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ABSTRACT

We propose a simple variant of kd-trees, called rank-based
kd-trees, for sets of points in R%. We show that a rank-based
kd-tree, like an ordinary kd-tree, supports range search que-
ries in O(n'~'/¢ 4 k) time, where k is the output size. The
main advantage of rank-based kd-trees is that they can be
efficiently kinetized: the KDS processes O(n?) events in the
worst case, assuming that the points follow constant-degree
algebraic trajectories, each event can be handled in O(log n)
time, and each point is involved in O(1) certificates.

We also propose a variant of longest-side kd-trees, called
rank-based longest-side kd-trees (RBLS kd-trees, for short),
for sets of points in R%. RBLS kd-trees can be kinetized
efficiently as well and like longest-side kd-trees, RBLS kd-
trees support nearest-neighbor, farthest-neighbor, and ap-
proximate range search queries in O((1/¢) log? n) time. The
KDS processes O(n> logn) events in the worst case, assum-
ing that the points follow constant-degree algebraic trajecto-
ries; each event can be handled in O(log®n) time, and each
point is involved in O(logn) certificates.

Categories and Subject Descriptors

F.2.2 [Nonnumerical Algorithms and Problems]: Ge-
ometrical problems and computations.
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Algorithms, Theory.
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1. INTRODUCTION

Background. Due to the increased availability of GPS sys-
tems and to other technological advances, motion data is be-
coming more and more available in a variety of application
areas: air-traffic control, mobile communication, geographic
information systems, and so on. In many of these areas, the
data are moving points in 2- or higher-dimensional space,
and what is needed is to store these points in such a way
that range queries (“Report all the points lying currently
inside a query range”) or nearest-neighbor queries (“Report
the point that is currently closest to a query point”) can be
answered efficiently. Hence, there has been a lot of work on
developing data structures for moving point data, both in
the database community as well as in the computational-
geometry community.

Within computational geometry, the standard model for
designing and analyzing data structures for moving objects
is the kinetic-data-structure framework introduced by Basch
et al. [3]. A kinetic data structure (KDS) maintains a dis-
crete attribute of a set of moving objects—the convex hull,
for example, or the closest pair—where each object has a
known motion trajectory. The basic idea is that although
all objects move continuously there are only certain discrete
moments in time when the combinatorial structure of the
attribute—the ordered set of convex-hull vertices, or the pair
that is closest—changes. A KDS contains a set of certifi-
cates that constitutes a proof that the maintained structure
is correct. These certificates are inserted in a priority queue
based on their time of expiration. The KDS then performs
an event-driven simulation of the motion of the objects, up-
dating the structure whenever an event happens, that is,
when a certificate fails. Kinetic data structures and their ac-
companying maintenance algorithms can be evaluated and
compared with respect to four desired characteristics. A
good KDS is compact if it uses little space in addition to the
input, responsive if the data structure invariants can be re-
stored quickly after the failure of a certificate, local if it can
be updated easily when the flight plan for an object changes,
and efficient if the worst-case number of events handled by
the data structure for a given motion is small compared to
some worst-case number of “external events” that must be
handled for that motion—see the surveys by Guibas [8, 9]
for more details.

Related work. There are several papers that describe
KDS’s for the orthogonal range-searching problem, where
the query range is an axis-parallel box. Basch et al. [4]
kinetized d-dimensional range trees. Their KDS supports
range queries in O(log?n + k) time and uses O(nlog?~' n)



storage. If the points follow constant-degree algebraic tra-
jectories then their KDS processes O(n2) events; each event
can be handled in O(log?~'n) time. In the plane, Agar-
wal et al. [1] obtained an improved solution: their KDS
supports orthogonal range-searching queries in O(log n + k)
time, it uses O(nlogn/loglogn) storage, and the amortized
cost of processing an event is O(log? n).

Although these results are nice from a theoretical per-
spective, their practical value is limited for several reasons.
First of all, they use super-linear storage, which is often un-
desirable. Second, they can perform only orthogonal range
queries; queries with other types of ranges or nearest-neighbor
searches are not supported. Finally, especially the solution
by Agarwal et al. [1] is rather complicated. Indeed, in the
setting where the points do not move, the static counterparts
of these structures are usually not used in practice. Instead,
simpler structures such as quadtrees, kd-trees, or bounding-
volume hierarchies (R-trees, for instance) are used. In this
paper we consider one of these structures, namely the kd-
tree.

Kd-trees were initially introduced by Bentley [5]. A kd-
tree for a set of points in the plane is obtained recursively
as follows. At each node of the tree, the current point set
is split into two equal-sized subsets with a line. When the
depth of the node is even the splitting line is orthogonal
to the z-axis, and when it is odd the splitting line is or-
thogonal to the y-axis. In d-dimensional space, the orien-
tations of the splitting planes cycle through the d axes in
a similar manner. Kd-trees use O(n) storage and support
orthogonal range searching queries in O(n'~*/? + k) time,
where k is the number of reported points. Maintaining a
standard kd-tree kinetically is not efficient. The problem
is that a single event—two points swapping their order on
x- or y-coordinate—can have a dramatic effect: a new point
entering the region corresponding to a node could mean that
almost the entire subtree must be re-structured. Hence, a
variant of the kd-tree is needed when the points are moving.

