
Necklace Maps

Bettina Speckmann and Kevin Verbeek

GA

BW

KE

LS

NA

SO

ZA
SZ

ZW

DZ EG

GM

LR

LY

MA

SN

TG

TN

AK AZ

CA
CO

ID

NV

NM

OR

UT

WA
CT

MA

NJ

NY

RI

IL

IN

IA
KS

MI

MN

NE

WI

ALAR

DE

FL
GA

MD

NC
OK

SC

TN

TX

VA

ES

UK

PT

AT

IE

DK SE

FI

GR

FR

DE

IT

NL

BE

LU

GR

FR

DR

OV

GE

FL

UT

NH

ZH

ZE

NB

LI

Fig. 1. Necklace maps: Internet users in Africa, illegal immigrants, gender pay gap, and population together with relocation.

Abstract—Statistical data associated with geographic regions is nowadays globally available in large amounts and hence automated
methods to visually display these data are in high demand. There are several well-established thematic map types for quantitative data
on the ratio-scale associated with regions: choropleth maps, cartograms, and proportional symbol maps. However, all these maps
suffer from limitations, especially if large data values are associated with small regions. To overcome these limitations, we propose
a novel type of quantitative thematic map, the necklace map. In a necklace map, the regions of the underlying two-dimensional map
are projected onto intervals on a one-dimensional curve (the necklace) that surrounds the map regions. Symbols are scaled such
that their area corresponds to the data of their region and placed without overlap inside the corresponding interval on the necklace.
Necklace maps appear clear and uncluttered and allow for comparatively large symbol sizes. They visualize data sets well which are
not proportional to region sizes. The linear ordering of the symbols along the necklace facilitates an easy comparison of symbol sizes.
One map can contain several nested or disjoint necklaces to visualize clustered data. The advantages of necklace maps come at a
price: the association between a symbol and its region is weaker than with other types of maps. Interactivity can help to strengthen
this association if necessary. We present an automated approach to generate necklace maps which allows the user to interactively
control the final symbol placement. We validate our approach with experiments using various data sets and maps.

Index Terms—Geographic Visualization, Automated Cartography, Proportional Symbol Maps, Necklace Maps.

1 INTRODUCTION

A significant part of cartographic map production is dedicated to the-
matic maps, that is, maps that visualize attributes or concepts (as op-
posed to topography). Statistical data associated with collections of
geographic regions (like countries, states, or provinces) is nowadays
globally available in large amounts and hence automated methods to
visually display this kind of data are in high demand. Typical data sets
are population, income, or production of various goods; a good (quan-
titative) thematic map strives to visualize the spatial variation of the
data from place to place.

There are several well-established thematic map types for quantita-
tive data on the ratio-scale associated with regions, specifically, choro-
pleth maps, cartograms, and proportional symbol maps. However, all
these maps suffer from limitations. Choropleth maps tend to overem-
phasize large regions and can generally only be used for data that is
uniformly distributed within each region. Cartograms deform the un-
derlying regions according to the data, which can make the map vir-
tually unrecognizable if the data value differs greatly from the orig-
inal area of a region or if data is not available at all for a particular
region. Finally, proportional symbol maps can appear very cluttered
with many overlapping symbols if large data values are associated with
small regions. In such cases, the underlying map is hardly visible,
making it difficult to associate symbols with the correct regions.

In this paper we propose a novel type of quantitative thematic
map, called necklace map, which overcomes the limitations described

• Bettina Speckmann is with TU Eindhoven, E-mail: speckman@win.tue.nl.
• Kevin Verbeek is with TU Eindhoven, E-mail: k.a.b.verbeek@tue.nl.

Manuscript received 31 March 2010; accepted 1 August 2010; posted online
24 October 2010; mailed on 16 October 2010.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org.

above. Necklace maps combine elements of proportional symbol maps
and boundary labeling. The underlying two-dimensional map is pro-
jected onto a one-dimensional curve (the necklace) that surrounds the
map regions. The projection maps each region of the input map to
a contiguous interval on the necklace in such a way, that the interval
captures the global location of the region with respect to the necklace.
Just as with proportional symbol maps, a symbol (most commonly a
disk or a square) is scaled such that its area corresponds to the data for
a particular region. The symbol is then placed inside the correspond-
ing interval on the necklace. We show how to optimize the symbol
sizes such that all symbols are as large as possible and can be placed
without overlap inside their intervals.

Necklace maps appear clear and uncluttered and allow for compar-
atively large symbol sizes. They visualize data sets well which are
not proportional to region sizes and which do not contain data for all
regions of the input map. The linear ordering of the symbols along
the necklace facilitates an easy comparison of symbol sizes. Necklace
maps also allow for a simple integration of flows between symbols
and are suitable to display multi-variate data. Finally, one map can
contain several nested or disjoint necklaces to visualize clustered data.
The advantages of necklace maps come at a price: the association be-
tween a symbol and its region is weaker than with other types of maps.
Interactivity can help to strengthen this association if necessary.

We present an automated approach to generate necklace maps. Op-
timizing the symbol sizes is an NP-hard problem for which we im-
plemented an exact algorithm that is fixed-parameter tractable in the
thickness of the region intervals on the necklace. That is, our algorithm
scales to an arbitrary number of symbols per necklace, as long as no
point of the necklace is covered by more than 15 region intervals. In
practice this means that a map of the U.S. states can be computed in
a few seconds, and a world map is feasible if continents are assigned
different necklaces. There are several optimization choices for the fi-
nal placement of the symbols which can be controlled interactively by

GA

BW

KE

LS

NA

SO

ZA
SZ

ZW

DZ EG

GM

LR

LY

MA

SN

TG

TN

Fig. 2. Internet users in Africa in 2002 per thousand inhabitants. Left: a necklace map, displaying only regions with a value of at least ten. Right: a
world cartogram, Africa is magnified. c© Copyright 2006 SASI Group (University of Sheffield) and Mark Newman (University of Michigan).

the user. We showcase the results of experiments with various data
sets and maps using one or more nested or disjoint necklaces.

