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Abstract

We pose a monotonicity conjecture on the number of pseudo-triangulations of any planar point set, and
check it on two prominent families of point sets, namely the so-called double circle and double chain.
The latter has asymptotically 12nnΘ(1) pointed pseudo-triangulations, which lies significantly above the
maximum number of triangulations in a planar point set known so far.
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1. Introduction

Pseudo-triangulations, also called geodesic triangulations, are a generalization of triangula-
tions which has found multiple applications in Computational Geometry in the last ten years.
They were originally introduced in the context of visibility [20,21] and ray shooting [8,14], but
recently have also been applied in kinetic collision detection [1,17], and guarding problems [27],
among others. They also have surprising relations to rigidity [15,19,29,30] and locally convex
functions [3]. See the recent survey [24] for more information.

A pseudo-triangle is a planar polygon that has exactly three convex vertices with internal
angles less than π . These vertices are called corners and the three inward convex polygonal
chains joining them are called pseudo-edges of the pseudo-triangle. A pseudo-triangulation for
a set A of n points in the plane is a partition of conv(A) into pseudo-triangles whose vertex
set is exactly A. Although pseudo-triangulations can be studied for general point sets [18], in
this paper we will consider only point sets in general position. A vertex is pointed if it has an
incident angle greater than π . A pointed pseudo-triangulation is a pseudo-triangulation where
every vertex is pointed. See, for example, Fig. 1—here, and in Fig. 2, pointed vertices are dark,
non-pointed vertices are light. Note that the vertices of conv(A) are always pointed.

The set of all pseudo-triangulations of a point set has somewhat nicer properties than that of all
triangulations. For example, pseudo-triangulations of a point set with n elements form the vertex
set of a certain polytope of dimension 3n− 3 whose edges correspond to flips [18]. The diameter
of the graph of pseudo-triangulations is O(n logn) [4] versus the Θ(n2) diameter of the graph
of triangulations of certain point sets. Also, for standard triangulations, it is not known which
sets with a given number of points have the fewest or the most triangulations, but it was shown
in [2] that sets in convex position minimize the number of pointed pseudo-triangulations among
all point sets with a given number of vertices (hence the number of all pseudo-triangulations,
since in convex position all pseudo-triangulations are pointed).

Let A be a point set and let AI be the subset of its interior points. Let PT (A) be the set
of pseudo-triangulations of A. This set can naturally be stratified into 2AI sets, one for each
possible subset of AI . More precisely, for each subset W ⊆ AI we denote by PT W(A) the
set of pseudo-triangulations of A in which the points of W are pointed and those of AI \ W

are non-pointed. For example, PT ∅(A) is the set of triangulations of A, which we abbreviate
as T (A). Similarly, PT AI

(A) is the set of pointed pseudo-triangulations of A, that we abbreviate
as PPT (A). In [22], the following inequality is proved: for every W ⊆ AI and every p ∈ W ,

3
∣∣PT W\{p}(A)

∣∣ �
∣∣PT W(A)

∣∣. (1)

The main goal of this paper is to explore the relation between the numbers of triangulations,
pointed pseudo-triangulations, and everything in between, for several specific point sets. In par-

Fig. 1. A pseudo-triangle (left), a pseudo-triangulation (middle), a pointed pseudo-triangulation (right).
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Fig. 2. Hasse diagram of the subsets W of AI for a set of 6 points.

ticular, we test the following conjecture, which is implicit in previous work, but stated here
explicitly for the first time:

Conjecture 1. For every point set A in general position in the plane, the cardinalities of PT W(A)

are monotone with respect to W . That is to say, for any subset W of A’s interior points and for
every p ∈ W , one has∣∣PT W(A)

∣∣ �
∣∣PT W\{p}(A)

∣∣.
The conjecture is consistent with the following result, also from [22]: If A has a single interior

point and n− 1 boundary points, then |PPT (A)| is greater than |T (A)|. Actually, the difference
is always equal to the Catalan number Cn−2, no matter where the interior point is, while |T (A)|
ranges from Cn−2 − Cn−3 � 3

4Cn−2 when the interior point is near the boundary to essentially
Cn−2 when it is near the center.

Conjecture 1 does not imply that the number of pseudo-triangulations of A with, say, k pointed
vertices is greater than the number of them with k−1 pointed vertices. For example, Fig. 2 shows
the eight possibilities of |PT W(A)| for a set of six points, three of them interior, displayed in
the Hasse diagram of subsets of AI . The numbers satisfy Conjecture 1, but there are less pointed
pseudo-triangulations (71) than pseudo-triangulations with one non-pointed and two pointed ver-
tices (29 + 31 + 31 = 91).

Actually, formula (1) says that the same will happen for any point set with at least four interior
points. Applied with W = AI and taking the different possibilities for v ∈ AI , the formula gives∑

v∈AI

3
∣∣PT AI \{v}(A)

∣∣ � |AI | ·
∣∣PT AI

(A)
∣∣.

In other words, the ratio of pseudo-triangulations with exactly one non-pointed vertex to pointed
pseudo-triangulations is at least |AI |/3.

Similarly, the monotonicity is conjectured with respect to the sets W and not only their cardi-
nalities: There exists a set A of 10 points, 7 of them interior, and two subsets W and W ′ of four
and three interior points, respectively, with |PT W(A)| < |PT W ′(A)|. There are no examples
like this with less than 10 points.
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As initial evidence for Conjecture 1 we have computed the numbers of triangulations and of
pointed pseudo-triangulations for all order types of planar point sets in general position with
10 points or less. This has been done using the order type database in [7]. One implication of
Conjecture 1 is that every point set should have at least as many pointed pseudo-triangulations
as triangulations, and this is actually the case up to 10 points. Even more, the natural expec-
tation is that the ratio between those two numbers grows exponentially with the number of
interior points i, the base of the exponent being between 1 (by Conjecture 1) and 3 (by in-
equality (1)). In Tables 1 and 2 we show the maximum and the minimum values of the ratio
(|PPT (A)|/|T (A)|)1/i obtained for each value of the total number of points n and of interior
points i.

It is interesting to observe that rows (fixed number of boundary points) and columns (fixed
number of interior points) are monotone in both tables, while diagonals (fixed total number of
points) are not always monotone in Table 2 (see diagonal n = 6 and n = 9).

From Table 3 below we can derive the (asymptotic) value of the same parameter (|PPT (A)|/
|T (A)|)1/i for certain families of planar point sets which are the main object in this paper: double
circle, single chain, and double chain. The results are 7/3 ≈ 2.333, 2 and 1.5, respectively. Also,
the results in [22] say that if A has a single interior point then

7

3
� 1 + Cn−2

Cn−2 − Cn−3
�

∣∣PPT (A)
∣∣/∣∣T (A)

∣∣ � 1 + 2Cn−2

Cn−1 − (n − 1)C
2

(n−2)/2

� 2,

with equality on the left when the interior point is close to the boundary, and on the right when
the interior point is at the center of a regular (n − 1)-gon, with n even.