Agarwal et al. [2] proposed two such variants for moving
points in R?: the d-pseudo kd-tree and the §-overlapping
kd-tree. In a d-pseudo kd-tree each child of a node v can be
associated with at most (1/2 + §)n, points, where n, is the
number of points in the subtree of v. In a §-overlapping kd-
tree the regions corresponding to the children of v can over-
lap as long as the overlapping region contains at most dn,
points. Both kd-trees support orthogonal range queries in
time O(n1/2+5+k), where k is the number of reported points.
Here € is a positive constant that can be made arbitrarily
small by choosing § appropriately. These KDS’s process
O(n?) events if the points follow constant-degree algebraic
trajectories. Although it can take up to O(n) time to han-
dle a single event, the amortized cost is O(logn) time per
event. Neither of these two solutions is completely satis-
factory: their query time is worse by a factor O(n®) than
the query time in standard kd-trees, there is only a good
amortized bound on the time to process events, and only a
solution for the 2-dimensional case is given. The goal of our
paper is to developed a kinetic kd-tree variant that does not
have these drawbacks.

Even though a kd-tree can be used to search with any
type of range, there are only performance guarantees for or-
thogonal ranges. Longest-side kd-trees, introduced by Dick-
erson et al. [7], are better in this respect. In a longest-side
kd-tree, the orientation of the splitting line at a node is not

determined by the level of the node, but by the shape of its
region: namely, the splitting line is orthogonal to the longest
side of the region. Although a longest-side kd-tree does
not have performance guarantees for exact range searching,
it has very good worst-case performance for e-approximate
range queries, which can be answered in O(slfd log?n + k)
time. (In an e-approximate range query, points that are
within distance e-diameter(Q) of the query range @ may
also be reported.) Moreover, a longest-side kd-tree can an-
swer e-approximate nearest-neighbor queries (or: farthest-
neighbor queries) in O(¢'~log? n) time. The second goal of
our paper is to develop a kinetic variant of the longest-side
kd-tree.

Our results. Our first contribution is a new and simple
variant of the standard kd-tree for a set of n points in d-
dimensional space. Our rank-based kd-tree supports orthog-
onal range searching in time O(n*~*/¢ +k) and it uses O(n)
storage—just like the original. But additionally it can be
kinetized easily and efficiently. The rank-based kd-tree pro-
cesses O(n?) events in the worst case if the points follow
constant-degree algebraic trajectories' and each event can
be handled in O(logn) worst-case time. Moreover, each
point is involved only in a constant number of certificates.
Thus we improve the both the query time and the event-
handling time as compared to the planar kd-tree variants of
Agarwal et al. [2], and in addition our results work in any
fixed dimension.

Our second contribution is the first kinetic variant of the
longest-side kd-tree, which we call the rank-based longest-
side kd-tree (or RBLS kd-tree, for short), for a set of n
points in the plane. (We have been unable to generalize
this result to higher dimensions.) An RBLS kd-tree uses
O(n) space and supports approximate nearest-neighbor, ap-
proximate farthest-neighbor, and approximate range queries
in the same time as the original longest-side kd-tree does
for stationary points, namely O((1/¢)log®n) (plus the time
needed to report the answers in case of range searching).
The kinetic RBLS kd-tree maintains O(n) certificates, pro-
cesses O(n®logn) events if the points follow constant-degree
algebraic trajectories®, each event can be handled in O(log2 n)
time, and each point is involved in O(logn) certificates.

2. RANK-BASED KD-TREES

Let P be a set of n points in R? and let us denote the
coordinate-axes with x1,...,z4. To simplify the discussion
we assume that no two points share any coordinate, that is,
no two points have the same x1-coordinate, or the same x2-
coordinate, etc. (Of course coordinates will temporarily be
equal when two points swap their order, but the description
below refers to the time intervals in between such events.)
In this section we describe a variant of a kd-tree for P, the
rank-based kd-tree. A rank-based kd-tree preserves all main
properties of a kd-tree and, additionally, it can be kinetized
efficiently.

Before we describe the actual rank-based kd-tree for P,
we first introduce another tree, namely the skeleton of a
rank-based kd-tree, denoted by S(P). Like a standard kd-

!For the bound on the number of events in our rank-based
kd-tree, it is sufficient that any pair of points swaps x- or
y-order O(1) times. For the bounds on the number of events
in the RBLS kd-tree, we need that every two pairs of points
define the same z- or y-distance O(1) times.
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Figure 1: (a) The skeleton of a rank-based kd-tree and (b) the rank-based kd-tree itself.

tree, S(P) uses axis-orthogonal splitting hyperplanes to di-
vide the set of points associated with a node. As usual,
the orientation of the axis-orthogonal splitting hyperplanes
is alternated between the coordinate axes, that is, we first
split with a hyperplane orthogonal to the z;-axis, then with
a hyperplane orthogonal to the zz-axis, and so on. Let v
be a node of S(P). h(v) is the splitting hyperplane stored
at v, axis(v) is the coordinate-axis to which h(v) is orthog-
onal, and P(v) is the set of points stored in the subtree
rooted at v. A node v is called an x;-node if axis(v) = z;
and a node w is referred to as an x;-ancestor of a node v
if w is an ancestor of v and axis(w) = z;. The first x;-
ancestor of a node v (that is, the x;-ancestor closest to v) is
the x;-parent(v) of v.