The remainder of the paper is organized as follows. Section 2
discusses related work and visually compares necklace maps to pro-
portional symbol maps and cartograms. Section 3 formally defines
necklace maps and their quality criteria. Section 4 presents our al-
gorithm to compute necklace maps with a single necklace. Section 5
discusses various extensions: necklace maps with multiple necklaces,
either nested or disjoint, integration of flows between symbols or be-
tween necklaces, and options for the display of multi-variate data. Sec-
tion 6 gives some technical details about our implementation and we
close in Section 7 with a discussion of our work.

2 RELATED WORK

Choropleth maps are probably the most commonly used type of the-
matic map. The regions of the map are shaded or patterned according
to their data values. Choropleth maps are a very intuitive mapping
technique, the association between regions and data values is imme-
diate. However, choropleth maps are ill-suited to visualize absolute
values: users tend to mentally integrate over the region areas and will
interpret all data as densities. Furthermore, large regions tend to be
overemphasized. Choropleth maps generally should be used only for
regions of near-uniform size and shape and for data that is uniformly
distributed within each region. See the books by Dent [3] and Slocum
et al. [13] for a detailed discussion of these issues.

Cartograms or value-by-area maps scale the regions of the input map
such that the area of each region represents its data value. There are
several different types of cartograms. The standard type—the contigu-
ous area cartogram—has deformed regions so that the desired sizes
can be obtained and the adjacencies kept. Various algorithms have
been proposed to create this kind of cartogram [5, 6, 7, 9, 10, 16].
Contiguous area cartograms perform best if the data values are some-
what related to the area of the input regions. Since each region must be
shown, it is difficult to incorporate missing data or use thresholding to
concentrate on a meaningful subset. If the data values are significantly
smaller or larger than the original region sizes, then the map might be-
come virtually unrecognizable. See, for example, Fig. 2, which shows
Internet users in Africa. The cartogram (which shows this data for the
whole world) makes it very clear that there are few internet users in
Africa, however, the (thresholded) necklace map lets us see where the
few users actually are. (Note the comparatively small country Gambia
which has a significant number of internet users.) Also, it is generally
hard to judge the size of regions in contiguous area cartograms.

Circular cartograms, introduced by Dorling [4], represent each re-
gion with a circle which is scaled such that its area corresponds to the
data value. The circles are placed without overlap and in such a way
that region adjacencies and relative positions are maintained as well as

possible. Such a placement is often achieved via iterative methods and
the results are not always satisfactory. Symbols might be moved far
from their initial position and in arbitrary directions, making it diffi-
cult to find the symbol of a particular region. See, for example, Fig. 15
bottom, which shows the Olympic medal count. The circle of Italy lies
above Switzerland and France is in the south-east of the Netherlands.

Rectangular cartograms, introduced by Raisz [12], represent each
region by a rectangle. Rectangles and circles both have the advantage
that the sizes (area) of the regions can be estimated comparatively well.
However, the rectangular shape is not very recognizable and it imposes
limitations on the possible layout, making it difficult to maintain re-
gion adjacencies. There are several algorithms to construct rectangular
cartograms [11, 14]. Other related approaches which loosen the adja-
cency requirements but keep some spatial proximity of the rectangles
are rectangular map approximations [8] and spatial treemaps [18].

Proportional symbol maps or graduated symbol maps place scaled
symbols or diagrams directly on the input map, often on the centroid of
the regions. The symbol, most commonly a disk or a square, is scaled
such that its area corresponds to the data value of the region. Alter-
natively, diagrams (like pie charts) can be used instead of symbols to
show additional data. Algorithms for symbol maps and diagram place-
ment are given in [2, 17]. Since symbols tend to have simple shapes,
their areas can be estimated comparatively easily. However, overlap-
ping symbols or large symbols associated with small regions can make
it difficult to determine which region a symbol is associated with and
to accurately judge its size. See, for example, Fig. 3, which shows
the GDP drop in parts of Western Europe. Symbol sizes for both the
necklace and the symbol map are equal, but it is significantly harder
to compare symbols sizes accurately with the symbol map. In an in-

FR

ES

DE

IT

UK

PT

AT

CZ

IE

CH

NLBE

LU

FR

ES

DE

IT

UK

PT

AT

CZ

IE

CH

NL
BE

LU

Fig. 3. GDP drop in 2009 as percentage change on 2008. Left: a
necklace map. Right: a proportional symbol map, symbols are placed
on region centroids.

teractive setting, morphing from one map to the other might give the
user both clarity and increased spatial association.
Boundary labeling is frequently used in medical and technical draw-
ings. Comparatively large labels are placed around an axis-parallel
rectangle that contains the points or areas to be labeled. Each label is
connected to its site with a polygonal line, a leader, and no two lead-
ers intersect. Labels tend to have the same (fixed) height and the main
algorithmic problem is to find the optimal order of labels around the
rectangle. This question was first studied by Bekos et al. [1]. Neck-
lace maps contain some elements of boundary labeling, insofar, that
the symbols are placed close to the boundary of the input map. How-
ever, symbol sizes are neither equal, nor fixed, and geographic con-
straints for symbol placements have to be obeyed. Furthermore, neck-
lace maps do not need leaders, since the association between region
and symbol is created via spatial proximity and color coding.

