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This course focuses on some computational aspects in group theory

• Basics on groups

• Permutation groups

• Coset enumeration

• Mathieu groups

There are other areas where computations with groups come up, such as in-
variant theory

Some useful literature:
• G. Butler: Fundamental algorithms for permutation groups

Lecture Notes in Computer Science 559 (1991). Springer-Verlag

• Derek F. Holt, Bettina Eick, Eamonn A. O’Brien: Handbook of computational group theory
Chapman & Hall/CRC (2005)

• Arjeh M. Cohen, Hans Cuypers, Hans (Eds.): Some tapas of computer algebra. Algorithms
and Computation in Mathematics, vol 4 (1999). Springer-Verlag
(In particular, Chap 8: Working with finite groups; Project 6: The small Mathieu groups)

Overview
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Groups occur in various settings:

• As an abstract ‘computational structure’: a set plus decent multiplication

• As a structure in a range of structures: groups, rings, fields, etc.

• As a means to catch symmetries, like the symmetries of a cube, or a more
advanced structure

• As a means to do geometry à la Klein: the (transformation) groups deter-
mine the geometry:

– spherical geometry

– hyperbolic geometry

– euclidean geometry

• Also: geometry and other structures inspire group theory
– Automorphisms of structures like ‘algebraic curves’

Groups
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Group: a setG together with an operationG×G→ G such that

• associativity: (a ∗ b) ∗ c = a ∗ (b ∗ c) ∀a, b, c ∈ G
• unit element: there exists e ∈ G s.t. e ∗ g = g ∗ e = g ∀g ∈ G
• inverse elements: for every g ∈ G there is a g−1 ∈ G with g ∗ g−1 =
g−1 ∗ g = e

Remarks:
• There is a unique unit element:

e = e ∗ e′ = e′

• Inverses are unique, hence the notation g−1

h = h ∗ e = h ∗ (g ∗ h′) = (g ∗ h) ∗ h′ = e ∗ h′ = h′

(Homo)morphism: f : G→ G′ s.t.

f (gh) = f (g)f (h)

Kernel: {g ∈ G | f (g) = e}; Image: f (G)

Groups
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• SubgroupH < G:
a subset which is a group wrt ∗

– Permutations: S3 < S4

• Normal subgroupN / G:
subgroupN s.t. gN = Ng for all g ∈ G, or

gng−1 ∈ N for all g ∈ G, n ∈ N

– A3 < S3, whereAn denotes even permutations

– Kernels of morphisms f : G→ G′ of groups

{g ∈ G | f (g) = eG′}

Subgroups and normal subgroups
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• (Direct) product groupG×H:

{(g, h) | g ∈ G, h ∈ H}

with coordinatewise multiplication

– Z× Z

• Semi-direct productG = N oH:

– N is a normal subgroup,H a subgroup

– G = NH andN ∩H = {e}
Also from 2 groupsN andH and morphism φ : H → Aut(N)

(n1, h1) ∗ (n2, h2) = (n1φh1
(n2), h1h2)

– Translations, orthogonal transformations within isometries of a eu-
clidean vector space

• Quotient group: G/N , whereN is a normal subgroup

Constructions with groups
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• V : euclidean plane, ‘say’, R2

• IsometryA : V → V with

d(Av,Aw) = d(v, w) for all v, w ∈ V

– Translation Ta with Ta(v) = v + a

– Orthogonal linear transformations

(Av,Aw) = (v, w) for all v, w ∈ V

• Subgroup of translations T is normal:

g−1Tag(v) = g−1(g(v) + a) = v + g−1(a) = Tg−1(a)(v)

• Every isometry is a composition of a translation and an orthogonal map

Related: Affine linear transformations of an affine space (‘vectorspace without
origin’)

A semidirect product: isometries of the plane
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N / G

• Left and right cosets

aN = {an | n ∈ N}, Nb = {nb | n ∈ N}

For normal subgroups: aN = Na, since aNa−1 = N

• Quotient as set: G/N = {aN | a ∈ G}
• Product:

(aN) ∗ (bN) = (ab)N

This works well since

(aN)(bN) = a(Nb)N = abNN = abN

Note that the left (resp.) right cosets partitionG. IfG is finite:

|G/N | = |G|/|N |

Quotients



9/18

/ department of mathematics and computer science July 2009

• Z, Q, R,... with addition

• Z/nZ (or Zn) with addition

• Z∗, Q∗,... the invertible elements wrt multiplication

• Likewise: Z∗8 = {1, 3, 5, 7}
• Matrix groups, such as

– The general linear group over a field K

GLn(K) : n× n invertible matrices

wrt to multiplication
– The special linear group over a field K

SLn(K) = {A ∈ GLn(K) | det(A) = 1}

– The orthogonal group over K

On(K) = {A ∈ GLn(K) | A · A> = I}

SOn(K): subgroup with extra condition det(A) = 1

Further examples
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Presentations: Groups given by generators and relations/relators

G = 〈S | R〉

G is the quotient of the free group on S by the normal closure of 〈R〉
• Cyclic group presented in such a way:

G = 〈x | x5〉

Compute with element x, but x5 can be simplified to the unit element e. In particular, the
elements are e, x, x2, x3, x4, so a cyclic group of order 5

• Coxeter group:
G = 〈x, y | x2, y2, (xy)3〉

A ‘concrete’ version of it:
x reflection in the x1-axis
y reflection in x2 =

√
3x1

Based on the observation that the product of these two reflections is a rotation over 120◦.
Or take permutations: x = (1, 2), y = (2, 3), xy = (1, 3, 2)

• Icosahedral rotation group: 〈s, t | s2, t3, (st)5〉

Details and examples: groups
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• Symmetric group Sym(Ω), where Ω is a set: all permutations/bijections
of Ω. For Ω = {1, 2, . . . , n}: Sn

• Special case: Sn

– Disjoint cycle notation:
(1, 3, 4)(2, 5) ∈ S5

– Product of transpositions:
(1, 3)(2, 3)(3, 5) ∈ S5

– The sign of a permutation: parity (±1) of the number of pairs i < j s.t. σ(i) > σ(j)

– The sign is multiplicative:
sgn(στ) = sgn(σ) · sgn(τ)

So a surjective morphism sgn : Sn → {±1}
– The sign of a (single) transposition is −1

– An: the normal subgroup of even permutations, of index 2 in Sn

• Permutation group: subgroup of some Sym(Ω)

These occur e.g. in symmetries of discrete structures

Permutation groups
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Group action: groupG acts on setX

xg

such that (xg)h = xgh

• Groups of matrices acting on vector subspaces

• On(R) acting on the unit sphere Sn−1:

vA

• A groupG acting on itself:
gh := g · h

(right multiplication with h)

Group actions
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For a groupG acting on Ω:

• G-orbit of ω ∈ Ω:
ωG = {ωg | g ∈ G}

• StabilizerGω: group elements fixing ω.

Example: SO3(R) acts on S2

• Orbit of ω ∈ S2 is S2 itself

• Stabilizer of (0, 0, 1): rotations around z-axis, which is a S1.

More on group actions
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GAP: Groups, algorithms, programming

• A free system for computational discrete algebra

• Designed for studying groups, rings, vector spaces, algebras, ...

Sample commands
• Introduce permutations:

s:=(1,2); t:=(2,3);

• Action of (1, 2, 3) on 1:

1^(1,2,3);

• Introduce a group:

s3:=Group(s,t);

• Compute the order of an element:

Order(s);

• Compute the order of the group:

Order(s3);

Some words on GAP
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Algorithms to compute with basic permutations:

• Write a permutation as a product of disjoint cycles

– If 2, 3, 1, 5, 4 are the images of 1, 2, 3, 4, 5, then you

– first trace to what cycle 1 belongs: (1, 2, 3)

– Then look at what happens to 4: (4, 5)

• Write a permutation as a product of transpositions

– For instance using (a1, a2, . . . , ak) = (ak, ak−1)(ak−1, ak−2) · · · (a2, a1)

• Determine the sign of a permutation

– Use the multiplicative property of the sign

Elementary algorithms: basics on Sn
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From generator set S to a list of elements

• Start: {e} ∪ S
• Append for each pair (g, h) of elements in list so far: gh if gh not yet in.

Of course, efficiency is an issue.

Improvements:

• Consider only products g ∗ s with g in list and s ∈ S
• Use subgroups Hi = 〈Si = {s1, . . . , si}〉. Then construct elements of Hi

from those ofHi−1 by adding whole cosets:
– Input: G = 〈S〉 and list of elements of Hi−1

– Output: list of elements of Hi

– Start: Coset-Reps:={e}
– For each g ∈Coset-Reps, do the following:
– for every generator s ∈ Si: if gs 6∈ list, then append gs to Coset-Reps, and coset Hi−1gs

to list, etc.

Elementary algorithms: list of elements
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Elements: e, r, r3, r3, s, rs, r2s, r3s,G = 〈s, r〉, subgroupH = {e, s}
• The list starts with e, s and coset representative e

• Take the next generator r, not in {e, s}, so add the coset {r, sr = r3s} to the list:

list : e, s, r, r3s

The Coset-Rep becomes {e, r}

• Next we check products of elts of Coset-Rep and generators s and r:

e ∗ s = s not new, r ∗ s = new

So add rs and add the coset {rs, srs = r3}:

list : e, s, r, r3s, rs, r3

with Coset Rep = {e, r, rs}

• And one more coset to add.

An example: the square
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1) Show that the ‘factors’G× {eH} and {eG} ×H are normal subgroups of
the direct productG×H.

2) If G = 〈x, y | x2, y2(xy)3〉, show that |G| is at most 6, straight from the
presentation.

3) Use a picture to write down symmetries of an equilateral triangle.

4) For the symmetries of the square G = 〈s, r〉 list the elements using the
above algorithm but now with generators r (rotation) and s (reflection) in
that order, and starting from the list of elements of the subgroup 〈r〉.

Some exercises
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