A standard kd-tree chooses h(v) such that P(v) is di-
vided roughly in half. In contrast, S(P) chooses h(r) based
on a range of ranks associated with v, which can have the
effect that the sizes of the children of v are completely un-
balanced. We now explain this construction in detail. We
use d arrays Ai, ..., Aq to store the points of P in d sorted
lists; the array A4;[1, n] stores the sorted list based on the z;-
coordinate. As mentioned above, we associate a range [r, ']
of ranks with each node v, denoted by range(v), with 1 <
r <r’ <n. Let v be an z;-node. If z;-parent(v) does not
exist, then range(v) is equal to [1,n]. Otherwise, if v is con-
tained in the left subtree of x;-parent(v), then range(v) is
equal to the first half of range(z;-parent(v)), and if v is con-

tained in the right subtree of x;-parent(v), then range(v) is
equal to the second half of range(z;-parent(v)). If range(v) =
[r,7'] then P(v) contains at most v’ — r + 1 points. We ex-
plicitly ignore all nodes (both internal as well as leaf nodes)
that do not contain any points, they are not part of S(P),
independent of their range of ranks. A node v is a leaf
of S(P) if range(v) = [j, 4] for some j. Clearly a leaf con-
tains exactly one point, but not every node that contains
only one point is a leaf. (We could prune these nodes,
which always have a range [j, k] with j < k, but we chose
to keep them in the skeleton for ease of description.) If v
is not a leaf and axis(v) = z; then h(v) is defined by the
point whose rank in 4; is equal to the median of range(v).
(This is similar to the approach used in the kinetic BSP of
[6].) It is not hard to see that this choice of the splitting
plane h(v) is equivalent to the following. Let region(v) =
a1 : b1] X -+ X [aq : bg] and suppose for example that v
is an xi1-node. Then, instead of choosing h(v) according
to the median zi-coordinate of all points in region(v), we
choose h(v) according to the median zi-coordinate of all
points in the slab [a1,b1] X [—00 : 00] X -+ X [—00 : 00].

We construct S(P) incrementally by inserting the points
of P one by one. (Even though we proceed incrementally,
we still use the rank of each point with respect to the whole
point set, not with respect to the points inserted so far.)
Let p be the point that we are currently inserting into the
tree and let v be the last node visited by p; initially v =



root(S(P)). Depending on which side of h(v) contains p we
select the appropriate child w of v to be visited next. If w
does not exist, then we create it and compute range(w) as
described above. We recurse with v = w until range(v) =
[4,4] for some j. We always reach such a node after dlogn
steps, because the length of range(v) is a half of the length
of range(z;-parent(r)) and depth(v) = depth(z;-parent(v))+
d for an z;-node v. Figure 1(a) illustrates S(P) for a set of
eight points. Since each leaf of S(P) contains exactly one
point of P and the depth of each leaf is dlogn, the size
of S(P) is O(nlogn).

LEMMA 1. The depth of S(P) is O(logn) and the size
of S(P) is O(nlogn) for any fixred dimension d. S(P) can
be constructed in O(nlogn) time.

A node v € S(P) is active if and only if both its children
exist, that is, both its children contain points. A node v is
useful if it is either active, or a leaf, or its first d—1 ancestors
contain an active node. Otherwise a node is useless. We
derive the rank-based kd-tree for P from the skeleton by
pruning all useless nodes from S(P). The parent of a node v
in the rank-based kd-tree is the first unpruned ancestor of v
in S(P). Roughly speaking, in the pruning phase every
long path whose nodes have only one child each is shrunk
to a path whose length is less than d. The rank-based kd-
tree has exactly n leaves and each contains exactly one point
of P. Moreover, every node v in the rank-based kd-tree is
either active or it has an active ancestor among its first d—1
ancestors. The rank-based kd-tree derived from Figure 1(a)
is illustrated in Figure 1(b).

LEMMA 2.

(i) A rank-based kd-tree on a set of n points in R? has
depth O(logn) and size O(n).

(i) Let v be an x;-node in a rank-based kd-tree. In the
subtree rooted at a child of v, there are at most 2471 ;-
nodes w such that x;-parent(w) = v.

(ii1) Let v be an x;-node in a rank-based kd-tree. On every
path starting at v and ending at a descendant of v and
containing at least 2d — 1 nodes, there is an x;-node w
such that x;-parent(w) = v.

PRrROOF.

(i) A rank-based kd-tree is at most as deep as its skele-
ton S(P). Since the depth of S(P) is O(logn) by
Lemma 1, the depth of a rank-based kd-tree is also
O(logn). To prove the second claim, we charge every
node that has only one child to its first active ances-
tor. Recall that each active node has two children.
We charge at most 2(d — 1) nodes to each active node,
because after pruning there is no path in the rank-
based kd-tree whose length is at least d and in which
all nodes have one child. Therefore, to bound the size
of the rank-based kd-tree it is sufficient to bound the
number of active nodes. Let 7 be a tree containing all
active nodes and all leaves of the rank-based kd-tree.
A node v is the parent of a node w in 7 if and only
if v is the first active ancestor of w in the rank-based
kd-tree. Obviously, 7 is a binary tree with n leaves
where each internal node has two children. Hence, the
size of 7 is O(n) and consequently the size of the rank-
based kd-tree is O(n).

(a) (b)

Figure 2: Illustration for the proof of Lemma 2.