3 NECKLACE MAPS

A necklace map is a thematic map and as such consists of two compo-
nents: an underlying geographic map and the thematic overlay. Neck-
lace maps are intended to display quantitative data on the ratio-scale
associated with regions. (Data on the ratio scale has a meaningful
zero [13].) The thematic overlay consists of symbols which are associ-
ated with the regions of the input map. Just as with symbol maps each
symbol–most commonly a disk or a square, although other shapes are
possible–is scaled such that its area corresponds to the data value as-
sociated with its region. The symbols are then placed without overlap
on one or more necklaces: curves that enclose the regions of the input
map. A good necklace map preserves as much of the spatial relation
between a symbol and its region as possible. Each (two-dimensional)
region of the input map is projected to a contiguous (one-dimensional)
interval on a necklace in such a way that the global location of the
region with respect to the necklace is preserved (see Fig. 4 left). Sym-
bols are restricted to lie with their centers within their interval on the
necklace. See Fig. 4 right: the center of the necklace lies in France
and the symbols are encountered in approximately the same order and
direction as their regions lie with respect to the necklace center.

The shape of the necklaces is an important factor in the visual ap-
pearance of a necklace map. Circles and ellipses are highly symmetric
geometric shapes that detract little attention from the symbol sizes.
They leave the interior of the map largely unoccupied and hence the
geographic information of the base map visible. Furthermore, such
necklace shapes allow for an easy integration with choropleth maps or
flows. However, it can also be desirable to use necklace shapes that
are similar to the global shape of the input regions (see, for example,
Fig. 2 left) or which are not closed. In principle any star-shaped open
or closed curve can be used as a necklace, however, our current im-
plementation is restricted to cubic B-splines. A curve is star-shaped
if there exists at least one point that can see the complete curve—this
point, the center of the necklace which necessarily lies in the interior
in case of a closed curve, is needed to define the projection from the
input regions onto the necklace.

A necklace map communicates its message via the sizes of its

FR

ES

DE

IT

UK

PT

AT

CZ
IE

CH

NL BE LU

Fig. 4. Left: region intervals on a necklace. Right: energy consumption
from renewable resources in 2007.

symbols—both their actual size and the ratio between sizes. A sig-
nificant body of work (theoretical as well as user studies) discusses
which sizing communicates the difference between quantities most ef-
fectively, see the books by Dent [3] and Slocum et al. [13] for details.
Three basic types of scaling are the following: mathematical scaling
sizes the areas of the symbols in direct relation to the data, perceptual
scaling enlarges larger symbols beyond their mathematically correct
size to compensate for humans inability to judge the relative sizes of
area symbols accurately, and range grading subdivides the data into
classes. All necklace maps in this paper use mathematical scaling.

Quality criteria. The quality of a necklace map is determined by
several factors. Recall that the center of each symbol is restricted to
lie inside its interval on the necklace.

• Good symbol positions—the intervals on the necklace capture
the spatial relation of regions and necklace well.

• Maximal symbol size.

• Disjoint symbols.

• Suitable order of symbols along necklace—symbols which are
neighbors on the necklaces correspond to neighboring regions.

There is a clear trade-off between the first two quality criteria: large
intervals enable large symbol sizes in exchange for inferior symbol po-
sitions. In one extreme, each interval is the whole necklace, so symbol
placement is arbitrary and symbol size can easily be maximized. How-
ever, most spatial associations between symbols and areas will be lost.
In the other extreme each symbol location on the necklace is specified
as close as possible to its region. Symbols will usually remain quite
small as a result. In the following we present an algorithm that com-
putes high-quality necklace maps. We give several approaches to map
the regions to their necklace intervals and we show how to maximize
symbol sizes while keeping all symbols disjoint.

4 COMPUTING NECKLACE MAPS

Here we describe how to compute a necklace map with a single neck-
lace. The extension to several necklaces is described in Section 5.

Definitions and notation. Before we can describe our algorithm we
first need to introduce some definitions and notation. Our input con-
sists of a set of polygons P = {P1, . . . , Pn} representing the geo-
graphic regions and a data set Z = {z1, . . . , zn} where each value zi
(zi > 0) is associated with polygon Pi. In the case of multi-polygon
regions, such as the US or Indonesia, we either choose one represen-
tative polygon (contiguous US) or use the convex hull of all polygons.
We assume that the data values are normalized, that is,

∑n

i=1
zi = 1.

We are also given the necklace: a star-shaped curve C with center
v = (x, y). For ease of explanation we assume the symbols Si to be
circles, our algorithm extends to other symbol shapes in a straightfor-
ward manner. We represent the location of the center of a circle Si by
an angle αi relative to the center v of the necklace C. The global scal-
ing factor for all symbols is denoted by ρ. Since we use mathematical
scaling, the radius of each symbol Si in the final map is ρ

√
zi.

For every polygon Pi we compute a single contiguous interval
Ii = [ai, bi] on the necklace with one of the methods described in
the next subsection. The feasible interval Ii represents all acceptable
angles to place Si, counter-clockwise from ai to bi. We now say that a
placement consisting of αi (1 ≤ i ≤ n) and ρ is feasible if the follow-
ing holds: (i) all Si are disjoint, and (ii) αi ∈ Ii for all 1 ≤ i ≤ n.
Our goal is hence to find a feasible placement that maximizes ρ. Given
such a feasible placement we use a variety of approaches to improve
the location of each symbol while keeping ρ fixed. Our algorithm can
be summarized as follows:

Algorithm NECKLACEMAPS(P,Z, C)
1. compute feasible intervals (see Section 4.1)
2. optimize symbol sizes (see Section 4.2)
3. optimize symbol placements (see Section 4.3)

Fig. 5. Left: centroid intervals. Right: wedge intervals.

