) \Rightarrow$$

$$\pi_1(x^{-1}I - R)^{-1}[K(x,y)y + A(x,y)e] = -\pi_0[(K(x,y) + B(x,y))y' + (A(x,y) + C(x,y))e']$$

So $x^{-1} = \alpha$ is an eigenvalue of matrix **R**.

The terms $y^{-1} = \beta$ are associated with the eigenvalues of **R**.

Matrix geometric approach

Theorem 1

The terms $\{\alpha_i\}$ constitute the different eigenvalues of the matrix \mathbf{R} . For eigenvalue α_i the corresponding eigenvector of the matrix \mathbf{R} is \mathbf{h}_i with $h_{i,m} = c_i(\beta_{i-1}^m + f_i\beta_i^m)$.

Theorem 2

Spectral decomposition

$$R = H^{-1}DH$$

Truncated spectral decomposition

$$R_N = H_N^{-1} D_N H_N$$

Remark

The latter is equivalent to truncating

$$\pi(n,m) = \sum_{i=0}^{N} c_i \alpha_i^n \beta_i^m, n, m > 0$$

Main results

Theorem 3

We obtain the eigenvalues of the rate matrix for the original model.

$$K(x,y)\Pi(x,y) = A(x,y)\Pi(x,0) + B(x,y)\Pi(0,y) + C(x,y)\Pi(0,0) + D(x,y)\Pi(p+(1-p)x,y)$$

By using a similar argument as previously we obtain

Conclusions

- Calculation of eigenvalues and eigenvectors of rate matrix for NNRW
- Efficient numerical calculation of rate matrix using spectral truncation
- Our results show promise for "non-structured" **R** of random walks in the quadrant

Extensions

- Probabilistic interpretation of the product-form terms
- Use the results for approximation, i.e. approximate the invariant measure by a series (finite or infinite) of product forms.
 - [6] Y. Chen, R.J. Boucherie, and J. Goseling, (2016). Invariant measures and error bounds for random walks in the quarter-plane based on sums of geometric terms, arXiv:1502.07218.