(ii)

(iii)

To simplify notation, let w’ denote the node in S(P)
that corresponds to a node w in the rank-based kd-
tree. Let z be a child of v and and let u be the first
active node in the subtree rooted at z as depicted in
Fig. 2(a), that is, u is the highest active node in the
subtree rooted at z. Note that the definition of active
node ensures that w is unique, and note that u can be
z. Now assume x;-parent(w) = v where w is an x;-node
in the subtree rooted at z. If w is not a node in the
subtree rooted at u, then there is just one node w in the
subtree rooted at z satisfying z;-parent(w) = v, since
every node between z and u has only one child. This
means that we are done. Otherwise, if w is a node in
the subtree rooted at u, then w’ must be in the subtree
rooted at u’ of S(P). Let s be the first z;-node on the
path from v’ to w’. Because one of any d consecutive
nodes in S(P) uses a hyperplane orthogonal to the x;-
axis as a splitting plane, depth(s’) < depth(u’)+d—1.
Since v’ is active and depth(s’) < depth(u')+d—1, the
node s’ must appear as a node, s, in the rank-based kd-
tree. This and the assumption that z;-parent(w) = v
imply w = s which means depth(w’) < depth(u’) +d —
1. Hence the number of nodes w is at most 2%~ 1.

Let u be the first active node on the path starting at v
and ending at a descendant z of v and containing at
least 2d — 1 nodes as depicted in Fig. 2(b). Because
there is no path in the rank-based kd-tree that con-
tains d nodes such that every node in the path has
only one child, depth(u) < depth(v) 4+ d — 1 which im-
plies depth(z) > depth(u) + d — 1-—mnote that on the
path from v to z there are 2d — 1 nodes. Let w’ be
the first z;-node in the path starting at «’ and ending
at 2z’ in S(P). Because one of any d consecutive nodes
in S(P) uses a hyperplane orthogonal to the x;-axis
to split points, and depth(z’) > depth(u’) +d — 1, the
node w’ exists. The node w’ must appear as a node,
w, in the kd-tree, because either w’ = u’ or among the
first d — 1 ancestor of w’ there is an active ancestor,
namely u’. Putting it all together we can conclude
that depth(w) < depth(v) + 2d — 2 which implies the
claim.

O



The region associated with a node v, denoted by region(v),
is the maximal volume bounded by the splitting hyperplanes
stored at the ancestors of v. More precisely, the region as-
sociated with the root of a rank-based kd-tree is simply the
whole region, and the region corresponding to the right child
of a node v is the maximal subregion of region () on the right
side of h(v) and the region corresponds to the left child of v
is the rest of region(v) (for an appropriate definition of left
and right in d dimensions). A point p is contained in P(v)
if and only if p lies in region(v). Like a kd-tree, a rank-
based kd-tree can be used to report all points inside a given
orthogonal range search query—the reporting algorithm is
exactly the same. At first sight, the fact that the splits in
our rank-based kd-tree can be very unbalanced may seem to
have a big, negative impact on the query time. Fortunately
this is not the case. To prove this, we next bound the num-
ber of cells intersected by an axis-parallel plane h. As for
normal kd-trees, this is immediately gives a bound on the
total query time.

LEMMA 3. Let h be a hyperplane orthogonal to the x;-axis
for some i. The number of nodes in a rank-based kd-tree
whose regions are intersected by h is O(n*~/?).

PROOF. Imagine a dummy node p with axis(u) = x; as
the parent of the root. We charge every node v whose region
is intersected by h to z;-parent(v). Thanks to p, z;-parent(v)
exists for every node of the tree and hence every node is in-
deed charged to an x;-node. Lemma 2(iii) implies depth(v) <
depth(z;-parent(r))+2d—2 which implies that at most 2242
nodes are charged to each x;-node. Therefore it is sufficient
to bound the number of z;-nodes whose regions are inter-
sected by h.

Let 7 be the tree containing all x;-nodes in the rank-
based kd-tree and let 7" be the tree containing all x;-nodes
in the skeleton S(P). A node v is the parent of a node w
in 7 if and only if z;-parent(w) = v in the rank-based kd-
tree; the equivalent definition holds for 7’. According to
Lemma 2(ii), every node v in 7 has at most 2¢ children
and each side of h(v) contains the regions corresponding to
at most 2%~ ! children of v. Note that the dummy node
has at most 297! children in total. Let 7 be yet another
tree containing all nodes in 7 whose regions are intersected
by h. Since h is parallel to h(v) for every node v of 7T, it
can intersect only the regions that lie to one side of h(v).
Hence every node of 7* has at most 2%~ children. The idea
behind the proof is to consider a top part of 7" consisting of
n'~% nodes of 7*, and then argue that all subtree below
this top part together contain n'~!/? nodes as well. Next
we make this idea precise.

Let TOP(T™) be a tree containing all nodes of 7™ whose
depths in 7" are at most | (1/d)logn|, and let v1,...,v. be
the leaves of TOP(7™) whose depth is exactly | (1/d)logn|.
Clearly ¢ is at most (2¢71)(/@leen — p1-1/d and hence
the size of TOP(T*) is at most 2n'~Y?. Let v{,...,v. be
the nodes corresponding to v1,...,v. in 7’. Furthermore,

let uf, ..., u}, bethe distinct nodes in 7" at depth | (1/d) logn]|

such that every uj, has at least one node v} as descendant
and every vj has a node u;, as an ancestor—note that due
to pruning the depth of v/} can be larger than [(1/d)logn].
Because the nodes v are disjoint, we have Y | |P(v})| <
S P ().