In the rest of the paper we consider three families of point sets in the plane: “double circles,”
“double chains,” and what we call “single chains.” See Fig. 3 for examples, the exact defini-
tions are given in the respective sections. The double circle is conjectured to be the point set
with asymptotically the smallest number of triangulations, for a fixed number of points [7]. The

Table 1
Maximum values of (

|PPT (A)|
|T (A)| )1/i for order types with at most 10 points

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

n − i = 3 3.00000 2.54951 2.50665 2.38010 2.31659 2.26583 2.23025
n − i = 4 2.66667 2.51661 2.47042 2.44151 2.35995 2.30562
n − i = 5 2.55556 2.48151 2.44824 2.42734 2.41308
n − i = 6 2.50000 2.45607 2.43210 2.41625
n − i = 7 2.46667 2.43763 2.41980
n − i = 8 2.44444 2.42384
n − i = 9 2.42857

Table 2
Minimum values of (

|PPT (A)|
|T (A)| )1/i for order types with at most 10 points

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

n − i = 3 3.00000 2.54951 2.11791 2.00415 1.88343 1.80952 1.75590
n − i = 4 2.66667 2.29129 2.01550 1.91670 1.82364 1.76240
n − i = 5 2.27273 2.08637 1.91798 1.84371 1.77002
n − i = 6 2.16667 1.99211 1.83797 1.78048
n − i = 7 2.03937 1.91361 1.80419
n − i = 8 1.98621 1.86445
n − i = 9 1.92318
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Table 3
Asymptotic number of triangulations, pointed pseudo-triangulations and pseudo-
triangulations, for special point sets

double circle single chain double chain

|T (A)| √
12

n
4n 8n

|PPT (A)| √
28

n
8n 12n

|PT (A)| √
40

n
12n 20n

Conjecture 1 Holds Holds Holds

Fig. 3. A double circle (left), a single chain (middle), a double chain (right).

double chain has been the example with (asymptotically) the biggest number of triangulations
known (Θ∗(8n), see [25]), until a new structure was found recently, the so-called double zig-zag
chain, with Θ∗(

√
72

n
) triangulations [5]. (Here and in the rest of the paper, the notation Θ∗

means that a polynomial factor is neglected.) We studied single chains originally as a step to
analyze double chains, but it turns out that the number of pseudo-triangulations of single chains
also has very interesting combinatorial properties (see Theorem 14).

Our interest in the number of pseudo-triangulations of these point sets is twofold. On the one
hand, we prove that Conjecture 1 holds in these three cases. On the other hand, we are interested
in how many pseudo-triangulations a general point set in the plane can have. The study of these
point sets, which have very many or very few triangulations, should give an indication of it. Even
if the minimum number of pseudo-triangulations is achieved by the convex n-gon (as mentioned
above), it may well be that the double circle (or, more generally, the point sets in “almost convex
position” studied in Section 2) minimize the numbers of pseudo-triangulations for fixed numbers
of boundary and interior points.

Our main results are summarized in Table 3, where we show only the global number of all
pseudo-triangulations and the extremal cases of triangulations and pointed pseudo-triangulations.
In all cases n is assumed to be the total number of points, and a factor polynomial in n has been
neglected. The double circle has n/2 interior points and the single and double chains have n − 3
and n − 4 interior points, respectively.

The paper is organized as follows: Section 2 studies the number of pseudo-triangulations of
so-called point sets in almost convex position, among which the double circle is the extremal
case. The next three sections are devoted to the single chain. Section 3 gives approximations,
within a factor of four, for the numbers of pseudo-triangulations |PT (A)| and pointed pseudo-
triangulations |PPT (A)| of the single chain. The proof of the crucial result that gives the
asymptotics, Theorem 6, is given separately in Section 4. Section 5 uses a different approach
to provide a much better approximation of |PT (A)| and |PPT (A)| for the single chain. Finally,
Section 6 is devoted to the double chain, whose study is based on that of the single chain and, in
particular, on the aforementioned Theorem 6.
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2. The double circle and its relatives

For any given pair of positive integers v � 3 and i � v, we say that a point set A is in almost
convex position with parameters (v, i) if it consists of a set of v points forming the vertex set of a
convex v-gon and a set of i interior points, placed “sufficiently close” to i different edges of the
v-gon. Here, we say that an interior point p is placed sufficiently close to the edge (r, q) of the
v-gon if no segment connecting two points of A can separate p from (r, q). The double circle
is the extremal case with v = i = n/2, where there is one interior point close to every boundary
edge. It has asymptotically Θ(

√
12

n
n−3/2) triangulations [25] and it is conjectured in [7] that

this is the smallest number of triangulations that n points in general position in the plane can
have. This conjecture is known to be true for n � 11 [6].

Point sets in almost convex position are a special case of what is called “almost-convex poly-
gons” in [16]. There it is shown that the number of triangulations of such a point set does not
depend on the choice of the i edges of the v-gon. Indeed, if we call this number t (v, i), the case
W = ∅ of Lemma 2 below provides the recursive formula

t (v, i) = t (v + 1, i − 1) − t (v, i − 1) (2)

which allows to compute t (v, i) starting with t (v,0) = Cv−2 (Catalan numbers). It is interesting
that formula (2) can be applied to generate t (v, i) even for i > v. The array obtained by this
recursion (difference array of Catalan numbers) appears in Sloane’s Online Encyclopedia of
Integer Sequences [26] with ID number A059346. The numbers obtained for i > v do not have a
meaning as triangulations of point sets, but (for small values of v) they have other combinatorial
interpretations. For example, the sequence Mn := t (3, n) forms the Motzkin numbers (number of
lattice paths from (0,0) to (n,0) with steps (1,0), (1,1) or (1,−1) and lying above the horizontal
axis, see [10,28]). In the proof of Corollary 3 below we use their asymptotic expression, which
appears for example in [12, Section VI.4]:

Mn =
√

3

4π
3n

(
n−3/2 + O

(
n−5/2)) ∈ Θ

(
3nn−3/2). (3)

We now generalize the recursive formula (2) to deal also with pseudo-triangulations. Let p be
a specific interior point of a point set A in almost convex position and let (q, r) be the convex hull
edge which has p next to it. Let B and C be the point sets obtained respectively by deleting p

from A and by moving p to convex position across the edge (q, r) (see Fig. 4).

Fig. 4. Almost convex point sets: set A with v = 9 and i = 4, set B with v = 9 and i = 3, and set C with v = 10 and
i = 3.
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Lemma 2. For every W ⊆ AI not containing p (so that W is also a set of interior points of B

and C) one has:

(1) |PT W(A)| = |PT W(C)| − |PT W(B)|.
(2) |PT W∪{p}(A)| = 2|PT W(C)| − |PT W(B)|.
(3) |PT W∪{p}(A)| = 2|PT W(A)| + |PT W(B)|. In particular, A satisfies Conjecture 1.

Proof. It is clear that there are bijections between: (i) pseudo-triangulations of C pointed
at W that use the edge (q, r) and pseudo-triangulations of B pointed at W and (ii) pseudo-
triangulations of C pointed at W that do not use the edge (q, r) and pseudo-triangulations of A

pointed at W . These bijections prove part (1).
To prove part (2), we partition the pseudo-triangulations of A in which p is pointed into

three sets: those using the edges (p, q) and (p, r) (and hence having no other edge incident
to p), those using (p, q) but not (p, r), and those using (p, r) but not (p, q). The first set is in
bijection with the pseudo-triangulations of B . Each of the other two is in bijection with pseudo-
triangulations of C that do not use the edge (q, r), that is pseudo-triangulations of C minus
those of B . Since the bijections preserve pointedness at interior points (other than p), we get
|PT W∪{p}(A)| = |PT W(B)| + 2(|PT W(C)| − |PT W(B)|), as desired.