4.1 Computing feasible intervals
Depending on the type of input data and the input map different pro-
jections from regions onto necklace intervals can be suitable. Below
we describe three approaches, the first two are implemented in our
system and lead to very good results with various data sets and maps.
Centroid Intervals. Consider the ray from the center v = (x, y) of
the necklace C through the centroid (xi, yi) of a polygon Pi. The
intersection between this ray and the necklace C at angle βi can be
considered a logical choice to place Si. The feasible interval Ii is then
defined as a constant-sized interval of size c around βi (see Fig. 5 left).
The value c can be a constant or depend on the number of regions
n. Hence, using this method, the feasible intervals are computed as
follows:

Ii = (βi −
c

2
, βi +

c

2
), where βi = atan2(yi − y, xi − x) (1)

Note that with this method the length of all intervals is the same. How-
ever it is reasonable to assume that for larger regions, a larger interval
is acceptable. If that is the case, then one should use one of the other
two types of intervals.
Wedge Intervals. To strengthen the relation between the symbols and
the regions, we can define the feasible intervals Ii to have a clear ge-
ometric meaning. We say that an angle α is acceptable for Si if the
ray from the center of C at angle α passes through Pi. Then Ii is
the smallest interval containing all acceptable angles for Si. In other
words, Ii represents the smallest wedge of C containing Pi (see Fig. 5
right). Note that with this definition all angles are acceptable for the
symbol Sj belonging to the polygon Pj that contains the center of C.
Since this is generally undesirable, we use the centroid interval for this
particular symbol Sj .

With this method the relation between symbols and regions is rela-
tively clear. However, wedge intervals do not take the data set Z into
account. Wedge intervals of small regions are small, which can lead
to sub-optimal maps if large data values are assigned to small regions.
Hence we consider also density-dependent intervals.

Density-dependent Intervals. We can adapt the intervals depending
on the data set Z . Consider an interval of angles I . If an interval Ii

Fig. 6. Density-dependent intervals.

z ′
i γ

γ
1

γ
2

Fig. 7. Covering radius. Left: on circle. Right: on spline.

is completely contained in I (Ii ⊆ I), then Si must be placed in the
interval I . We define the density of I as follows:

δ(I) =
1

|I|
∑
i|Ii⊆I

√
zi (2)

We enforce an upper bound on the maximum density maxI δ(I) ≤ c,
where c is a parameter that can be set by the user. For this, we change
the sizes of the intervals iteratively. Whenever we find an interval I for
which δ(I) > c, we enlarge the intervals contained in I until δ(I) ≤ c
(see Fig. 6). We continue this process until maxI δ(I) ≤ c. Note that
the complete process requires us to check only O(n2) intervals. Of
course, enlarging the intervals weakens the spatial relation between
regions and symbols. The parameter c in fact controls the trade-off be-
tween symbol sizes and symbol positions. We can further improve this
procedure by considering the fact that the outer two symbols placed in
I are not completely contained in I . In fact half of these symbols can
lie outside of I and should be excluded when computing δ(I).

4.2 Optimizing symbol sizes
After computing the intervals, we can proceed with finding a feasi-
ble solution that maximizes ρ. For this we use a binary search on ρ.
Hence, for a given ρ, we have to check if there is a feasible solution
with that ρ. Because all symbols have to be placed on C, this is essen-
tially a 1-dimensional problem. However, we do need to know which
part of C is covered by a symbol Si with radius ρ

√
zi. In case C is a

circle with radius r, we compute the following.

z′i = asin(
ρ
√
zi

r
) (3)

It is easy to verify that a symbol with radius ρ
√
zi exactly covers a

wedge of angle 2z′i of C, if C is a circle (see Fig. 7 left). We call z′i
the covering radius of Si. If C is not a circle, computing the covering
radius is somewhat more involved. If C is a circle, then the part of C
that is covered by Si is independent of the position of Si. This is no
longer the case if C is an ellipse or a cubic B-spline.

For a given position and size of a symbol Si, we determine the part
of the necklace covered by Si, or the covering radius z′i, as follows.
Let Si be at an angle γ from the center of the necklace. We trace from
the center of Si along the necklace in both directions. Let γ1 and γ2 be
the angles where the necklace leaves Si. Then the part of the necklace
covered by Si extends from γ1 to γ2. Since we cannot compute γ1
and γ2 exactly, we step through the necklace to approximate them. We
can then define the covering radius at angle γ as z′i(γ) = max(γ2 −
γ, γ − γ1). Note that, using this definition, the wedge from γ1 to γ2
does not necessarily contain the symbol (see Fig. 7 right). Since Si
can be placed anywhere in its interval Ii, we use the largest covering
radius for all possible placements of Si. Thus, the covering radius of
a symbol Si is defined as follows.

z′i = max
γ∈Ii

z′i(γ) (4)

Also in this case we step through a number of values of γ to approxi-
mate z′i. Although this always over-estimates the part of the necklace

GR

FR

DR

OV

GE

FL

UT

NH

ZH

ZE

NB LI

GR

FR

DR

OV

GE

FL

UT

NH

ZH

ZE

NB
LI

GR
FR

DR

OV

GE

FL

UT

NH

ZH

ZE

NB LI

GR

FR

DR

OV

GE

FL

UT

NH

ZH

ZE

NB
LI

Fig. 8. Left: Optimized symbol sizes with centroid intervals. Center left: Optimized symbol sizes with wedge intervals. Center right: Symbols with
buffers pushed towards middle. Right: Symbols with buffers pushed away from each other.

covered by a symbol, this error is limited as long as the necklace is
fairly close to a circle. Alternatively, instead of using the precomputed
z′i, we can compute the (exact) covering radius z′i(γ) when needed for
an angle γ during the subsequent stages of our algorithm. This will
give better results, but it makes our algorithm much more complicated
and results in only a slight improvement. Hence we do not consider
such an improvement in this paper.