Let Uk be the set of splitting hyperplanes stored in the
ancestors of uj in 7’. Recall that all nodes u}, are z;-

nodes whose regions are intersected by h. Furthermore, all
nodes uj, have the same depth in 7’. Together this implies
that U = U for all 1 < k,I < m because their x;-ranges
must be the same. Let h1 be the last hyperplane in Uy on
the left side of region(u}) and let h2 be the first hyperplane
in Uy on the right side of region(u}). Because U = U, for
all 1 < k,I < m, all regions uj, are bounded by hi and hs.
We know that range(u}) contains n/2(/dloenr — pi-1/d
ranks, hence there are at most n'~/? points inside the re-
gion bounded by h; and hs. Since the nodes uj, are disjoint
and the region bounded by h; and hs contains n' =% points,
we have 37" |P(u},)| < n'~'/? which implies ¢ |P(v;)| =
S5 [P < nl -V

Finally, let f(n) denote the number of z;-nodes whose
regions are intersected by h. We have f(n) = |TOP(7T™)| +
21 f(IP(wy)l). Since f(|P(v5)) < [P(v)l, 227 P(vy)| <
n'= and [TOP(7*)| < 2n'"'/¢ we can conclude that
fm)y=0@'V4. O

The following theorem summarizes our results.

THEOREM 4. A rank-based kd-tree for a set P of n points
i d dimensions uses O(n) storage and can be built in O(nlogn)
time. An orthogonal range search query on a rank-based
kd-tree takes O(n*~Y? + k) time where k is the number of
reported points.

The KDS. We now describe how to kinetize a rank-based
kd-tree for a set of continuously moving points P. The com-
binatorial structure of a rank-based kd-tree depends only on
the ranks of the points in the arrays A;, that is, it does not
change as long as the order of the points in the arrays A;
remains the same. Hence it suffices to maintain a certifi-
cate for each pair p and ¢ of consecutive points in every
array A;, which fails when p and ¢ change their order. Now
assume that a certificate, involving two points p and g and
the x;-axis, fails at time ¢. To handle the event, we simply
delete p and ¢ and re-insert them in their new order. (Dur-
ing the deletion and re-insertion there is no need to change
the ranks of the other points.) These deletions and inser-
tions do not change anything for the other points, because
their ranks are not influenced by the swap and the deletion
and re-insertion of p and q. Hence the rank-based kd-tree
remains unchanged except for a small part that involves p
and gq. A detailed description of this “small part” can be
found below.

Deletion. Let v be the first active ancestor of the leaf p
containing p—see Figure 3(a). The leaf u and all nodes on
the path from p to v must be deleted, since they do not
contain any points anymore (they only contained p and p is
now deleted). Furthermore, v stops being active. Let w be
the first active descendent of v if it exists and otherwise let w
be the leaf whose ancestor is v. There are at most d nodes
on the path from v to w. Since v is not active anymore, any
of the nodes on this path might become useless and hence
have to be deleted.

Insertion. Let v be the highest node in the rank-based
kd-tree such that its region contains p and the region corre-
sponding to its only child w does not contain p—mnote that p
cannot reach a leaf when we re-insert p, because the range
of a leaf is [4, 7] for some j and there cannot be two points in
this range. Let v/ and w’ be the nodes in S(P) correspond-
ing to v and w. Let v’ be the lowest node on the path from v’
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Figure 3: Deleting and inserting point p.

to w’ whose region contains both region(w’) and p as illus-
trated in Figure 3(b)—note that we do not maintain S(P)
explicitly but with the information maintained in v and w
the path between v’ and w’ can be constructed temporarily.
Because u’ will become an active node, it must be added to
the rank-based kd-tree and also every node on the path from
u' to w’ must be added to the rank-based kd-tree if they are
useful. From u’, the point p follows a new path u},...,u}
which is created during the insertion. All first d — 1 nodes
in the list u},...,u) and the leaf uj, must be added to the
rank-based kd-tree—note that range(uy,) = [j, j] for some j.

THEOREM 5. A kinetic rank-based kd-tree for a set P of n
moving points in d dimensions uses O(n) storage and pro-
cesses O(n?) events in the worst case, assuming that the
points follow constant-degree algebraic trajectories. FEach
event can be handled in O(logn) time and each point is in-
volved in O(1) certificates.

3. RANK-BASED LONGEST-SIDE KD-TREES

Longest-side kd-trees are a variant of kd-trees that choose
the orientation of the splitting hyperplane for a node v ac-
cording to the shape of the region associated with v, always
splitting the longest side first. Dickerson et al. [7] showed
that a longest-side kd-tree can be used to answer the follow-
ing queries quickly:

(1 + ¢)-nearest neighbor query: For a set P of points
in R?, a query point ¢ € R%, and & > 0, this query re-
turns a point p € P such that d(p,q) < (1+4¢)d(p*,q),
where p* is the true nearest neighbor to ¢ and d(-,-)
denotes the Euclidean distance.

(1 — ¢)-farthest neighbor query: For a set P of points
in R, a query point ¢ € R?, and € > 0, this query re-
turns a point p € P such that d(p,q) > (1 —¢)d(p*,q),
where p* is the true farthest neighbor to gq.

e-approximate range search query: For a set P of points
in R, a query region Q with diameter D¢, and € > 0,
this query returns (or counts) a set P’ such that P N
Q@ C P’ C P and for every point p € P, d(p,Q) <
EDQ.

