Computational Group Theory

Soria Summer School 2009
Session 1: Basics from group theory

Overview

This course focuses on some computational aspects in group theory

- Basics on groups
- Permutation groups
- Coset enumeration
- Mathieu groups

There are other areas where computations with groups come up, such as invariant theory

Some useful literature:

- G. Butler: Fundamental algorithms for permutation groups Lecture Notes in Computer Science 559 (1991). Springer-Verlag
- Derek F. Holt, Bettina Eick, Eamonn A. O’Brien: Handbook of computational group theory Chapman \& Hall/CRC (2005)
- Arjeh M. Cohen, Hans Cuypers, Hans (Eds.): Some tapas of computer algebra. Algorithms and Computation in Mathematics, vol 4 (1999). Springer-Verlag
(In particular, Chap 8: Working with finite groups; Project 6: The small Mathieu groups)

Groups

Groups occur in various settings:

- As an abstract 'computational structure': a set plus decent multiplication
- As a structure in a range of structures: groups, rings, fields, etc.
- As a means to catch symmetries, like the symmetries of a cube, or a more advanced structure
- As a means to do geometry à la Klein: the (transformation) groups determine the geometry:
- spherical geometry
- hyperbolic geometry
- euclidean geometry
- Also: geometry and other structures inspire group theory
- Automorphisms of structures like ‘algebraic curves’

Groups

Group: a set G together with an operation $G \times G \rightarrow G$ such that

- associativity: $(a * b) * c=a *(b * c) \forall a, b, c \in G$
- unit element: there exists $e \in G$ s.t. $e * g=g * e=g \forall g \in G$
- inverse elements: for every $g \in G$ there is a $g^{-1} \in G$ with $g * g^{-1}=$ $g^{-1} * g=e$

Remarks:

- There is a unique unit element:

$$
e=e * e^{\prime}=e^{\prime}
$$

- Inverses are unique, hence the notation g^{-1}

$$
h=h * e=h *\left(g * h^{\prime}\right)=(g * h) * h^{\prime}=e * h^{\prime}=h^{\prime}
$$

(Homo)morphism: $f: G \rightarrow G^{\prime}$ s.t.

$$
f(g h)=f(g) f(h)
$$

Kernel: $\{g \in G \mid f(g)=e\}$; Image: $f(G)$

Subgroups and normal subgroups

- Subgroup $H<G$:
a subset which is a group wrt *
- Permutations: $S_{3}<S_{4}$
- Normal subgroup $N \triangleleft G$:
subgroup N s.t. $g N=N g$ for all $g \in G$, or

$$
g n g^{-1} \in N \quad \text { for all } g \in G, n \in N
$$

- $A_{3}<S_{3}$, where A_{n} denotes even permutations
- Kernels of morphisms $f: G \rightarrow G^{\prime}$ of groups

$$
\left\{g \in G \mid f(g)=e_{G^{\prime}}\right\}
$$

Constructions with groups

- (Direct) product group $G \times H$:

$$
\{(g, h) \mid g \in G, h \in H\}
$$

with coordinatewise multiplication
$-\mathrm{Z} \times \mathbf{Z}$

- Semi-direct product $G=N \rtimes H$:
- N is a normal subgroup, H a subgroup
- $G=N H$ and $N \cap H=\{e\}$

Also from 2 groups N and H and morphism $\phi: H \rightarrow \operatorname{Aut}(N)$

$$
\left(n_{1}, h_{1}\right) *\left(n_{2}, h_{2}\right)=\left(n_{1} \phi_{h_{1}}\left(n_{2}\right), h_{1} h_{2}\right)
$$

- Translations, orthogonal transformations within isometries of a euclidean vector space
- Quotient group: G / N, where N is a normal subgroup

A semidirect product: isometries of the plane

- V : euclidean plane, ‘say’, \mathbf{R}^{2}
- Isometry $A: V \rightarrow V$ with

$$
d(A v, A w)=d(v, w) \quad \text { for all } v, w \in V
$$

- Translation T_{a} with $T_{a}(v)=v+a$
- Orthogonal linear transformations

$$
(A v, A w)=(v, w) \quad \text { for all } v, w \in V
$$

- Subgroup of translations \mathcal{T} is normal:

$$
g^{-1} T_{a} g(v)=g^{-1}(g(v)+a)=v+g^{-1}(a)=T_{g^{-1}(a)}(v)
$$

- Every isometry is a composition of a translation and an orthogonal map

Related: Affine linear transformations of an affine space ('vectorspace without origin')

