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• Permutation groups

• Schreier trees

• Schreier-Sims

• Applications

Permutation groups
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• Sym(Ω): symmetric group of permutations of set Ω

– Special case: Sn if Ω = {1, 2, . . . , n}
• Composition: is read from left to right:

(1, 2)(2, 3) = (1, 3, 2)

(and not (1, 2, 3))

• Permutation representation of G: homomorphism G → Sym(Ω). Each
element g ∈ G acts on Ω; notation ωg. The degree of the representation
is |Ω|.
• Permutation group: subgroup of some Sym(Ω)

Interesting situations arise when Ω has some extra structure, examples:

• (the graph on the vertices of a) tetrahedron, cube,...

• A vector space Zn
p

Permutation groups
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For each g ∈ G defineRg : G→ G by

h 7→ hg

This is a bijection. Define

G→ Sym(G), g 7→ Rg

• Homomorphism: Rh ∗Rk acts on g likeRhk:

(gh)k = g(hk)

• Injective: testRh andRk on e to find h and k.

So we find:

Theorem: Every group is a permutation group

Useful...

Every group is a permutation group
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G acts on Ω.

• G-orbit of ω ∈ Ω:
ωG = {ωg | g ∈ G}

– Orbits partition Ω; ‘being in the same orbit’ is an equivalence relation

– Transitive action: ωG = Ω

– t-transitive action: if (x1, x2, . . . , xt) and (y1, y2, . . . , yt) are t-tuples of
distinct elements, then there exists a g ∈ G with xgi = yi for every i.

– Examples: symmetries of the cube, Sn,An

• Stabilizer of ω ∈ Ω:

Gω = {g ∈ G | ωg = ω}

– subgroup ofG

– There is a relation between the cardinalities ofG,Gω and ωG...

Permutation groups: orbits and stabilizers
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Cube with labels 1, . . . , 8.
• Rotation around z-axis: s = (1, 2, 3, 4)(5, 6, 7, 8)

• Rotation around diagonal: t = (2, 5, 4)(3, 6, 8)

• Orbit of 1: ....

• Group 〈s, t〉 transitive? And 2-transitive?

• Order of 〈s, t〉?

• Order of 〈s, (2, 3, 7, 6)(1, 4, 8, 5)〉?

• Order of 〈s, (1, 2)(3, 4)(5, 6)(7, 8)〉

• What is the whole group of symmetries?

Orbits: examples
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IfG acts on Ω, then:
a)

|G|/|Gω| = |ωG|

b) In particular, ifG acts transitively:

|G|/|Gω| = |Ω|

Proof: G acts on ωG, hence we have

f : G→ ωG, g 7→ ωg

• f is surjective
•

f(g) = f(h)⇔ ωg = ωh ⇔ ωhg−1

= ω ⇔ hg−1 ∈ Gω ⇔ Gωg = Gωh

So every preimage has cardinality |Gω|, and the formulas follow.

Note that f induces a bijection between ωG and the right cosetsGω\G.

Orbits, stabilizers: relating their cardinalities
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In the same vein:

if H < G is a subgroup, then G acts transitively on the right cosets H\G by
right multiplication via:

Hh 7→ Hhg

This induces a morphism

G→ Sym(H\G)

The stabilizer of the coset H is the subgroup H itself, and the orbit of H is
H\G, so that we find:

Lagrange’s theorem:
|G|/|H| = |H\G|

In particular:

• |H| divides |G|,
• the order of any element divides |G|.

Orbits and stabilizers: Lagrange’s theorem
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G acts on Ω:

• ωG: theG-orbit of ω

• Gω: theG-stabilizer of ω

• Ωg: The fixed point set of g

Ωg = {ω ∈ Ω | ωg = ω}

Cauchy-Frobenius lemma: If the finite group G acts on the finite set Ω,
then the number of orbits equals

1

|G|
∑
g∈G

|Ωg|

Proof: Exercise, but note that ∑
ω∈Ω

1

|ωG|

is the total number of orbits.