With the covering radii, we can describe our problem as the follow-
ing 1-dimensional problem. Find angles αi (1 ≤ i ≤ n) such that:

• αi ∈ Ii or ai ≤ αi ≤ bi for 1 ≤ i ≤ n
• The intervals [αi − z′i, αi + z′i] are disjoint.

We can now consider two variants of the problem. We can either let the
centers of the intervals Ii determine an order and require the symbols
to follow this order (this would make sense with the centroid intervals),
or we allow the symbols to be in any order. We make this distinction
because there is a simple and fast algorithm for the first variant, but
the second variant is NP-complete. However, the second variant is
less restrictive, gives better results, and is hence more interesting. We
have algorithms for both variants.

For the first variant, we can use the following simple approach. Ini-
tially, let ρ = 0 and place all symbols at the beginning of their interval.
Then proceed by increasing ρ, growing the symbols. When two sym-
bols hit, push them away from each other. Since all symbols start at the
beginning of their interval, we can push in only one direction (counter-
clockwise). We continue this process until one symbol is pushed to the
end of its interval. At this point we have found the optimal ρ and all
symbols are placed on the necklace without overlap. More details can
be found in our companion paper [15].

Unfortunately, the easy approach for the first variant does not work
for the second variant. Instead we use dynamic programming to solve
this variant. This results in a fixed-parameter tractable algorithm in
the thickness of the intervals I1 . . . In. For a given α, let k(α) be the
number of intervals Ii that contain α. We define the thickness K of
a set of intervals to be the maximum of k(α) for all α. Note that, for
wedge intervals, the thickness K has a clear geometric meaning: K
is the maximum number of regions crossed by a single ray originating
from the center of the necklace. The running time of our algorithm is
O(nK2K). So far we have ignored the fact that the symbols have to
be placed on a circle, not on a line. Extending our approach to a circle
comes at some cost with respect to the running time, the details can
be found in our companion paper [15]. The dynamic programming
algorithm is quite flexible and allows us to impose a partial order on
the symbols. Although the running time is still exponential, K will
be rather small for most input instances (K ≤ 10). Of course, we
can easily construct an input instance that gives much larger K, but
then the resulting necklace map would be quite unclear. In that case
it is better to show fewer symbols or to use multiple necklaces. Fig-
ure 8 shows the necklace maps computed with the second variant with
centroid intervals (left) and wedge intervals (center left). In fact, all
necklace maps in this paper are computed with the second variant.

4.3 Optimizing symbol placements
With the algorithm described above, we get a feasible solution where
the symbols are as large as possible. But, due to the way the algorithm
works, the positions of the symbols are not optimal, even if we fix ρ.
That is because the algorithm tends to place the symbols on the outer
ends of their intervals, while it would be better to place the symbols in
the middle of their intervals. It is also visually more appealing if the
symbols are not packed together, but instead have some space between
them. To remedy this problem, we use a post-optimization step to push
the symbols to a better position. To not completely undo the work done
by the placement algorithm, we do not change the sizes of the symbols
and make only slight changes to the order of the symbols.

To push the symbols to a better position, we use a force-based
method. Assuming that the order of the symbols is fixed, a symbol
Si at angle αi has two neighboring symbols Si−1 and Si+1. Let the
distance between Si−1 and Si be di and the distance between Si and
Si+1 be di+1. Here we mean the distance between the symbols in the
1-dimensional space, so di = αi−z′i−(αi−1+z

′
i−1). Let the middle

of the interval Ii be mi. Then we can define the following two forces
acting on symbol Si.

Frep(i) = fr(
1

di
− 1

di+1
) (5)

Fmid(i) = fm(mi − αi) (6)

The constants fr and fm can be tuned to get a trade-off between
pushing a symbol to the middle of its interval, and pushing the sym-
bols away from each other. We can define the total force as F (i) =
Frep(i) + Fmid(i). The goal is to get F (i) = 0 for all i. We use a
very basic approach to achieve this. We go several times through all
symbols, and for each symbol Si we assume that Si−1 and Si+1 are
fixed. Then we solve the equation F (i) = 0. This is now a cubic poly-
nomial in αi, so it can easily be solved. This approach can be related
to the Gauss-Seidel method to solve a linear system of equations. The
algorithm quickly computes a good solution.

As mentioned above, we do allow slight changes to the order of
the symbols. For every two neighboring symbols, we check if the two
symbols can be swapped such that the result is still a feasible solution.
We swap two symbols in such a way that Frep(i) remains the same
for all i. If the total force Fmid(i− 1) + Fmid(i) is smaller after the
swap, then we swap the two symbols, otherwise we do not.