Quotients

$N \triangleleft G$

- Left and right cosets

$$
a N=\{a n \mid n \in N\}, \quad N b=\{n b \mid n \in N\}
$$

For normal subgroups: $a N=N a$, since $a N a^{-1}=N$

- Quotient as set: $G / N=\{a N \mid a \in G\}$
- Product:

$$
(a N) *(b N)=(a b) N
$$

This works well since

$$
(a N)(b N)=a(N b) N=a b N N=a b N
$$

Note that the left (resp.) right cosets partition G. If G is finite:

$$
|G / N|=|G| /|N|
$$

Further examples

- Z, Q, R,... with addition
- $\mathbf{Z} / n \mathbf{Z}$ (or \mathbf{Z}_{n}) with addition
- $\mathbf{Z}^{*}, \mathbf{Q}^{*}, \ldots$ the invertible elements wrt multiplication
- Likewise: $\mathbf{Z}_{8}^{*}=\{1,3,5,7\}$
- Matrix groups, such as
- The general linear group over a field K

$$
G L_{n}(K): \quad n \times n \text { invertible matrices }
$$

wrt to multiplication

- The special linear group over a field K

$$
S L_{n}(K)=\left\{A \in G L_{n}(K) \mid \operatorname{det}(A)=1\right\}
$$

- The orthogonal group over K

$$
O_{n}(K)=\left\{A \in G L_{n}(K) \mid A \cdot A^{\top}=I\right\}
$$

$S O_{n}(K)$: subgroup with extra condition $\operatorname{det}(A)=1$

Details and examples: groups

Presentations: Groups given by generators and relations/relators

$$
G=\langle S \mid R\rangle
$$

G is the quotient of the free group on S by the normal closure of $\langle R\rangle$

- Cyclic group presented in such a way:

$$
G=\left\langle x \mid x^{5}\right\rangle
$$

Compute with element x, but x^{5} can be simplified to the unit element e. In particular, the elements are $e, x, x^{2}, x^{3}, x^{4}$, so a cyclic group of order 5

- Coxeter group:

$$
G=\left\langle x, y \mid x^{2}, y^{2},(x y)^{3}\right\rangle
$$

A 'concrete' version of it:

$$
x \text { reflection in the } x_{1} \text {-axis }
$$

y reflection in $x_{2}=\sqrt{3} x_{1}$
Based on the observation that the product of these two reflections is a rotation over 120°. Or take permutations: $x=(1,2), y=(2,3), x y=(1,3,2)$

- Icosahedral rotation group: $\left\langle s, t \mid s^{2}, t^{3},(s t)^{5}\right\rangle$

Permutation groups

- Symmetric group $\operatorname{Sym}(\Omega)$, where Ω is a set: all permutations/bijections of Ω. For $\Omega=\{1,2, \ldots, n\}$: S_{n}
- Special case: S_{n}
- Disjoint cycle notation:

$$
(1,3,4)(2,5) \in S_{5}
$$

- Product of transpositions:

$$
(1,3)(2,3)(3,5) \in S_{5}
$$

- The sign of a permutation: parity (± 1) of the number of pairs $i<j$ s.t. $\sigma(i)>\sigma(j)$
- The sign is multiplicative:

$$
\operatorname{sgn}(\sigma \tau)=\operatorname{sgn}(\sigma) \cdot \operatorname{sgn}(\tau)
$$

So a surjective morphism sgn : $S_{n} \rightarrow\{ \pm 1\}$

- The sign of a (single) transposition is -1
- \mathbf{A}_{n} : the normal subgroup of even permutations, of index 2 in S_{n}
- Permutation group: subgroup of some $\operatorname{Sym}(\Omega)$

These occur e.g. in symmetries of discrete structures

Group actions

Group action: group G acts on set X

$$
x^{g}
$$

such that $\left(x^{g}\right)^{h}=x^{g h}$

- Groups of matrices acting on vector subspaces
- $O_{n}(\mathbf{R})$ acting on the unit sphere S^{n-1} :

$$
\underline{v} A
$$

- A group G acting on itself:

$$
g^{h}:=g \cdot h
$$

(right multiplication with h)

More on group actions

For a group G acting on Ω :

- G-orbit of $\omega \in \Omega$:

$$
\omega^{G}=\left\{\omega^{g} \mid g \in G\right\}
$$

- Stabilizer G_{ω} : group elements fixing ω.