More on stabilizers and orbits
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Strategy: use repeatedly the orbit-stabilizer formula: |G| = |Gω| · |ωG|

• The symmetry group obviously acts transitively, hence

|G| = 8 · |G1|

• Use (2, 5, 4)(3, 6, 8) to see that the G1-orbit of 2 contains precisely 3 elements. So

|G| = 8 · 3 · |G1,2|

• The ‘reflection’ (4, 5)(3, 6) shows: the G1,2-orbit of 3 contains precisely 2 elements. Hence

|G| = 8 · 3 · 2 · |G1,2,3|

• Since G1,2,3 is trivial: |G| = 48.

Exercise: The symmetry group of the cube also acts on the 6 faces. Do the computation with the

permutations of the faces.

Computing orders: strategy and example
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• The icosahedron: (20 faces, 12 vertices):

12 · 5 · 2 = 120

12 vertices, 5 vertices at distance 1 from vertex 1, and a reflection leaving
two neighbouring vertices fixed.

• The cube: The symmetry group also acts transitively on the 6 faces. Fixing
1 face, there is still an orbit of length 4. Fixing 2 neighbouring faces, there
is still an orbit of length 2, so

6 · 4 · 2 = 48

• The cube: The symmetry group acts transitively on the 4 main diagonals:

4 · 3 · 2 = 24?

What’s going on?

Computing orders: further examples
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G = 〈X〉, generator set X. Computing the orbit of ω can be done as follows:

1) orbit-to-be:={ω}

2) Have each element of X act on ω; put elements 6= ω in a set new.

3) Update orbit-to-be by taking the union with new

4) Have each element of X act on new. Update, if necessary, new by putting in the elements
found at this stage, but not yet in orbit-to-be.

5) Go back to 3),and continue.

Example G = 〈a = (1, 2, 3, 4)(5, 6, 7, 8), b = (2, 5, 4)(3, 6, 8)〉, orbit of 1

• Action of generators: 1a = 2 and 1b = 1 yielding: new = {2} and orbit-to-be = {1, 2}

• Action of generators: 2a = 3, 2b = 5 yielding: new = {3, 5} and orbit-to-be = {1, 2, 3, 5}

• Action of generators: 3a = 4, 3b = 6, 5a = 6, 5b = 4, yielding

new = {4, 6, } and orbit-to-be = {1, 2, 3, 4, 5, 6}

• Action of generators: 4a = 1, 4b = 2, 6a = 7, 6b = 8 yielding

new = {7, 8} and orbit-to-be = {1, 2, 3, 4, 5, 6, 7, 8}

Computing orbits
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Given: G ≤ Sym(Ω),G = 〈X〉, α ∈ Ω.

A Schreier tree with root α forX is a tree rooted at α and with edges labelled
by the elements ofX s.t.

• Vertices: αG

• Labelled edges: For each edge i, j with i closer to α than j there is a g ∈
X s.t. ig = j. Notation for the edge: [i, g, j].

Example: G = 〈a = (1, 2)(3, 4), b = (1, 3)(2, 4)〉, root 1.

Schreier trees can be constructed as suggested.

Schreier trees
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For ω ∈ αG, a vertex in the tree

• follow the path/edges down the tree until α is reached:

g1, g2, . . . , gk

• Then
ω = αgkgk−1···g1

• This yields a permutation tω = gkgk−1 · · · g1, expressed as a product of
generators, mapping α to ω.

From the picture we see that 1ab = 4.

Schreier trees: how to use them
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Elements ofGα can be constructed as follows.

• Take i ∈ αG, a vertex, and b ∈ X
• Then ib is a vertex

• From the Schreier tree we find

ti and tib

• Then tibt
−1
ib

is an interesting element.

Schreier trees and stabilizers (1)
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What does tibt
−1
ib

do?

• ti takes α to i

• then b takes i to ib

• and t−1
ib

takes ib back to α

So tibt
−1
ib

is an obvious element of Gα. An element of this form is called a
Schreier generator.

Theorem (Schreier’s lemma):

Gα = 〈tibt−1
ib | i ∈ α

G, b ∈ X〉

Schreier trees and stabilizers (2)
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Gα = 〈tibt−1
ib | i ∈ α

G, b ∈ X〉

Proof (of⊆):

• g = b1 · · · br ∈ Gα

• j maximal s.t. α, αb1, . . . , αb1···bj is path in Schreier tree. Then j < r.