Part (3) is obtained eliminating |PT W(C)| from parts (1) and (2). �
This lemma shows that |PT W(A)| only depends on the parameters (v, i) of A and the number

|W | of points prescribed to be interior. Indeed, let us call s(v, j, k) = |PT W(A)| where v is
the number of boundary points and k = |W | and j = i − k are the numbers of interior points
prescribed to be pointed and non-pointed, respectively. Then, parts (1) and (2) of the lemma
translate to

s(v, j + 1, k) = s(v + 1, j, k) − s(v, j, k), (4)

and

s(v, j, k + 1) = 2s(v + 1, j, k) − s(v, j, k). (5)

From this, all the numbers can be computed recursively: the second formula allows to compute
them from the ones with k = 0 and the first formula allows to compute those from the numbers
s(v,0,0) = Cv−2. Also, from the fact that Cv−2 ∈ Θ∗(4v) the formulas lead easily to the guess
that s(v, j, k) ∈ Θ∗(4v3j 7k), which we now prove:

Corollary 3. The number s(v, j, k) = |PT W(A)|, where A is a point set in almost convex posi-
tion with v boundary and j + k interior points, and W is a subset of k of them, satisfies

Ω
(
(v + j + k)−3/2) � s(v, j, k)

4v3j 7k
� O

(
j−3/2).

Proof. We start with the following slightly nicer versions of the recursions (4) and (5). The first
one is a simple rewrite of (4) and the second is obtained eliminating s(v, j, k):

s(v + 1, j, k) = s(v, j + 1, k) + s(v, j, k), (6)

s(v, j, k + 1) = s(v + 1, j, k) + s(v, j + 1, k). (7)
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If we now define r(v, j, k) = s(v,j,k)

4v3j 7k , these two recursions translate to:

r(v + 1, j, k) = 3

4
r(v, j + 1, k) + 1

4
r(v, j, k), (8)

r(v, j, k + 1) = 4

7
r(v + 1, j, k) + 3

7
r(v, j + 1, k). (9)

From this eventually we get

min
n=j,...,v+j+k−3

r(3, n,0) � r(v, j, k) � max
n=j,...,v+j+k−3

r(3, n,0).

That is to say,

min
n=j,...,v+j+k−3

Mn

433n
� s(v, j, k)

4v3j 7k
� max

n=j,...,v+j+k−3

Mn

433n
,

where the sequence Mn = s(3, n,0) are the afore mentioned Motzkin numbers. The fact that
Mn ∈ Θ(3nn−3/2) finishes the proof. �

We believe that a finer use of the asymptotics of the Motzkin numbers would lead to the
slightly stronger statement that s(v, j, k) ∈ Θ(4v3j 7k(v + j + k)−3/2). Anyway, Corollary 3
implies that∣∣PPT (A)

∣∣ ∈ Θ∗(4v7i
)
, and

∣∣PT (A)
∣∣ ∈ Θ∗(4v10 i

)
,

where the last formula comes from adding |PT W(A)| = s(v, j, k) over all the 2i values of W :

i∑
k=0

(
i

k

)
4v3i−k7k = 4v10 i .

In conclusion, the double circle (i = v = n/2) has about
√

28
n

pointed pseudo-triangulations
and

√
40

n
pseudo-triangulations in total, modulo a polynomial factor.

We close this section deriving direct recurrences for the total numbers of pseudo-triangulations
and of pointed pseudo-triangulations of point sets in almost convex position.

Corollary 4. Let pt(v, i) and ppt(v, i) denote the numbers of pseudo-triangulations and pointed
pseudo-triangulations of a point set in almost convex position with parameters (v, i), respec-
tively. Then:

(1) ppt (v, i) = 2ppt(v + 1, i − 1) − ppt(v, i − 1).
(2) pt(v, i) = 3pt(v + 1, i − 1) − 2pt(v, i − 1).

Proof. Part (1) is the case W ∪ {p} = AI of part (2) of Lemma 2. For part (2) we add parts (1)
and (2) of the same lemma over all possible values of W . �
3. The single chain

Throughout this section let A be the point set with the following l + 3 points: l + 2 points
labeled 0,1, . . . , l, l + 1 forming a convex (l + 2)-gon, plus a vertex p exterior to this polygon
and seeing all edges of it except the edge (0, l + 1). A has three convex hull vertices {p,0, l + 1}
and l interior vertices {1, . . . , l}. We call A a single chain and call p the tip of A, see Fig. 5 (left).
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Fig. 5. A single chain A with l = 6 (left), a pointed pseudo-triangulation in PPT {1,3,4,6}(A) (right).

Besides classifying pseudo-triangulations of A with respect to their sets of pointed vertices,
here we need to classify the pointed pseudo-triangulations of the single chain according to which
interior points are joined to the tip. That is, for each subset W ⊆ AI we denote by PPT W(A)

the set of pointed pseudo-triangulations of A in which p is joined to i if and only if i ∈ W , see
Fig. 5 (right).

It is easy to realize that from the numbers |PPT W(A)| one can recover the numbers
|PT W(A)|, which are our main interest in this section.

Lemma 5. For every W :

∣∣PT W(A)
∣∣ =

∑
W ′⊆W

∣∣PPT W ′(A)
∣∣.

In particular, Conjecture 1 holds for the single chain.

Proof. In every pseudo-triangulation of PT W(A) the non-pointed vertices i ∈ AI\W have to be
joined to the tip p. If we delete those edges (p,pi) for all i ∈ AI\W , we get an element of a
certain PPT W ′(A) with W ′ ⊆ W (here, W ′ are the vertices of the pseudo-triangulation which
are joined to p but are pointed). This process can clearly be reversed. �

The following theorem is probably the most surprising result in this paper. It says that the sets
PPT W(A) have the same cardinality as certain subsets of triangulations of a convex (l +3)-gon.
Apart from its intrinsic interest, this result automatically gives the asymptotics of all the numbers
|PPT W(A)| (Corollary 7), and hence of all the |PT W(A)|, too (Corollary 8).

Theorem 6. Let A be a single chain with l interior vertices, let W ⊆ AI be a subset of them.
Let B be the convex (l + 3)-polygon with vertex set A \ {p} ∪ {q}, where q is an extra point on
the side opposite to p.

The pointed pseudo-triangulations of A in which the interior neighbors of p are exactly the
points in W (that is, the elements of PPT W(A)) have the same cardinality as the triangulations
of B in which the interior neighbors of q are contained in W .

See Fig. 6 for an example. To maintain the flow of ideas, we postpone the proof of Theorem 6
to Section 4. Let us remark only that our proof is rather indirect. In particular, it is far from being
an explicit bijection between the two sets involved.
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Fig. 6. The nine pointed pseudo-triangulations in PPT W (A) and the nine triangulations in which the interior neighbors
of q are contained in W . In this example l = 3 and W = {1,2}.

Corollary 7.

(1) The numbers |PPT W(A)| are strictly monotone with respect to W . That is to say, for every
W ⊂ {1, . . . , l} and every i ∈ {1, . . . , l} \ W ,∣∣PPT W∪{i}(A)

∣∣ >
∣∣PPT W(A)

∣∣.
(2) For any W ⊆ {1, . . . , l}, Cl � |PPT W(A)| � Cl+1.

Proof. Part (1) is a direct consequence of Theorem 6. Part (2) follows from part (1) and the facts
that |PPT ∅(A)| = Cl and |PPT {1,...,l}(A)| = Cl+1 (the latter comes again from Theorem 6,
taking W = AI ). �

Note that PPT ∅(A) is in bijection to the set of triangulations of the convex (l + 2)-gon
with vertices A \ {p} = {0,1, . . . , l + 1}, hence its cardinality is the Catalan number Cl . Curi-
ously enough, PPT AI

(A) (that is, the set of pointed pseudo-triangulations in which the tip p

is joined to everything), has the cardinality of the next Catalan number Cl+1. This follows from
Theorem 6, but was first proved in Section 5.3 of [23] (see also the remark and picture on pp. 728–
729). There, an associahedron with vertex set PPT AI

(A) is obtained, and it is regarded as a
1-dimensional analog of the construction of the polytope of pointed pseudo-triangulations for a
planar point set. Following this analogy, we regard part (1) of Corollary 7 as a 1-dimensional
analog of Conjecture 1.