The main property of a longest-side kd-tree—which is used
to bound the query time—is that the number of disjoint re-
gions associated with its nodes and intersecting at least two
opposite sides of a hypercube C is bounded by O(log?~! n).
It seems difficult to directly kinetize a longest-side kd-tree.
Hence, using similar ideas as in the previous section, we
introduce a simple variation of 2-dimensional longest-side
kd-trees, so called ranked-based longest-side kd-trees (RBLS
kd-trees, for short). An RBLS kd-tree does not only pre-
serve all main properties of a longest-side kd-tree but it can
be kinetized easily and efficiently. As in the previous sec-
tion we first describe another tree, namely the skeleton of
an RBLS kd-tree denoted by S(P). We then show how to
extract an RBLS kd-tree from the skeleton S(P) by pruning,.

We recursively construct S(P) as follows. We again use
two arrays A1 and Az to store the points of P in two sorted
lists; the array A4;[1, n] stores the sorted list based on the z;-
coordinate. Let the points in P be inside a box, which is the
region associated with the root, and let v be a node whose
subtree must be constructed; initially v = root(S(P)). If
P(v) contains only one point, then the subtree is just a single
leaf, i.e, v is a leaf of S(P). (Note that this is slightly differ-
ent from the previous section.) If P(v) contains more than
one point, then we have to determine the proper splitting
line. Let the longest side of region(v) be parallel to the x;-
axis. We set axis(v) to be z;. If z;-parent(rv) does not exist,
then we set range(v) = [1,n]. Otherwise, if v is contained
in the left subtree of x;-parent(v), then range(v) is equal to
the first half of range(x;-parent(v)), and if v is contained in
the right subtree of z;-parent(r), then range(v) is equal to
the second half of range(z;-parent(r)). The splitting line of
v, denoted by [(v), is orthogonal to axis(v) and specified by
the point whose rank in A; is the median of range(v). If
there is a point of P(v) on the left side of I(v) (on the right
side of I(v) or on I(v)), a node is created as the left child
(the right child) of v. The points of P(v) which are on the
left side of I(v) are associated with the left child of v, the
remainder is associated with the right child of v. The region
of the right child is the maximal subregion of region(r) on
the right side of I(v) and the region of the left child is the
rest of region(v).

LEMMA 6. The depth of S(P) is O(logn), the size of
S(P) is O(nlogn), and S(P) can be constructed in O(nlogn)
time.

PROOF. Assume for contradiction that the depth of a
leaf v is at least 2logn + 1. Now consider the path from
the root to v. Because there are only two distinct axes,
there are at least logn + 1 nodes on this path whose axes
are the same, for example x;. Let v1,..., v, be these nodes.
Since [range(v;+1)| < [(1/2)range(v;)[] (G = 1,...,k — 1)
and k > logn, v, must be empty, which is a contradiction.
Hence the depth of S(P) is O(log n).

Since each leaf contains exactly one point and the depth of
S(P) is O(logn), the size of S(P) is O(nlogn). Furthermore
it is easy to see that it takes O(|P(v)|) time to split the
points at a node v. Hence we spend O(n) time at each level
of S(P) during construction, for a total construction time

of O(nlogn). O

The following lemma shows that RBLS kd-trees preserve
the main property of longest-side kd-trees, which is used to
bound the query time.



LEMMA 7. Let C be any square, and let N be any set of
nodes whose regions are pairwise disjoint and such that these
regions all intersect two opposite sides of C. Then |N| =
O(log n).

PrROOF. Dickerson et al. [7] showed that a longest-side
kd-tree on a set of points in R? has this property. Their
proof uses only two properties of a longest side kd-tree: (7)
the depth of a longest-side kd-tree is O(logn) and (4¢) the
longest side of a region is split first. Since an RBLS kd-tree
has these two properties, their proof simply applies. [l

As in the previous section, we obtain our structure by prun-
ing useless nodes from S(P). It will be convenient to alter
the definition of useful nodes slightly, as follows. A node v is
useful if v is a leaf, or an active node, or I(v) defines one of
the sides of the boundary of region(w) where w is an active
descendant of v. Otherwise v is useless. An RBLS kd-tree
is obtained from S(P) by pruning useless nodes. The par-
ent of a node v in the RBLS kd-tree is the first unpruned
ancestor of v in S(P). The following lemma shows that an
RBLS kd-tree has linear size and that it preserves the main
property of a longest-side kd-tree.

THEOREM 8.

(i) An RBLS longest-side kd-tree on a set of n points in
R? has depth O(logn) and size O(n).

(i) The number of nodes in an RBLS longest-side kd-tree
whose regions are disjoint and that intersect at least
two opposite sides of a square C is O(logn).

PROOF.

(i) An RBLS kd-tree is at most as deep as its skeleton
S(P). Since the depth of S(P) is O(log n) by Lemma 6,
the depth of an RBLS kd-tree is also at most O(logn).
To prove the second claim, we first show that there
is no path containing five nodes such that every node
on the path has only one child. Assume for contra-
diction that there is such a path from v to one of its
descendants w. Because there are only two distinct
axes, there must be three nodes w1, u2, and us on
this path using the same axis. Clearly at most two of
l(u1), l(u2), and I(u3) can define one of the sides of the
boundary of any region associated with a descendant
of w. Therefore, at least one of ui, u2, and us must
be useless, which is a contradiction. We now charge
every node that has only one child to its first active an-
cestor. Because there is no path containing five nodes
such that every node on the path has only one child,
we charge at most eight nodes to each active node.
Since the number of active nodes is linear, the size of
an RBLS longest-side kd-tree is O(n).