• Let β = αb1···bj and take the Schreier generator

tβbj+1t
−1
βb

• Replace g by
(tβbj+1t

−1
βb )−1g = tβbbj+2 · · · br

• Do the same thing with this product: in the next step at least bj+2 is ab-
sorbed into a Schreier generator, etc.

Schreier’s lemma: proof
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Here is the ‘algorithm’ it leads to:

• Start with the empty set stabilizer-to-be

• For every b ∈ X and vertex i ∈ αG check if

[i, b, ib]

is an edge

• If not, add tibt
−1
ib

to stabilizer-to-be

• In the end stabilizer-to-be is a generating set forGα

Schreier trees: finding stabilizers and orders
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• Decreasing the number of generators: Gi is the pointwise stabilizer of
{1, . . . , i}.

– Work step by step through the following:

– If g, h ∈ X ∩Gi−1 with ig = ih 6= i, replaceX by

(X \ {h}) ∪ {gh−1}

(possibly remove ‘trivialities’). After this step all elements inX ∩Gi−1

but not inGi act differently on i.

• G is still generated by the outputX .

• The number of generators is at most

n−1∑
i=1

(n− i) =

(
n

2

)

Some remarks
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Orders: Stabilizers can be used to compute orders of permutation groups. Let
G act on Ω = {1, 2, . . . , n}.
• First we compute

G1 and G-orbit of 1

since |G| = |G1| · |G-orbit of 1|

• IfG1 is not trivial, compute theG1-orbit of 2 and |(G1)2|, etc.

Membership: A trivial variation can be used to test membership of an ele-
ment:

• For a subgroupG of Sn and an element g ∈ G, compare

|G| and |〈G, g〉|

There are more efficient ways of testing membership.

Schreier trees: order and membership
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Subgroup: G = 〈X〉 < Sn,H = 〈Y 〉 < Sn.

• To test ifH < G: test memberschip ofG for every element y ∈ Y
Normal subgroup: In addition:

• Test membership ofH for every x−1yx, with y ∈ Y and x ∈ X .

Schreier trees: (normal) subgroups
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• BaseB forG: B = [b1, . . . , bk] of elements in Ω s.t.

Gb1,...,bk = {1}

• Stabilizer chain wrtB:

G ≥ Gb1 ≥ Gb1,b2 ≥ · · ·Gb1,...,bk = {1}

• Strong generating set for G (wrt B): a generating set X s.t. every Gb1,...,bi

is generated by
Gb1,...,bi ∩X

The algorithm described before can be upgraded to produce a base and a cor-
responding strong generating set. Usually, this is done with the Schreier-Sims
algorithm

Bases and strong generating sets
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The algorithm described earlier allows to compute bases and (strong) gener-
ating sets for the groupG.

• Start withB = [1, 2, . . . , n]

• Compute generators of the various stabilizersG1,G1,2, etc.

• AdaptB if necessary

• Join the generators to obtain generators ofG.

Schreier-Sims is basically the above algorithm, but with avoidance of redun-
dant generators.

Computing bases and strong generating sets
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• Ingredients:

– BaseB = [b1, . . . , bk],

– Stabilizer chainG0 ≥ G1 · · ·
– Strong generating setX

• Schreier trees: Gi+1\Gi ∼ bG
i

i+1; describe the action ofGi on the cosets of
Gi+1 by a Schreier-tree Ti+1.

• Sifting: expresses a g in terms ofX or shows g 6∈ G
1) g fixes b1, . . . , bk:

If g = 1, then g ∈ G, else g 6∈ G
2) g fixes b1, . . . , bi, but moves bi+1:

If bgi+1 6∈ bG
i

i+1, then g 6∈ G, else use a Schreier tree to find

bgi+1 = bs1···sr
i+1

with s1, . . . , sr ∈ X ∩Gi. Then g(s1 · · · sr)−1 fixes b1, . . . , bi+1.

– Etc.

Writing elements as words in the generators
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1) Finish the proof of the Cauchy-Frobenius lemma.

2) Compute the order of the symmetry groups of the five regular polyhedra.

3) Construct Schreier trees for a group of your choice and find generators of
some stabilizers.

Some exercises
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