Corollary 8.

(1) For every W ⊆ {1, . . . , l}, 2|W |Cl � |PT W(A)| � 2|W |Cl+1.
(2) 3lCl � |PT (A)| � 3lCl+1.

(3) In particular, |PT W(A)| ∈ Θ(2|W |4l l− 3
2 ), |PPT (A)| ∈ Θ(8l l− 3

2 ) and |PT (A)| ∈
Θ(12l l− 3

2 ).

Proof. Part (1) comes from applying part (2) of Corollary 7 to each summand in the expression
|PT W(A)| = ∑

W ′⊆W |PPT W ′(A)| of Lemma 5. Part (2) comes from adding the inequalities in
part (1) for all the subsets W ⊆ {1, . . . , l}. Finally, part (3) follows from Cl ∈ Θ(4l l−3/2). �
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Since Cl+1/Cl < 4, parts (1) and (2) of this corollary approximate the numbers |PT (A)| and
|PPT (A)| within a factor of four. In Section 5 we show how to obtain much better approxima-
tions.

4. Proof of Theorem 6

Let us recall the statement we want to prove:

Theorem 6. Let A be a single chain with l interior vertices, let W ⊆ AI be a subset of them.
Let B be the convex (l + 3)-polygon with vertex set A \ {p} ∪ {q}, where q is an extra point “on
the side opposite” to p.

Then, the pointed pseudo-triangulations of A in which the interior neighbors of p are exactly
the points in W (that is, the elements of PPT W(A)) are in bijection to the triangulations of B

in which the interior neighbors of q are contained in W .

Let us denote with TW(B) the set of triangulations of B mentioned in the statement. The way
we prove that |TW (B)| and |PPT W(A)| are the same number is by showing that both families
of numbers satisfy the same recursive formula. To this end, let W be a non-empty subset of
{1, . . . , l} and choose an element v ∈ W . Let W1 = {w ∈ W : w < v} and W2 = {w ∈ W : w > v}
be the sets of elements of W on both sides of v. Moreover, let:

• A1 and A2 be the “single chains” having as vertices {p,0,1, . . . , v} and {p,v, v + 1, . . . ,

l + 1}, respectively.
• B1 and B2 be the convex polygons having as vertices {q,0,1, . . . , v} and {q, v, v + 1, . . . ,

l + 1}, respectively.

Then:

Lemma 9. The following recurrence holds:∣∣TW(B)
∣∣ − ∣∣TW\{v}(B)

∣∣ = ∣∣TW1(B1)
∣∣ · ∣∣TW2(B2)

∣∣.
Proof. The difference in the left-hand side coincides with the triangulations of B that use the
edge (q, v) and have the (other) interior neighbors of q contained in W . Clearly, those triangula-
tions can be obtained by triangulating B1 and B2 independently. �

In the rest of this section we prove that the same recursion holds for the numbers |PPT W(A)|,
except we do it under the assumption that v is the first element in W . This assumption is enough
for our purposes because knowing that∣∣PPT W(B)

∣∣ − ∣∣PPT W\{v}(B)
∣∣ = ∣∣PPT W1(B1)

∣∣ · ∣∣PPT W2(B2)
∣∣

for any particular v, together with the inductive hypothesis that |PPT W ′(A′)| and |TW ′(B ′)|
coincide whenever |W ′| < |W | and the base case |PPT ∅(A)| = |T∅(B)|, implies that
|PPT W(A)| = |TW(B)|. That is, in order to prove Theorem 6 it is enough to prove:

Proposition 10. For every W ⊆ {1, . . . , l} and for v = min(W),∣∣PPT W(A)
∣∣ − ∣∣PPT W\{v}(A)

∣∣ = ∣∣PPT W1(A1)
∣∣ · ∣∣PPT W2(A2)

∣∣.
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Our first observation is that:

Lemma 11. If v = min(W) then |PPT W1(A1)| · |PPT W2(A2)| equals the number of elements
of PPT W(A) that use the edge (v, l + 1).

Proof. The edges (p, v) and (v, l + 1) separate the triangle conv(A) into two regions, so that we
can count their number of pointed pseudo-triangulations independently. The region on the right
is the convex hull of A2. Hence, it only remains to show that the region on the left, let us denote it
AL, has the same number of pointed pseudo-triangulations that join W1 to p as A1 has. Note that
v = min(W) implies W1 = ∅. That is, |PPT W1(A1)| is just the number of triangulations of the
v + 1 points in convex position {0, . . . , v}. For AL, we know in addition that none of the vertices
{0, . . . , v − 1} can be connected to v, or v would be non-pointed in the pseudo-triangulation of A

under consideration otherwise. Thus, |PPT W1(AL)| equals the number of triangulations of the
v + 1 points {0, . . . , v − 1, l + 1}, too. �

Let PPT W(A)∗ denote the elements of PPT W(A) that do not use the edge (v, l + 1). The
above lemma implies that Proposition 10 is equivalent to:

Proposition 12. For every W ⊆ {1, . . . , l} and for v = min(W),∣∣PPT W(A)∗
∣∣ = ∣∣PPT W\{v}(A)

∣∣.
We will prove this via an explicit (although complicated) bijection. For it, we classify the

elements of PPT W(A) and PPT W\{v}(A) via the following parameters.

Definition. Let W = {v1, . . . , vk} and v = min(W) = v1.

(1) For an element T of PPT W(A), we call end-point vector of T the vector (x1, . . . , xk) of
length |W | and with entries taken from {0, . . . , l + 1}, defined as follows: For every i, there
is a single pseudo-edge in T having vi as a reflex vertex. Since vi ∈ W and T ∈PPT W(A),
one of the two corners joined by this pseudo-edge is the tip p. We define xi to be the other
corner.

(2) Similarly, the end-point vector of an element T of PPT W\{v}(A) is the vector (x1, . . . , xk)

of length |W | and with entries in {0, . . . , l + 1} such that:
• x1 is the third corner of the triangle below the edge (v−1, v). This is well-defined because

neither v − 1 nor v belong to W \ {v}, hence the edge (v − 1, v) is in T and both v − 1
and v are corners of the pseudo-triangle below it. Moreover, this pseudo-triangle must
necessarily be a triangle.

• For every i > 1, xi is defined as in part (1).

In the rest of this section we denote by PPT W,(x1,...,xk) the subset of PPT W(A) consisting
of elements with end-point vector (x1, . . . , xk). Similarly, we denote by PPT W\{v},(x1,...,xk) the
elements of PPT W\{v}(A) with end-point vector (x1, . . . , xk). With this notation, the main part
of the proof is to show the following bijections:

Lemma 13. Let (x1, . . . , xk) be a vector of length k with entries in {0, . . . , l + 1}.

(1) If x1 > v, then |PPT W,(x1,...,xk)| = |PPT W\{v},(x1,...,xk)|.
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(2) If 0 < x1 < v, then |PPT W,(x1,...,xk)| = |PPT W\{v},(x1−1,x∗
2 ,...,x∗

k )|, where x∗
i equals xi

(resp., equals v) if xi �= x1 (resp., xi = x1).
(3) If x1 = 0, then |PPT W,(x1,...,xk)| = |PPT W\{v},(l+1,x∗

2 ,...,x∗
k )|, where x∗

i equals xi (resp.,
equals v) if xi �= x1 (resp., xi = x1).