(ii) Let L be a set of nodes in an RBLS kd-tree whose
regions are disjoint and that intersect at least two
opposite sides of a square C. We define a set L’ of
nodes as follows. Consider a node v € L. If v is
active then we add v to L’. If v is not active, then
we consider the first active ancestor u of v. We add
the child w of u to L’ that is on the path from u
to v (note that w could be v). The regions in L'
are disjoint and we have |L| = |L’|. Since the re-
gion associated with a node is a subregion of the re-
gion associated with its ancestor, the regions associ-
ated with the nodes in L’ intersect at least two op-
posite sides of C. Let v’/ be the corresponding node

to v in S(P). The definition of a useful node im-
plies region(v) = region(v') for every active node v—
note that this may be false for other nodes. Thus, if
v € L' is active, then region(v) = region(v') and if v is
a child of an active node w, then region(v) = region(u’)
where v’ is the child of w’ that is on the path from w’ to
v'. Thus, for every node v in L', there is a node w’ in
S(P) such that region(v) = region(w’). This observa-
tion together with Lemma 7 shows that |L'| = O(logn)
which implies |L] = O(logn).

O

Using an RBLS kd-tree, similar algorithms to the algorithms
of Dickerson et al.[7] can be used to answer (1 + £)-nearest
neighbor, (1 — ¢)-farthest neighbor and e-approximate range
search queries.

THEOREM 9. An RBLS kd-tree for a set of n points in
the plane supports (14 ¢)-nearest or (1—¢)-farthest neighbor
queries in O((1/€)log® n) time. Moreover, for any constant-
complexity convex region and any constant-complexity non-
convex region a counting (or reporting) e-approximate range
search query can be performed in time O((1/¢)log®n) and
O((1/£*) log? n), respectively (plus the output size in the re-
porting case).

The KDS. We now describe how to kinetize a RBLS kd-
tree for a set of continuously moving points P. Clearly the
combinatorial structure of an RBLS kd-tree changes only
when one of the following two events occurs.

Ordering event: Two points change their ordering on one
of the coordinate-axes.

Longest-side event: A side of a region starts to be the
longest side of that region.

We first describe how to detect these events, then we explain
how to handle them. Ordering events can be easily detected.
We maintain a certificate for each pair p and ¢ of consecutive
points in the two arrays A; and Az, which fails when p and
q change their order.

Longest-side events are a bit tricky to detect efficiently.
An easy way would be to maintain a certificate s1(v) < s2(v)
(or s2(v) < s1(v)) for each node v in S(P) where s;(v)
denotes the length of the z;-side of region(v). Let z;(p)
denote the z;-coordinate of p. We have s;(v) = z;(p) —x:(q)
where p and g are two points specifying two splitting lines in
the x;-ancestors of v in S(P). More precisely, the splitting
lines defined by p and g are associated with the first left
ancestor and the first right ancestor of v in S(P), that is,
the first nodes © and w such that v is a left child of v and
a right child of w. The problem with this approach lies in
the fact that z;(p) — x:(g) can be the side length of a linear
number of regions and hence our KDS would not be local. It
would also not be responsive, because if two points change
their ordering we might have to update a linear number of
longest-side certificates.

We avoid these problems by not maintaining a separate
longest-side certificate for every region of the RBLS kd-tree.
Instead, we identify all pairs of points that can define either
the vertical or the horizontal side length of a region. We add
all these pairs to one single list, the so-called side-length list
which is sorted on the length of the sides. A longest-side
event can happen only when two adjacent elements in the
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Figure 4: The status of the RBLS kd-tree before handling a longest-side event and after handling the event.

side-length list define the same length. (More precisely, they
also have to define both a vertical and a horizontal side—
nothing happens if two vertical sides have the same length.
In fact, even when a vertical side and a horizontal side get
the same length, it is possible that nothing happens, because
they need not be sides of the same region.) So we have to
maintain a certificate for each pair of consecutive elements
in the side-length list. It remains to explain which sides
precisely appear in the side-length list. To determine this,
we construct two one-dimensional rank-based kd-trees 7; on
the z;-coordinates of the points in P. Since all splitting lines
for the nodes of 7; are orthogonal to the x;-axis, 7; is in fact
a balanced binary search tree. Let v be a node in 7; and
let v and vy be the first right and the first left ancestors
of v in 7;. If p and ¢ are the two points used in v, and v
as splitting points, then z;(p) — x;(q) appears in the side-
length list. Since the number of nodes in 7; is O(n) and a
node can be either the first left ancestor or the first right
ancestor of at most O(log n) nodes, the number of elements
in the side-length list is O(n) and each point is involved in
O(log n) elements of the side-length list. Moreover, all sides
of all regions in S(P) exist in the side-length list.

Ordering event. When handling an ordering event that
involves two points p and g and the x;-axis, we have to
update A;, the side-length list and the RBLS kd-tree. We
update the array A; by swapping p and ¢ and updating the
at most three certificates in which p and ¢ are involved. We
update the side-length list by replacing p by g and vice versa
and computing the failure times of all certificates affected
by these replacements. To quickly find in which elements
of the side-length list a point p is involved we maintain for
each rank i a list of elements of the side-length list in which
rank 4 is involved. Since the number of elements in the
side-length list is O(n) and two ranks are involved in each
element, this additional information uses O(n) space. Since
each rank is involved in O(log n) elements of the side-length
list, updating the side-length list takes O(logn) time and
inserting the failures times of the new certificates into the
event queue takes O(log®n). To update the RBLS kd-tree,
we first delete p and ¢ from the RBLS kd-tree and then we
re-insert them in their new order.