Example: $S O_{3}(\mathbf{R})$ acts on S^{2}

- Orbit of $\omega \in S^{2}$ is S^{2} itself
- Stabilizer of $(0,0,1)$: rotations around z-axis, which is a S^{1}.

Some words on GAP

GAP: Groups, algorithms, programming

- A free system for computational discrete algebra
- Designed for studying groups, rings, vector spaces, algebras, ...

Sample commands

- Introduce permutations:

$$
s:=(1,2) ; t:=(2,3) ;
$$

- Action of $(1,2,3)$ on 1 :
$1^{\wedge}(1,2,3)$;
- Introduce a group:
s3:=Group (s,t);
- Compute the order of an element:

Order(s);

- Compute the order of the group:

Order (s3);

Elementary algorithms: basics on S_{n}

Algorithms to compute with basic permutations:

- Write a permutation as a product of disjoint cycles
- If $2,3,1,5,4$ are the images of $1,2,3,4,5$, then you
- first trace to what cycle 1 belongs: $(1,2,3)$
- Then look at what happens to 4 : $(4,5)$
- Write a permutation as a product of transpositions
- For instance using $\left(a_{1}, a_{2}, \ldots, a_{k}\right)=\left(a_{k}, a_{k-1}\right)\left(a_{k-1}, a_{k-2}\right) \cdots\left(a_{2}, a_{1}\right)$
- Determine the sign of a permutation
- Use the multiplicative property of the sign

Elementary algorithms: list of elements

From generator set S to a list of elements

- Start: $\{e\} \cup S$
- Append for each pair (g, h) of elements in list so far: $g h$ if $g h$ not yet in.

Of course, efficiency is an issue.

Improvements:

- Consider only products $g * s$ with g in list and $s \in S$
- Use subgroups $H_{i}=\left\langle S_{i}=\left\{s_{1}, \ldots, s_{i}\right\}\right\rangle$. Then construct elements of H_{i} from those of H_{i-1} by adding whole cosets:
- Input: $G=\langle S\rangle$ and list of elements of H_{i-1}
- Output: list of elements of H_{i}
- Start: Coset-Reps:=\{e\}
- For each $g \in$ Coset-Reps, do the following:
- for every generator $s \in S_{i}$: if $g s \notin$ list, then append $g s$ to Coset-Reps, and coset $H_{i-1} g s$ to list, etc.

An example: the square

Elements: $e, r, r^{3}, r^{3}, s, r s, r^{2} s, r^{3} s, G=\langle s, r\rangle$, subgroup $H=\{e, s\}$

- The list starts with e, s and coset representative e
- Take the next generator r, not in $\{e, s\}$, so add the coset $\left\{r, s r=r^{3} s\right\}$ to the list:

$$
\text { list }: e, s, r, r^{3} s
$$

The Coset-Rep becomes $\{e, r\}$

- Next we check products of elts of Coset-Rep and generators s and r :

$$
e * s=s \text { not new, } r * s=\text { new }
$$

So add $r s$ and add the coset $\left\{r s, s r s=r^{3}\right\}$:

$$
\text { list }: e, s, r, r^{3} s, r s, r^{3}
$$

with Coset Rep $=\{e, r, r s\}$

- And one more coset to add.

Some exercises

1) Show that the 'factors' $G \times\left\{e_{H}\right\}$ and $\left\{e_{G}\right\} \times H$ are normal subgroups of the direct product $G \times H$.
2) If $G=\left\langle x, y \mid x^{2}, y^{2}(x y)^{3}\right\rangle$, show that $|G|$ is at most 6 , straight from the presentation.
3) Use a picture to write down symmetries of an equilateral triangle.
4) For the symmetries of the square $G=\langle s, r\rangle$ list the elements using the above algorithm but now with generators r (rotation) and s (reflection) in that order, and starting from the list of elements of the subgroup $\langle r\rangle$.