Proof. (1) The bijection comes from a simple flip of the edge (p, v) into the edge (v − 1, v).
(2) As in part (1), the first step is to perform a flip of the edge (p, v). This introduces an edge

(v, y), where y = v + 1 unless both v2 = v + 1 and x2 > v2 hold, in which case y = x2. (See
Fig. 7.)

In any case, we now have a pointed pseudo-triangulation T that belongs to PPT W\{v} and
with the property that it contains the triangle t = (x1, v, y). This triangle decomposes T into three
parts: a triangulation T1 of the convex (v − x1 + 1)-gon with vertices {x1, . . . , v}, the triangle
(x1, v, y) itself, and a pointed pseudo-triangulation T2 of the single chain with l − (v − x1)

vertices A \ {x1 + 1, . . . , v}.
We are going to rearrange these three pieces in order to obtain a different pointed pseudo-

triangulation of A. We embed T2 as a pointed pseudo-triangulation of the vertex set A \
{x1, . . . , v − 1}, add the triangle (x1 − 1, v − 1, v) to it, and then place the triangulation T1

on the polygon {x1 − 1, . . . , v − 1}; see Fig. 8. Essentially, in T2 we are substituting vertex v

for vertex x1, and then we are changing the rest to be consistent with this replacement. Since
everything in T2 previously joined to x1 is now joined to v, the new pointed pseudo-triangulation
is indeed in PPT W\{v},(x1−1,x∗

2 ,...,x∗
k ).

This process can be reversed: Starting with a pointed pseudo-triangulation in
PPT W\{v},(y1,y2,...,yk), with y1 ∈ {0, . . . , v − 2}, the triangle (y1, v − 1, v) decomposes it into
three parts: a triangulation T ′

1 of the convex polygon with vertices {y1, . . . , v − 1}, the trian-
gle itself, and a pointed pseudo-triangulation T ′

2 of A \ {y1 + 1, . . . , v − 1}. We place T ′
2 on

A \ {y1 + 2, . . . , v}, T ′
1 on {y1 + 1, . . . , v} and insert the triangle (y1 + 1, v, v + 1). We now

flip the edge (v, v + 1), and get a pointed pseudo-triangulation in PPT W,(y1+1,y∗
2 ,...,y∗

k ) where
y∗
i = yi if yi �= v and y∗

i = y1 + 1 otherwise.
(3) The process is exactly the same as in part (2), except that since x1 = 0 we have to use l +1

in the role that was played by x1 − 1. That is, T1 will be a triangulation of the convex polygon
{0, . . . , v} before the rearrangement, and placed as a triangulation T ′

1 of the convex polygon
{l + 1,0,1, . . . , v − 1}. The rest is unchanged. �

Fig. 7. Three examples of flipping edge (p, v) in part (2) of the proof of Lemma 13. In the left and middle cases y = v+1,
in the right case y = x2.
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Fig. 8. Rearrangement for the three examples in Fig. 7.

Proof of Proposition 12. We now show how Lemma 13 can be used to finish the proof of
Proposition 12, hence that of Proposition 10 (and therefore the one of Theorem 6). What we
need to show is that the sets in the right-hand sides of Lemma 13 cover the set PPT W\{v}(A)

without repetitions if we exclude from the left-hand side the ones with x1 = l + 1, which are
the elements in PPT W(A) \ PPT W(A)∗. To this end, we consider an end-point vector Y =
(y1, . . . , yk) of an element in PPT W\{v}(A), and show that it comes from a unique end-point
vector X = (x1, . . . , xk) of an element of PPT W(A)∗ via the bijections in Lemma 13. First,
observe that the end-points in the right-hand sides of parts (1), (2) and (3) are distinguished by
the properties v < y1 < l +1, y1 < v−1 and y1 = l +1, respectively. Also, a valid Y cannot have
y1 equal to v or v − 1, by the definition of end-point vector in PPT W\{v}(A). It only remains to
show how to recover the vector X from Y :

(a) If v < y1 < l + 1, then just let X = Y .
(b) If y1 < v − 1, then let x1 = y1 + 1 and for i > 1 let xi equal x1 or xi depending on whether

yi = v or yi �= v.
(c) If y1 = l +1, then let x1 = 0 and let xi equal x1 or xi depending on whether yi = v or yi �= v.

Note that, in all cases, x1 �= l + 1, trivially for (a) and (c) and because v − 1 � l − 1 in (b). �
5. Additional bounds and properties for the single chain

Corollary 8 gives the approximations |PPT (A)| � 2lCl and |PT (A)| � 3lCl within a factor
of four. In this section we show that |PPT (A)| � 2l+1Cl and |PT (A)| � 3l+1Cl/2 are much
better approximations, with errors of 12.5% and 4% respectively when l goes to infinity. This
is in contrast with the fact that we do not know such good and simple approximations for the
individual summands |PPT W(A)|. Our first step is to compute the sum of all the PPT W(A)’s
for each cardinality of W , via the following recursive formulae.

Theorem 14. Let a(l, i) := ∑
|W |=i |PPT W(A)|. Then:

(1) a(l,0) = Cl , and a(l,1) = (l + 1)Cl .
(2) For every i � 2,

a(l, i) =
(

l + 1
)

Cl − a(l − 1, i − 2).

i
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As a preparation for the proof of Theorem 14, observe that the number
(
l+1
i

)
Cl that appears

in the statement equals the number of ways of specifying a triangulation of the (l + 2)-gon
together with i of the l + 1 boundary edges of the (l + 2)-gon visible from the tip. We say that
a pointed pseudo-triangulation T of A is compatible with this specification if T restricted to the
interior of the (l + 2)-gon gives that triangulation and when restricted to the boundary of the
(l + 2)-gon the i edges chosen above are precisely the ones not appearing. Note that this notion
of compatibility is usable in both directions, i.e., “pointed pseudo-triangulations compatible with
a choice” and “choices compatible with a pointed pseudo-triangulation.” Some pointed pseudo-
triangulations of A may not produce a triangulation of the (l + 2)-gon, and hence they are not
compatible with any choice. Reciprocally, some choices are not compatible with any pointed
pseudo-triangulation, but the next statement describes them:

Lemma 15. Let a choice of a triangulation of the (l+2)-gon and a choice of a subset of boundary
edges of the (l + 2)-gon visible from the tip be given. Then:

(1) The choice is compatible with a pointed pseudo-triangulation of A if and only if no ear of
the triangulation is incident to two missing boundary edges.

(2) A compatible choice determines uniquely a pointed pseudo-triangulation. This pseudo-
triangulation uses i interior edges incident to the tip vertex, where i equals the number
of missing boundary edges.

Proof. Observe that compatible means that from the given choice of triangulation and subset of
boundary edges we can get a pointed pseudo-triangulation, by adding to the chosen triangulation
some edges incident to the tip and removing the chosen boundary edges. We call an ear of the
triangulation incident to two missing boundary edges of the (l + 2)-gon a bad ear (see Fig. 9).