Deletion. Let v be the lowest active node whose region
contains p. The leaf containing p is a child of v. This leaf
must be removed. Let w be the first active ancestor of v.
All nodes on the path from w to v must be checked whether
they are useless. If so, they must be removed from the RBLS
kd-tree.

Insertion. Let v be the highest node in the RBLS kd-tree
whose region contains p and such that the region correspond-
ing to its only child w does not contain p. Let v’ and w’ be
the nodes in S(P) corresponding to v and w. Let u’ be the
lowest node on the path from v’ to w’ whose region contains
both region(w’) and p as illustrated in Figure 3(b)— note
that we do not explicitly maintain S(P) but the path be-
tween v’ and w’ can be constructed temporarily in O(logn)
time. Because u’ will become active, it must be added as
a node, u, to the RBLS kd-tree and also every node on the
path from v/ to v’ must be added to the RBLS kd-tree if
they are useful. The point p is maintained in a leaf whose
parent is u.

Longest-side event. When handling a longest-side event
that occurs at time ¢ we first update the side-length list and
the certificates involved in the event. Then we update the
RBLS kd-tree as follows. Let p,q,p’, and ¢’ be the points
involved in the event, more precisely, let z;(p(t)) —zi(q(t)) =
z;(p'(t)) — z;(¢'(t)). If i = j, then there is nothing to do,
because the certificate failure can not correspond to a real
longest-side event. Otherwise, we need to determine which,
if any, of the regions of S(P) corresponds to the event. Be-
cause two sides of the region are given, we can follow a path
from the root to some node while temporally constructing
each node from S(P) on the path which does not appear in
the RBLS kd-tree. If there is no region with the two given
sides, then we delete the temporary nodes and stop handling
the event.

Otherwise there is exactly one region in S(P) that is spec-
ified by the two sides that triggered the event. (Note that
this is only true in two dimensions, in higher dimensions
the boundary of many regions can be defined by two sides—
this is the only problem when attempting to extend these
results to higher dimensions.) Let v be the node that is
associated with the event region. We add the two children
vy and v¢ of v in S(P) to the RBLS kd-tree provided that
they do not already exist in the RBLS kd-tree. Let the
x;-side of region(v) be bigger than the x;-side of region(v)
at the point in time just before ¢, denoted by ¢t~. At time
t™, l(v) must be orthogonal to the x;-axis and I(v¢) and
I(v) must be orthogonal to the zj-axis as illustrated in Fig-
ure 4(a)—mote that region(v) is a square at time ¢. More-
over, l(v¢) = l(vy), because the median of all points be-
tween the two x;-sides of region(v) is chosen to specify (1)
and I(vr). Let A, B, C, and D be the four regions defined
by l(v), l(v¢) and [(v;) as illustrated in Figure 4(a). We now
split region(v) with a line that is orthogonal to the x;-axis
and region(v,) and region(v¢) with a line that is orthogonal
to the m;-axis. Clearly I(v) at time ¢ is equal to I(v¢) and



I(vr) at time ¢t~ and I(v¢) and I(v,) at time ¢ are equal to
I(v) at time ¢~. The four subregion A, B, C, and D do
not change and we only have to put them in the correct
positions in the RBLS kd-tree as illustrated in Figure 4(b).
Finally every node on the path from the root to v as well as
v, and vy must be checked whether they are useless. If so,
they must be removed from the RBLS kd-tree.

The number of events. Assume that the points in P fol-
low constant-degree algebraic trajectories. Clearly the num-
ber of ordering events is O(n?). To count the number of
longest-side events, we charge a longest-side event in which
two sides s1 and sg are involved to the side (either s1 or s2)
that appeared in the side-length list later. At any point in
time there are O(n) elements in the side-length list and ele-
ments are only added or deleted whenever a ordering event
occurs. During each ordering event, O(logn) elements can
be added to the side-length list. All longest-side events that
involve one of these “new” elements and one of the “old”
elements are charged to one of the new elements, hence a
total of O(nlogn) events is charged to the new elements
that are created during one ordering event. Since there are
O(n2) ordering events, the number of longest-side events is
O(n®logn). (This bound subsumes events that involve two
new elements or two of the initial elements of the side-length
list.)

THEOREM 10. A kinetic RBLS kd-tree for a set P of n

moving points in R* uses O(n) storage and processes O(n>logn)

events in the worst case, assuming that the points follow
constant-degree algebraic trajectories. Fach event can be

handled in O(log® n) time and each point is involved in O(log n)

certificates.

4. CONCLUSION

We presented a variant of kd-tress, called rank-based kd-
trees, for sets of points in R?. We showed that our rank-
based kd-tree supports orthogonal range searching in time
O(n*~Y% + k) and it uses O(n) storage—just like the orig-
inal. But additionally it can be kinetized easily and effi-
ciently. In the dynamic setting, either inserting or deleting a
point affects the ranks of points which may cause a dramatic
change in the rank-based kd-tree. A challenging problem is
how to adapt the rank-based kd-tree to the insertion and
deletion of points such that the query time does not change
asymptotically.

We also proposed a variant of longest-side kd-trees, called
rank-based longest-side kd-trees, for sets of points in R2.
We showed RBLS kd-trees can be kinetized efficiently as
well and like longest-side kd-trees, RBLS kd-trees support
nearest-neighbor, farthest-neighbor, and approximate range
search queries in O((1/¢)log®n) time. Unfortunately we
have been unable to generalize this result to higher dimen-
sion. We leave it as an interesting open problem for future
research.
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