Using the force-based approach, the positions of the symbols can be
optimized for a fixed ρ. However, since ρ is maximized, symbols could
have little room to improve their position. To allow for a better trade-
off between symbol size and symbol position, we allow the user to set
a buffer for every symbol. This buffer is included when computing the
optimal symbol size, so that afterwards every symbol has some empty
space around it, corresponding to the buffer size. This space can be
used to improve the positions of the symbols during this step of the
algorithm. Figure 8 shows the resulting necklace maps after adding
a buffer and pushing symbols towards the middle of their intervals
(center right) or pushing symbols away from each other (right).

5 EXTENSIONS

In this section we discuss several extensions of our necklace map al-
gorithm. In particular, we show how to handle multiple necklaces,
either nested or disjoint, and how to add flows to a necklace map. Fur-
thermore, we briefly mention some options for symbol shapes, for the
display of multi-variate data, and for interactivity.

5.1 Multiple Necklaces
There are several reasons why it might not be sufficient to use only one
necklace. First of all, we might want to display so many symbols, that
one necklace would appear crowded and would force symbol sizes to
be too small for effective communication. To that end we consider
the symbol coverage ratio: the part of the map covered by symbols.
On a good necklace map the symbols should cover a reasonable part
of the complete map. Assume that we want to place n symbols on a
circular necklace with radius 1. Further assume that all symbols have
the same size. Optimally, every symbol covers a wedge of the necklace
with angle 2π/n. Using Equation 3, the radius of every symbol is
r = sin(π/n). Since the area of the complete map is (2 + 2r)2, the
symbol coverage ratio λn for n symbols is described by:

λn =
nπ sin2(π/n)

(2 + 2 sin(π/n))2
= O(

√
1/n) (7)

The symbol coverage ratio sinks below 30% if n ≥ 20. Our experi-
ments show that up to ≈ 20 symbols per necklace indeed allows for
good symbol placement and sizing.

To display larger data sets the regions should be distributed over
multiple necklaces. For example, consider a world map as the one
in Fig. 14. It seems natural to use at least one necklace per continent.
Another example is shown in Fig. 9 where the US states are distributed
onto a northeast, midwest, south, and west necklace (according to the
US census bureau regional division).

A second reason to use multiple necklaces are clustered data sets as
the one depicted in Fig. 10. Here regions are clustered by the point in
time in which the corresponding countries joined the EU. Since the EU
grew “from the inside out” it seems natural to use nested necklaces for
each cluster. Below we discuss in some detail how to create necklace
maps with multiple disjoint or nested necklaces.
Disjoint necklaces. If we have k necklaces, the algorithm computes
k optimal scaling values ρ1, . . . , ρk. To maintain the relative sizes,
we have to choose ρ = mini ρi. Our algorithm ensures that symbols
of the same necklace do not overlap, however, additional care must be
taken to avoid overlap of symbols from different necklaces. A straight-
forward approach to remove such overlap is to binary search for the
maximum scaling factor ρ such that all symbols are disjoint. To still
be able produce necklace maps with sufficiently large symbol sizes,
we have to ensure that necklaces are not too close together. Further-
more, when optimizing the symbol placements, we can let overlapping

ES

UK

PT

AT

IE

DK SE

FI

GR

FR

DE

IT

NL

BE

LU

Fig. 10. Gender pay gap in 2007 as percentage of average gross hourly
earnings of male paid employees. The inner necklace contains the first
6 EU countries, the outer necklace the additional 9 that joined by 1995.

symbols exert forces on each other. Hence, when performing the bi-
nary search for the optimal ρ, we jointly optimize the placements for
all symbols in every step of the search.

Nested necklaces. If a necklace map has several necklaces then usu-
ally the user specifies the distribution of regions onto necklaces. How-
ever, there might be no obvious way to distribute the regions, but nev-
ertheless, their number forces the use of several necklaces. In this
case we propose the following simple approach to distribute regions
onto nested necklaces. Intuitively, the innermost regions should be
assigned to the innermost necklace and the assignment should grow
outwards from that. We sort the regions based on increasing distance
of their centroids from the center of the necklace and then greedily fill
the necklaces from this list, taking into account the relative size of the
symbols and the lengths of the necklaces. For best results the ratio
between total symbol size and necklace length should be about equal
for all necklaces. After this initial assignment we can consider a round
of local swaps between necklaces, to facilitate larger symbol sizes and
remove overlaps. As a final step we remove remaining overlaps by the
same procedure as outlined above.

Note that grouping regions onto necklaces simply with the goal to
maximize symbol sizes is somewhat dangerous. A necklace implies
relationships between its regions. Hence one needs to be careful to not
inadvertently associate regions that are not meant to form a group.

AK AZ

CA
CO

ID

NV

NM

OR

UT

WA
CT

MA

NJ

NY

RI

IL

IN

IA
KS

MI

MN

NE

WI

ALAR

DE

FL
GA

MD

NC
OK

SC

TN

TX

VA

Fig. 9. Estimated number of illegal immigrants in 2000 in thousands, displaying only regions with a value of at least 0.5.

GR

FR

DR

OV

GE

FL

UT

NH

ZH

ZE

NB

LI

Fig. 11. Population of and relocation between the provinces of the
Netherlands in 2005.

5.2 Flows
Necklace maps leave the interior of the map largely unoccupied. This
allows us to visualize flows between regions as flows between symbols
(see Fig. 11). As it is common in flow maps, we represent each flow
by an arrow whose thickness corresponds to the amount of flow. In the
following we describe how to attach multiple flows to one symbol and
how to route flows in the interior of a necklace.