Clearly, if a bad ear appears at pi the choice cannot be compatible with a pointed pseudo-
triangulation, because a vertex cannot have degree 1 in a pointed pseudo-triangulation. Hence,
assume that we have a choice with no bad ears and let us prove that it is compatible with one and
only one pointed pseudo-triangulation. The way to obtain the pointed pseudo-triangulation is as
follows: let pipi+1 be a missing edge in the choice. Let pk be the vertex of the triangulation of
the (l + 2)-gon joined to it. We add the edge (p,pi) or (p,pi+1) depending on whether k < i or
k > i + 1. The assumption of no bad ears implies that we add as many edges as missing edges
were in the choice. In particular, the set of edges obtained in this way has cardinality 2l + 3, the
same as an element of PPT ∅(A). Since every pointed graph with 2l + 3 edges of a vertex set
of size l + 3 is a pointed pseudo-triangulation, we have shown existence. For uniqueness, just
observe that every compatible pointed pseudo-triangulation must have at least the edges we have

Fig. 9. Left: bad ear at pi . Right: bad pseudo-triangle in the proof of Theorem 14.
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added: an interior vertex not joined to the tip must be joined to vertices both to its right and to its
left. �
Proof of Theorem 14. The equation a(l,0) = |PPT ∅(A)| = Cl is obvious. For a(l,1), observe
that every pointed pseudo-triangulation with a single interior edge joined to the tip uniquely
gives rise, by a flip of that edge, to another one with no edges joined to the tip. Conversely,
every pointed pseudo-triangulation with no edges to the tip gives rise to l + 1 pointed pseudo-
triangulations with a single edge to the tip, by the l + 1 possible flips of the boundary edges of
the (l + 2)-gon.

For the proof of part (2), let us call b(l, i) := (
l+1
i

)
Cl and let c(l, i) be the number of pointed

pseudo-triangulations of A that are compatible with a choice of triangulation and boundary.
We will abuse notation and use a(l, i), b(l, i) and c(l, i) to represent not only the numbers
but also the sets of objects counted by them;

⋃
|W |=i PPT W(A) for a(l, i), choices of a tri-

angulation and a subset of edges as above for b(l, i), and the double meaning of “pointed
pseudo-triangulations compatible with a choice” and “choices compatible with a pointed pseudo-
triangulation” for c(l, i).

Clearly, every element of b(l, i) with k “bad ears” can be considered a member of c(l − k,

i − 2k): just delete the k interior points where the bad ears occur. Reciprocally, each member
of c(l − k, i − 2k) can give a member of b(l, i) in

(
l−k−(i−2k)+1

k

)
ways: we choose k of the

l − k − (i − 2k) + 1 used boundary edges and place a new vertex (a bad ear) beyond each of
those k edges. Hence:

b(l, i) =
∑
k�0

(
l − i + 1 + k

k

)
c(l − k, i − 2k).

Now, what can make a pointed pseudo-triangulation not compatible with a choice of triangu-
lation plus boundary edges is the existence of a bad pseudo-triangle [p,pi2,pi1,pi4,pi3] with
i1 < i2 < i3 < i4, see Fig. 9 (note that pi3 = pi2 + 1 in order to be a pseudo-triangle). In this
case the restriction to the (l + 2)-gon has a quadrangle, let us call it a bad quadrangle, instead
of being a triangulation. More that one bad quadrangle can occur, but the two edges (p,pi2) and
(p,pi3) that join one bad quadrangle to the tip cannot join any other bad quadrangle to the tip.

In particular, if an element of a(l, i) produces k bad quadrangles, contracting the edge
(pi2,pi3) of each quadrangle and removing the 2k corresponding edges incident to the tip we
get an element of c(l − k, i − 2k), because of Lemma 15. To get back an element of a(l, i) from
one of c(l − k, i − 2k) one must choose k of the l − i + k interior vertices not incident to the tip
and split them into two vertices, joining both to the tip. Clearly, there are

(
l−i+k

k

)
ways to do that.

Hence:

a(l, i) =
∑
k�0

(
l − i + k

k

)
c(l − k, i − 2k).

Then:

a(l − 1, i − 2) =
∑
k�1

(
l − i + k

k − 1

)
c(l − k, i − 2k),

where the index k has been shifted by one after evaluating with the previous formula. To get the
statement, add the two last equalities and compare them to the one for b(l, i). �
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Table 4
Values of a(l, i) and |PPT (A)| for l, i � 5

l
i 0 1 2 3 4 5 |PPT (A)| = ∑

a(l, i)

0 1 1
1 1 2 3
2 2 6 5 13
3 5 20 28 14 67
4 14 70 135 120 42 381
5 42 252 616 770 495 132 2307

Theorem 14 allows us to compute all the values of a(l, i) recursively, starting from those
stated in part (1). The first few values of a(l, i) are shown in Table 4. The recursion also tells
us that the array a(l, i) equals the sequence A062991 in Sloane’s Encyclopedia [26]. The row
sums, that is, the numbers |PT AI

(A)| = |PPT (A)| of all pointed pseudo-triangulations, form
the sequence A062992 and satisfy:

∣∣PPT (A)
∣∣ = ∣∣PT AI

(A)
∣∣ =

l∑
i=0

a(l, i) = 2
l∑

j=0

(−1)l−jCj 2j − (−1)l .

We can obtain them by adding over all values of i in the formula of Theorem 14.

Corollary 16. The number al = |PPT (A)| of pointed pseudo-triangulations of the single chain
satisfies:

al = 2l+1Cl − al−1.

Hence,(
1 −

l∑
i=2+ (−1)l

2 �
(−1)l−i

l∏
j=i

j + 1

4(2j − 1)

)
· 2l+1Cl �

∣∣PPT (A)
∣∣ � 2l+1Cl.

Observe that the parenthesis in the left-hand side tends to 8
9 when l goes to infinity.

Proof. The first statement follows from |PPT (A)| = ∑l
i=0 a(l, i) and Theorem 14, using

that a(l, l) = Cl+1 (Theorem 6, with W = {1, . . . , l}). For an example, 381 = 25C4 − 67 =
32 · 14 − 67. For the second part, the upper bound is straightforward and for the lower bound
the first part gives

al = (−1)l +
l∑

i=1

(−1)l+i2i+1Ci

and then one can use the fact that Cl = Cl−1(4l − 2)/(l + 1). �
We now turn our attention to the total number of pseudo-triangulations PT (A). Lemma 5

implies that:

∣∣PT (A)
∣∣ =

∑
W ′⊆AI

2|AI \W ′|∣∣PPT W ′(A)
∣∣ =

l∑
i=0

2l−ia(l, i).
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Corollary 17. The number bl = |PT (A)| of pseudo-triangulations of the single chain satisfies:

2bl = 3l+1Cl − bl−1.

Hence,(
1 −

l∑
i=2+ (−1)l

2 �
(−1)l−i

l∏
j=i

j + 1

12(2j − 1)

)
· 3l+1

2
Cl �

∣∣PPT (A)
∣∣ � 3l+1

2
Cl.

Observe that the parenthesis in the left-hand side tends to 24
25 when l goes to infinity.

Proof. Similar to the proof of Corollary 16. For the second part we use |PT (A)| = ∑l
i=0 2l−i

a(l, i) and the first part to get

bl = 1

(−2)l
+

l∑
i=1

(−1)l+i 3i+1

2l−i+1
Ci. �

6. The double chain

For any two numbers l,m � 0, we call double chain with parameters (l,m) the point set
consisting of a convex 4-gon with l and m points, respectively, placed forming concave chains
next to opposite edges of the 4-gon in a way that they do not cross the two diagonals of the
convex 4-gon (see Fig. 10). The double chain decomposes into a convex (l + 2)-gon, a convex
(m + 2)-gon, and a non-convex (l + m + 4)-gon, the latter with

(
l+m+2

l+1

)
triangulations [13].

