

[^0]
Motivation

Performance analysis of
two coupled $M / M / 1$ queues (in parallel), where the coupling occurs due to simultaneous abandonments

We transform the state space description

$$
n=\min \left\{q_{1}, q_{2}\right\} \text { and } m=q_{1}-q_{2}
$$

Objective: determine the steady-state distribution $\pi(n, m)$

TU/e

Background

Exact analysis techniques for random walks

- Boundary value method approach
[1] Cohen, J.W. and Boxma, O.J. (1983). Boundary Value Problems in Queueing System Analysis.
[2] Fayolle, G., Iasnogorodski, R. and Malyshev, V. (1999). Random Walks in the Quarter Plane.
- Matrix geometric approach

$$
A_{1}+R A_{0}+R^{2} A_{-1}=0
$$

- Compensation approach [3] Adan, I.J.B.F. (1991). A Compensation Approach for Queueing Problems.

- Successive lumping
[4] Smit, L.C. (2016). Steady State Analysis of Large-Scale Systems.

The above techniques have been developed separately and although there exists a set of models for which all aforementioned techniques are appropriate they haven't been connected!

Main results

We consider the class of nearest neighbour random walks (NNRW) and we connect

- Boundary value method approach
- Matrix geometric approach
- Compensation approach

Theorem 1 m
We consider the chass of NNRW and we calculate the eigenvalues and eigenvectors of R recursively.

Theorem 2

 "diagonalizable" and we can numerically approximate R using spectral truncation;

Theorem 3
We obtain the eigenvalues of the rate matrix for the original model.

TU 6
 Eindhoven
 University of Technology

Nearest neighbour random walk
We consider the class of nearest neighbour random walks (NNRW):

- 1 st quadrant
- Homogeneous nearest neighbour
- No transitions to N, NE and E

$$
\pi(n, m) \sim c \alpha^{n} \beta^{m} \text { as } n, m \rightarrow \infty
$$

More concretely,

$$
\pi(n, m)=\sum_{i} c_{i} \alpha_{i}^{n} \beta_{i}^{m}, n, m>0
$$

The limitations above are sufficient
[3] Adan, I.J.B.F. (1991). A Compensation Approach for Queueing Problems.
and necessary
[5] Chen, Y. (2015). Random Walks in the Quarter-Plane: invariant Measures and Performance Bounds.

TU/e

Boundary value method approach

First, introduce

$$
\Pi(x, y)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \pi(n, m) x^{n} y^{m}
$$

then

$$
K(x, y) \Pi(x, y)=A(x, y) \Pi(x, 0)+B(x, y) \Pi(0, y)+C(x, y) \Pi(0,0)
$$

where $K(x, y), A(x, y), B(x, y), C(x, y)$ are known quadratic functions.
Choose $y=f(x)$, e.g. $y=\bar{x}$, and set $K(x, f(x))=0$

$$
0=A(x, f(x)) \Pi(x, 0)+B(x, f(x)) \Pi(0, f(x))+C(x, f(x)) \Pi(0,0)
$$

The above equation can be solved as a Riemann (Hilbert) boundary value problem.

TH $2=$
 Eindhoven University of Technology

Compensation approach

Aims at solving directly the balance equations of a random walk in the quadrant using a series (infinite or finite) of product-form solutions
Key idea:

- Guess a product-form solution

$$
\alpha^{n} \beta^{m}
$$

- Check if it satisfies the boundaries
- If not start compensating by adding new product-form terms

Solution

TU/e

Matrix geometric approach

We know that

$$
\boldsymbol{\pi}_{n}=\boldsymbol{\pi}_{n-1} \boldsymbol{R}
$$

where $\boldsymbol{\pi}_{n}=(\pi(n, 0) \pi(n, 1) \ldots)$ and $\pi(n, m)=\sum_{i} c_{i} \alpha_{i}^{n} \beta_{i}^{m}, n, m>0$.
Then,

$$
\Pi(x, y)=\boldsymbol{\pi}_{0} \boldsymbol{y}^{\prime}+\boldsymbol{\pi}_{1}\left(x^{-1} \boldsymbol{I}-\boldsymbol{R}\right)^{-1} \boldsymbol{y}^{\prime}
$$

where $\boldsymbol{y}^{\prime}=\left(1 y y^{2} \ldots\right)$.
Substituting in the functional equation reveals

$$
\begin{gathered}
K(x, y) \Pi(x, y)=A(x, y) \Pi(x, 0)+B(x, y) \Pi(0, y)+C(x, y) \Pi(0,0) \Rightarrow \\
\boldsymbol{\pi}_{1}\left(x^{-1} \boldsymbol{I}-\boldsymbol{R}\right)^{-1}[K(x, y) \boldsymbol{y}+A(x, y) \boldsymbol{e}] \\
=-\boldsymbol{\pi}_{0}\left[(K(x, y)+B(x, y)) \boldsymbol{y}^{\prime}+(A(x, y)+C(x, y)) \boldsymbol{e}^{\prime}\right]
\end{gathered}
$$

So $x^{-1}=\alpha$ is an eigenvalue of matrix \boldsymbol{R}. The terms $y^{-1}=\beta$ are associated with the eigenvalues of \boldsymbol{R}.

$\underbrace{\alpha_{0} \longrightarrow}_{$| initial |
| :---: |
| solution |\(} \beta_{0} \longrightarrow \alpha_{1} \xrightarrow[\begin{array}{c}vertical

compensation\end{array}]{\longrightarrow} \beta_{\)| horizontal |
| :---: |
| compensation |$}^{\longrightarrow}$

TU/e

Matrix geometric approach

Theorem 1
The terms $\left\{\alpha_{i}\right\}$ constitute the different eigenvalues of the matrix \boldsymbol{R}. For eigenvalue α_{i} the corresponding eigenvector of the matrix \boldsymbol{R} is $\boldsymbol{h}_{\boldsymbol{i}}$ with $h_{i, m}=c_{i}\left(\beta_{i-1}^{m}+f_{i} \beta_{i}^{m}\right)$.

Theorem 2
Spectral decomposition

$$
R=H^{-1} D H
$$

Truncated spectral decomposition

$$
R_{N}=H_{N}^{-1} D_{N} H_{N}
$$

Remark

The latter is equivalent to truncating

$$
\pi(n, m)=\sum_{i=0}^{N} c_{i} \alpha_{i}^{n} \beta_{i}^{m}, n, m>0
$$

Main results

Theorem 3
We obtain the eigenvalues of the rate matrix for the original model.

$$
\begin{aligned}
K(x, y) \Pi(x, y)= & A(x, y) \Pi(x, 0)+B(x, y) \Pi(0, y)+C(x, y) \Pi(0,0) \\
& +D(x, y) \Pi(p+(1-p) x, y)
\end{aligned}
$$

By using a similar argument as previously we obtain

Conclusions

- Calculation of eigenvalues and eigenvectors of rate matrix for NNRW
- Efficient numerical calculation of rate matrix using spectral truncation
- Our results show promise for "non-structured" \boldsymbol{R} of random walks in the quadrant

Extensions

- Probabilistic interpretation of the product-form terms
- Use the results for approximation, i.e. approximate the invariant measure by a series (finite or infinite) of product forms.
[6] Y. Chen, R.J. Boucherie, and J. Goseling, (2016). Invariant measures and error bounds for random walks in the quarter-plane based on sums of geometric terms, arXiv:1502.07218.

[^0]: Where innovation starts