Consider a symbol Si and the flows that need to be attached to Si.
The order of the symbols around the necklace induces an order for
the flows. Note that symbol Si can have both an incoming and an
outgoing flow connecting to a symbol Sj , in this case the flows can
be ordered arbitrarily. To attach the flows to Si we use only a part
of the boundary of Si that is facing the center of the necklace. Using
one fifth of the boundary works well in practice. To fit the flows onto
this part of the boundary, we need to scale (the thickness of) the flows
while maintaining their relative size. We do not allow incoming flows
to overlap on the boundary of a symbol, but we do allow outgoing
flows to do so. This does not only allow for thicker flows, but also
gives a nice visual effect that is common in flow maps. Since we know
the order of the flows, it is straightforward to compute the placement
of the flows and the maximal scale factor ρi for the flows attached to a
symbol Si. The global scale factor for all flows is then ρa = mini ρi.

We describe a simple approach that gives good and natural looking
results for convex necklaces and interior flows. Assume we need to
draw a flow between symbol Si at position ~pi and symbol Sj at posi-
tion ~pj , and that the flows are attached to the symbols at the positions
~qi and ~qj . Let r1 be the ray originating from ~pi and passing through
~qi and let r2 be the ray originating from ~pj and passing through ~qj .
Now there are two possibilities: r1 and r2 do or do not cross. If r1 and
r2 cross, say in ~x, then we draw the flow as a quadratic Bezier curve
with control points ~qi, ~x and ~qj . If r1 and r2 do not cross (or cross at a
small angle), then let d = ‖~qi− ~qj‖/4. Then the first control point ~x1
is the point on r1 at a distance d from ~qi. The second control point ~x2
is the point on r2 at a distance d from ~qj . In this case, the flow is drawn
as a cubic Bezier curve with control points ~qi, ~x1, ~x2 and ~qj . If we
desire to leave the interior of the map unoccupied, we can use external
flows. However, for nice looking flows that do not cross the necklace
we need higher order Bezier curves. We can also add flows between
necklaces, for example, to visualize trade between continents.

5.3 Symbol shapes, multivariate data, and interactivity
In principle any shape can be used for the symbols of a necklace map.
However, symmetric symbols generally lead to better maps, since it
is easier to estimate and compare sizes in this case (see Fig. 13 for
an example using “ingots”). If the space that a symbol covers on the

Fig. 12. Number of inhabitants moving to another province. The color of
each “pizza slice” indicates the destination, the “pizza crust” the origin.

necklace is not invariant under rotation, then our algorithm does not
necessarily produce symbols of maximum size.

Necklace maps can easily be augmented to display multivariate
data. For example, consider a map that shows the work force per
region divided into agricultural, governmental, and industry. In this
case we can use a pie chart or histogram as symbol—a common map-
ping technique for human and economic geographic data. Such pie
charts or histograms usually have the same size per region and need to
be placed without overlap, which makes necklace maps a particularly
attractive choice (see Fig. 12). Furthermore, in a necklace map the ge-
ographic information of the base map tends to remain clearly visible.
Hence we can use hatching to mark the regions according to a second
variable or use dot mapping for density information.

As mentioned before, the advantage of necklace maps come at a
price: the association of a symbol with its region is weaker than with
other types of maps. However, in an interactive setting there are simple
approaches that can strengthen this association. Symbols and their
regions can be highlighted whenever one or the other is chosen by the
user. Furthermore, one could consider to continuously morph between
a necklace map and a proportional symbol map for the same data set
with the same symbol sizing. Since necklaces are star-shaped it is easy
to compute a morph that maintains the mental map of the user.

FR

ES

DE

IT

UK

PT

AT

CZ

IE

CH

NL
BE

LU

Fig. 13. Energy imports as percentage of energy consumption in 2007.

Fig. 14. FIFA World Cup 2010.

6 APPLICATION

We created a proof-of-concept implementation of the majority of our
algorithms in Java. Our program supports centroid and wedge inter-
vals, computes the optimal symbol sizes using the dynamic program-
ming algorithm, and uses the force-based approach to optimize the
symbol placements. It also implements the extensions described in
Section 5. All figures in this paper were created by our program.

Our implementation is quite fast: all maps in this paper were com-
puted in under a tenth of a second. Our implementation works for
thickness K ≤ 15. Maps with K = 15 take several minutes to com-
pute; K ≤ 6 for all maps in this paper. We have tested our implemen-
tation with up to 100 symbols on a single necklace, but we expect it to
work for many more symbols, especially when using multiple neck-
laces. The thickness of geographic maps rarely exceeds 10 and if this
is the case, then it is generally advisable to use several necklaces.

Our data stems from various sources: the European Com-
mission Eurostat Program (ec.europa.eu/ eurostat),
Worldmapper (www.worldmapper.org), the Swiss Federal Office
of Energy (www.bfe.admin.ch), and Statistics Netherlands
(www.cbs.nl). We use the ISO 3166-1 alpha-2 and alpha-3 two-
and three-letter country codes to label our maps.

7 DISCUSSION

The major advantage of necklace maps is their clear and uncluttered
appearance. The linear ordering of the symbols along the necklaces
makes it easy to estimate and compare symbol sizes correctly. Neck-
lace maps visualize data sets well which are not proportional to region
sizes and which do not contain data for all regions of the input map.

Our algorithm computes necklace maps of high quality: the relative
spatial position of symbols and regions captures the spatial relation
between regions and necklaces well and enables users to quickly asso-
ciate a symbol with the correct region. Our symbols are disjoint and
appear along the necklaces in an order which mirrors the neighbor re-
lations of their regions. Furthermore, our optimization approach yields
necklace maps whose symbols are as large as possible given the input.