Hence, the double chain has exactly

ClCm

(
l + m + 2

l + 1

)

triangulations. In the extremal case l = m = (n − 4)/2 this gives Θ(8nn−7/2). The double chain
has been, until very recently (see [5]), the example of a point set in the plane with asymptotically
the biggest number of triangulations known.

Throughout this section, let A be a double chain with l and m interior points in the two chains,
respectively (so A has l + m + 4 points in total). We call the l + 2 and m + 2 vertices in the two
chains the “top” and “bottom” parts.

In order to count the number of pseudo-triangulations of A, let us call B and C single chains
with l and m interior points each. B can be considered the subset of A consisting of the top part
plus a bottom vertex, and analogously for C. Every pseudo-triangulation TA of A induces on the
one hand a pseudo-triangulation TB of B by contracting all bottom vertices to a single one, and
on the other hand a pseudo-triangulation TC of C by doing the same with all top vertices (see

Fig. 10. A double chain: l = 5 and m = 4.
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(a) TA. (b) TB and TC .

Fig. 11. Decomposing a pseudo-triangulation of a double chain.

Fig. 11). Since no pseudo-triangle of TA contains both more than one top vertex and more than
one bottom vertex, every pseudo-triangle survives either in TB or in TC but not in both.

Conversely, given a pair of pseudo-triangulations TB and TC of B and C, if i (resp. j ) denotes
the number of interior edges incident to the bottom point in TB (respectively to the top point
in TC ), there are exactly

(
i+j+2
i+1

)
ways to recover a pseudo-triangulation of A from that data, by

shuffling the i + 1 pseudo-triangles of TB incident to the bottom and the j + 1 of TC incident to
the top.

Theorem 18. Let V and W be subsets of the top and bottom interior points. For each i � v � l

and j � w � m let t
v,w
i,j := (

l−v+i+m−w+j+2
l−v+i+1

)
. Then:

(1)
∣∣PT V ∪W(A)

∣∣ =
∑

V ′⊆V

W ′⊆W

t
|V |,|W |
|V ′|,|W ′|

∣∣PPT V ′(B)
∣∣∣∣PPT W ′(C)

∣∣.
(2) In particular, if v = |V | and w = |W |, then

∣∣PT V ∪W(A)
∣∣ ∈ Θ

(
ClCm

v∑
i=0

w∑
j=0

(
v

i

)(
w

j

)
t
v,w
i,j

)
.

Proof. The first observation is that the “shuffling” described above preserves pointedness. Then,
part (1) follows from the fact that in the expression∣∣PT V (B)

∣∣ =
∑

V ′⊆V

∣∣PPT V ′(B)
∣∣

of Lemma 5, each element of PPT V ′(B) corresponds to an element of PT V (B) with exactly
l − |V \V ′| = l − |V | + |V ′| interior edges incident to the bottom point (same for C).

Part (2) follows from part (1) using that |PPT V ′(B)| ∈ Θ(Cl), |PPT W ′(C)| ∈ Θ(Cm), and
in the sum of part (1) there are exactly

(
v
i

)(
w
j

)
summands with |V ′| = i and |W ′| = j . �

Corollary 19. The double chain satisfies Conjecture 1.

Proof. When we add a point p to V , Theorem 18 gives that |PT V ∪{p}∪W(A)| equals∑
V ′⊆V′

(
t
|V ∪{p}|,|W |
|V ′|,|W ′|

∣∣PPT V ′(B)
∣∣ + t

|V ∪{p}|,|W |
|V ′∪{p}|,|W ′|

∣∣PPT V ′∪{p}(B)
∣∣)∣∣PPT W ′(C)

∣∣.

W ⊆W



O. Aichholzer et al. / Journal of Combinatorial Theory, Series A 115 (2008) 254–278 273
We neglect the first summand, and use monotonicity of |PPT V ′ | (part (1) of Corollary 7) in the
second summand, which is then greater than∑

V ′⊆V

W ′⊆W

t
|V ∪{p}|,|W |
|V ′∪{p}|,|W ′|

∣∣PPT V ′(B)
∣∣∣∣PPT W ′(C)

∣∣.
But this equals |PT V ∪W(A)| by Theorem 18 since, clearly,

t
v,w
i,j = t

v+1,w
i+1,j . �

Part (2) of Theorem 18 implies that, to understand the asymptotics of pseudo-triangulations
of the double chain, we need to understand the expressions

v∑
i=0

w∑
j=0

(
v

i

)(
w

j

)
t
v,w
i,j =

v∑
i=0

w∑
j=0

(
v

i

)(
w

j

)(
l − i + m − j + 2

l − i + 1

)
. (10)

The second form is obtained from the first by the substitutions i → v − i and j → w − j , since
t
v,w
v−i,w−j = (

l−i+m−j+2
l−i+1

)
.

For the special case l = v and m = w, this expression has a very nice combinatorial inter-
pretation and has appeared in the literature (see below). In particular, we can give the exact
asymptotics of the number of pointed pseudo-triangulations of a double chain with l = m (Theo-
rem 22). For general values of l, m, |V |, |W |, or for the total number of pseudo-triangulations,
we can only offer the upper and lower bounds in the following two statements:

Lemma 20.

(1) For every V ⊆ {1, . . . , l} and W ⊆ {1, . . . ,m},∣∣PT V ∪W(A)
∣∣ ∈ O

(
2l+m(3/2)v+wClCm

)
,

where v = |V | and w = |W |.
(2) In particular,∣∣PPT (A)

∣∣ ∈ O
(
3l+mClCm

) = O
(
12l+m(lm)−3/2).

(3)
∣∣PT (A)

∣∣ ∈ O
(
5l+mClCm

) = O
(
20l+m(lm)−3/2).

Proof. Starting with the equality in Theorem 18, we bound |PPT V ′(B)| by Cl+1 and
|PPT W ′(C)| by Cm+1, respectively, using part (2) of Corollary 7. We also bound

t
v,w
|V ′|,|W ′| =

(
l − v + |V ′| + m − w + |W ′| + 2

l − v + |V ′| + 1

)
� 2l+m−v−w+|V ′|+|W ′|+2.

Thus,
|PT V ∪W(A)|
Cl+1Cm+1

� 2l+m−v−w+2
∑

V ′⊆V

W ′⊆W

2|V ′|2|W ′| = 2l+m−v−w+23v3w. (11)

That finishes part (1), since Cl+1 ∈ Θ(Cl) = Θ(4l l−3/2). For the upper bound in part (2), we
simply specialize v = l and w = m. For the upper bound in part (3) we add over all values of V

and W the inequality (11) obtained above, since∣∣PT (A)
∣∣ =

∑
V ⊆{1,...,l}

∣∣PT V ∪W(A)
∣∣.
W⊆{1,...,m}
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Hence:

|PT (A)|
Cl+1Cm+1

�
l∑

v=0

m∑
w=0

(
l

v

)(
m

w

)
2l+m−v−w+23v+w

= 2l+m+2
l∑

v=0

m∑
w=0

(
l

v

)(
m

w

)(
3

2

)v+w

= 2l+m+2
(

5

2

)l+m

= 4 · 5l+m. �

We now look at lower bounds. We obtain the following ones by simply taking the greatest
summand in the expressions derived from Theorem 18. Observe that in the case l = m they differ
from the upper bounds only by a polynomial factor of l−3/2 and l−5/2, respectively.

Theorem 21.

(1)
∣∣PPT (A)

∣∣ ∈ Ω

(
3l+mClCm

(l + m)1/2

lm

(
1

2

)2|l−m|/3)
.