There is a clear trade-off between symbols sizes and the spatial re-
lation of symbols and regions which is also influenced by the num-
ber and distribution of symbols per necklace. Generally speaking it is
better to use several necklaces instead of just one necklace. We are
mapping two-dimensional data onto a one-dimensional domain. In-

tuitively, several necklaces increase the chances that a symbol can be
placed close to its region and scaled to an appropriate size. In the
extreme, many necklaces will bring us back to symbol maps. How-
ever, necklace maps with few necklaces still preserve their structured
appearance while allowing for good symbol placement and sizing.

Clearly the shape and the exact location of the necklaces is very
important for a good necklace map. Currently we create our necklaces
by hand and add them to the input map. In the future we hope to be
able to automatically generate suitable necklaces for given input maps
and data sets, however, this seems to be a quite challenging algorith-
mic problem on its own. Also, our necklace maps currently lack a
legend as it is commonly seen with symbols maps. Hence users can at
the moment only judge relative sizes of symbols but cannot read ab-
solute values off the maps. Finally, it would be interesting to explore
animated necklace maps for time-varying data.

ACKNOWLEDGMENTS

The authors wish to thank Marc van Kreveld and Jack van Wijk for
helpful discussions on the topic of this paper, and Wouter Meulemans,
Frank Razenberg, André van Renssen, and Jeaphianne van Rijn for
help with the creation of the input maps. Bettina Speckmann and
Kevin Verbeek are supported by the Netherlands Organisation for Sci-
entific Research (NWO) under project no. 639.022.707.

REFERENCES

[1] M. A. Bekos, M. Kaufmann, A. Symvonis, and A. Wolff. Boundary la-
beling: Models and efficient algorithms for rectangular maps. Computa-
tional Geometry: Theory and Applications, 36(3):215–236, 2007.

[2] S. Cabello, H. Haverkort, M. van Kreveld, and B. Speckmann. Algorith-
mic aspects of proportional symbol maps. Algorithmica, 2010. to appear.

[3] B. Dent. Cartography - thematic map design. McGraw-Hill, 5th edition,
1999.

[4] D. Dorling. Area Cartograms: their Use and Creation, volume 59 of
Concepts and Techniques in Modern Geography. University of East An-
glia, Environmental Publications, Norwich, 1996.

[5] J. A. Dougenik, N. R. Chrisman, and D. R. Niemeyer. An algorithm to
construct continous area cartograms. Professional Geographer, 3:75–81,
1985.

[6] H. Edelsbrunner and E. Waupotitsch. A combinatorial approach to car-
tograms. Computational Geometry: Theory and Applications, 7:343–
360, 1997.

CAN

USA

DEU

NOR
SWE

NLD

FRA

BLR
GBR

HRV

SVN

LVA

FIN
EST

CHE
AUT

CZE

POL

ITA

SVK

KORCHN

RUS

JPN

KAZ

AUS

Fig. 15. Countries by total medals from the Vancouver 2010 Winter Olympics. Countries shaded gray or indicated by a gray dot did participate but did
not win any medals. Above: a necklace map using several nested necklaces as well as individual symbols, countries are grouped by geographic lo-
cation. Below: a screen shot from the geo view setting of the official olympic web-page http://www.vancouver2010.com/olympic-medals/
geo-view/. The circle below Germany and above Switzerland depicts Italy.

[7] M. Gastner and M. Newman. Diffusion-based method for producing
density-equalizing maps. Proc. National Academy of Sciences of the
United States of America (PNAS), 101(20):7499–7504, 2004.

[8] R. Heilmann, D. A. Keim, C. Panse, and M. Sips. Recmap: Rectangular
map approximations. In Proc. IEEE Symposium on Information Visual-
ization (INFOVIS), pages 33–40, 2004.

[9] D. Keim, S. North, and C. Panse. Cartodraw: A fast algorithm for gen-
erating contiguous cartograms. IEEE Transactions on Visualization and
Computer Graphics, 10:95–110, 2004.

[10] C. Kocmoud and D. House. A constraint-based approach to construct-
ing continuous cartograms. In Proc. Intern. Symposium on Spatial Data
Handling (SDH), pages 236–246, 1998.

[11] M. v. Kreveld and B. Speckmann. On rectangular cartograms. Computa-
tional Geometry: Theory and Applications, 37(3):175187, 2007.

[12] E. Raisz. The rectangular statistical cartogram. Geographical Review,
24:292–296, 1934.

[13] T. A. Slocum, R. B. McMaster, F. C. Kessler, and H. H. Howard. The-
matic Cartography and Geographic Visualization. Prentice Hall, 2nd edi-
tion, 2003.

[14] B. Speckmann, M. van Kreveld, and S. Florisson. A linear programming
approach to rectangular cartograms. In Proc. 12th Intern. Symposium on
Spatial Data Handling (SDH), pages 527–546, 2006.

[15] B. Speckmann and K. Verbeek. Algorithms for necklace maps. In prepa-
ration, 2010.

[16] W. Tobler. Pseudo-cartograms. The American Cartographer, 13:43–50,
1986.

[17] M. van Kreveld, E. Schramm, and A. Wolff. Algorithms for the placement
of diagrams on maps. In Proc. 12th Intern. Symposium on Advances in
Geographic Information Systems (ACM GIS), pages 222–231, 2004.

[18] J. Wood and J. Dykes. Spatially ordered treemaps. IEEE Transactions on
Visualization and Computer Graphics, 14:1348–1355, 2008.