(2)
∣∣PT (A)

∣∣ ∈ Ω

(
5l+mClCm

(l + m)1/2

(lm)3/2

(
1

2

)4|l−m|/5)
.

(3) In particular, if l = m = (n − 4)/2 (where n is the total number of vertices), we have∣∣PPT (A)
∣∣ ∈ Θ∗(12n

)
, and

∣∣PT (A)
∣∣ ∈ Θ∗(20n

)
.

Proof. For part (1) we start with∣∣PPT (A)
∣∣ =

∑
V ′⊆{1,...,l}
W ′⊆{1,...,m}

t
l,m
|V ′|,|W ′|

∣∣PPT V ′(B)
∣∣∣∣PPT W ′(C)

∣∣

�
∑

V ′⊆{1,...,l}
W ′⊆{1,...,m}

t
l,m
|V ′|,|W ′|ClCm = ClCm

l∑
i=0

m∑
j=0

(
l

i

)(
m

j

)(
i + j + 2

i + 1

)
.

In this expression we substitute the sum by the summand with i = 2l/3 and j = 2m/3. That is:

|PPT (A)|
ClCm

(
l

2l/3

)(
m

2m/3

)( 2(l+m)
3 + 2

2l/3

)
∼

(
l

2l/3

)(
m

2m/3

)(
2(l + m)/3

2l/3

)
.

Next we approximate the binomial coefficients using Stirling approximation, which gives:(
l

2l/3

)
∈ Θ

(
3l

22l/3
l−1/2

)

and (
2(l + m)/3

2l/3

)
∈ Θ

((
l + m

l

)2l/3(
l + m

m

)2m/3(
l + m

lm

)1/2)
.

Putting things together we get
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|PPT (A)|
ClCm

∈ Ω

(
3l+m

(
l + m

2l

)2l/3(
l + m

2m

)2m/3
(l + m)1/2

lm

)

= Ω

(
3l+m

(
(l + m)2

4lm

) 2 min(l,m)
3

(
l + m

2 max(l,m)

) 2|l−m|
3 (l + m)1/2

lm

)
.

This gives part (1), since (l+m)2

4lm
� 1 and l+m

2 max(l,m)
� 1

2 .
For part (2) we use the same ideas. We start with

∣∣PT (A)
∣∣ �

l∑
v=0

m∑
w=0

(
l

v

)(
m

w

) v∑
i=0

w∑
j=0

(
v

i

)(
w

j

)(
l − v + i + m − w + j + 2

l − v + i + 1

)
ClCm.

Here, we substitute the sum with the summand i = 2l/5, v = 3l/5, j = 2m/5, and w = 3m/5.
This gives:

|PT (A)|
ClCm

�
(

l

3l/5

)(
m

3m/5

)(
3l/5

2l/5

)(
3m/5

2m/5

)(
4(l + m)/5

4l/5

)
.

As before, Stirling’s approximation gives:(
l

3l/5

)
∈ Θ

(
5l

33l/522l/5
l−1/2

)
,

(
3l/5

2l/5

)
∈ Θ

(
33l/5

22l/5
l−1/2

)
(

4(l + m)/5

4l/5

)
∈ Θ

((
l + m

l

)4l/5(
l + m

m

)4m/5(
l + m

lm

)1/2)
.

That is,

|PT (A)|
ClCm

∈ Ω

(
5l+m

(
l + m

2l

)4l/5(
l + m

2m

)4m/5
(l + m)1/2

(lm)3/2

)

= Ω

(
5l+m

(
(l + m)2

4lm

) 4 min(l,m)
5

(
l + m

2 max(l,m)

) 4|l−m|
5 (l + m)1/2

(lm)3/2

)
.

Part (3) is straightforward from parts (1) and (2), by Lemma 20. �
Let us now restrict our attention to the case of pointed pseudo-triangulations. Applying Theo-

rem 18 with v = l and w = m we get the following, which has been used in the proofs of the last
two results:

|PPT (A)|
ClCm

∈ Θ

(
l∑

i=0

m∑
j=0

(
l

i

)(
m

j

)(
i + j + 2

i + 1

))
.

Let us call El,m the expression inside the Θ(−). It turns out that El,m has the following nice
interpretation: it equals the number of lattice paths from (0,0) to (l + 1,m + 1) when horizontal
and vertical steps of arbitrary positive length are allowed. In other words, it equals the number
of monotone rook paths from (0,0) to (l + 1,m + 1) (a path is specified not only by the squares
traversed, but also by the positions where the rook stops. The rook is allowed to do several con-
secutive horizontal or vertical moves). Indeed, for a particular path, i + 1 and j + 1 represent the
numbers of horizontal and vertical moves taken by the rook. The coefficient

(
l
i

)
(respectively

(
m
j

)
)

accounts for the possibilities of columns (respectively rows) where the rook makes at least one
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stop, and the coefficient
(
i+j+2
i+1

)
accounts for the relative ordering of the i + 1 horizontal and

j + 1 vertical moves.
The sequence El,m appears (with a shift in the indices) as A035002 in [26] and has been

studied in Section 7 of [9]. It satisfies, among others, the following formulas:

El+1,m+1 = 2El,m+1 + 2El+1,m − 3El,m ∀l,m > 1; El,0 = E0,l = (l + 4)2l−1,

or ∑
l+m=n

El,m = 2
(
3n+1 − 2n+1).

In particular, the generating function of its diagonal sequence Em,m (sequence A051708) is
known, and from it we can derive the asymptotics very precisely:

Theorem 22. Let A be a double chain with n vertices in total and with l = m = (n − 4)/2. Then,
|PPT (A)| ∈ Θ(12nn−7/2).

Proof. The generating function of Em,m is

f (t) = 9t − 1 + √
9t2 − 10t + 1

2(9t − 1)
= 1

2
+ 1

2

√
1 − t

1 − 9t
.

(This is Theorem 7.1(c) of [9], except there a negative sign is wrongfully taken before the square
root. The correct sign is positive since otherwise f (t) is negative near zero, which does not make
sense.)

The dominant (i.e., smallest in absolute value) singularity of f (t) is at t = 1/9, and near the
singularity one has

f (t) ∼
√

2

9
(1 − 9t)−1/2.

Then, the singularity analysis of [11] (see also [12]) implies that

Em,m ∼
√

2

9
· 9m

√
πm

.

Hence, |PPT (A)| ∈ Θ( 9mCm
2√

m
) = Θ(12nn−7/2). �

A similar analysis could be undertaken for PT (A). By Theorem 18 and the equality (10) we
have |PT (A)|/ClCm ∈ Θ(Fm,n), where

Fm,n =
∑

0�i�v�l
0�j�w�m

(
l

v

)(
m

w

)(
v

i

)(
w

j

)(
l + m − i − j + 2

l − i + 1

)
.

Fm,n can still be interpreted (although less directly) in terms of rook paths, and satisfies formulas
such as

F l+1,m+1 = 3F l,m+1 + 3F l+1,m − 5F l,m ∀l,m > 1, F l,0 = F 0,l = (l + 6)3l−1,

or ∑
F l,m = 5n−1 − 3n−1.
l+m=n
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The latter, since the biggest summand is obtained with l = m = n/2, implies that Fn,n is be-
tween Ω(5nn−1) and O(5n), in agreement with—but also refining—the result in part (3) of
Theorem 21. We believe that Fn/2,n/2 ∈ Θ(5nn−1/2) and, hence, that the total number of pseudo-
triangulations of a double chain with the same number of points on both sides is in Θ(20nn−7/2).
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