Computational Group Theory

Soria Summer School 2009 Session 2: Permutation groups

> Technische Universiteit Eindhoven University of Technology

July 2009, Hans Sterk (sterk@win.tue.nl)

Where innovation starts

TU

Permutation groups

- Permutation groups
- Schreier trees
- Schreier-Sims
- Applications

- $\operatorname{Sym}(\Omega)$: symmetric group of permutations of set Ω
 - Special case: S_n if $\Omega = \{1, 2, \dots, n\}$
- Composition: is read from left to right:

(1,2)(2,3) = (1,3,2)

(and not (1, 2, 3))

- Permutation representation of G: homomorphism $G \to \text{Sym}(\Omega)$. Each element $g \in G$ acts on Ω ; notation ω^g . The degree of the representation is $|\Omega|$.
- Permutation group: subgroup of some $\operatorname{Sym}(\Omega)$

Interesting situations arise when Ω has some extra structure, examples:

- (the graph on the vertices of a) tetrahedron, cube,...
- A vector space \mathbf{Z}_p^n

Every group is a permutation group

For each
$$g \in G$$
 define $R_g : G \to G$ by

 $h \mapsto hg$

This is a bijection. Define

$$G \to \operatorname{Sym}(G), \quad g \mapsto R_g$$

• Homomorphism: $R_h * R_k$ acts on g like R_{hk} :

(gh)k = g(hk)

• Injective: test R_h and R_k on e to find h and k.

So we find:

Theorem: Every group is a permutation group

Useful...

G acts on $\Omega.$

• G-orbit of $\omega \in \Omega$:

$$\omega^G = \{ \omega^g \mid g \in G \}$$

- Orbits partition Ω ; 'being in the same orbit' is an equivalence relation
- Transitive action: $\omega^G = \Omega$
- *t*-transitive action: if $(x_1, x_2, ..., x_t)$ and $(y_1, y_2, ..., y_t)$ are *t*-tuples of distinct elements, then there exists a $g \in G$ with $x_i^g = y_i$ for every *i*.
- Examples: symmetries of the cube, S_n , A_n
- Stabilizer of $\omega \in \Omega$:

$$G_{\omega} = \{g \in G \mid \omega^g = \omega\}$$

- subgroup of G
- There is a relation between the cardinalities of G, G_{ω} and ω^G ...

Orbits: examples

Cube with labels $1, \ldots, 8$.

- Rotation around *z*-axis: s = (1, 2, 3, 4)(5, 6, 7, 8)
- Rotation around diagonal: t = (2, 5, 4)(3, 6, 8)
- Orbit of 1:
- Group $\langle s,t \rangle$ transitive? And 2-transitive?
- Order of $\langle s, t \rangle$?
- Order of $\langle s, (2, 3, 7, 6)(1, 4, 8, 5) \rangle$?
- Order of $\langle s, (1,2)(3,4)(5,6)(7,8) \rangle$
- What is the whole group of symmetries?

Orbits, stabilizers: relating their cardinalities

If G acts on Ω , then: a)

$$|G|/|G_{\omega}| = |\omega^G|$$

b) In particular, if G acts transitively:

 $|G|/|G_{\omega}| = |\Omega|$

Proof: G acts on ω^G , hence we have

$$f:G\to\omega^G,\quad g\mapsto\omega^g$$

- *f* is surjective
- •

$$f(g) = f(h) \Leftrightarrow \omega^g = \omega^h \Leftrightarrow \omega^{hg^{-1}} = \omega \Leftrightarrow hg^{-1} \in G_\omega \Leftrightarrow G_\omega g = G_\omega h$$

So every preimage has cardinality $|G_{\omega}|$, and the formulas follow.

Note that f induces a bijection between ω^G and the right cosets $G_{\omega} \setminus G$.

In the same vein:

if H < G is a subgroup, then G acts transitively on the right cosets $H \backslash G$ by right multiplication via:

 $Hh \mapsto Hhg$

This induces a morphism

 $G \to \operatorname{Sym}(H \backslash G)$

The stabilizer of the coset H is the subgroup H itself, and the orbit of H is $H \setminus G$, so that we find:

Lagrange's theorem:

 $|G|/|H| = |H \backslash G|$

In particular:

- |H| divides |G|,
- the order of any element divides |G|.

More on stabilizers and orbits

G acts on Ω :

- ω^G : the G-orbit of ω
- G_{ω} : the G-stabilizer of ω
- Ω_g : The fixed point set of g

$$\Omega_g = \{ \omega \in \Omega \mid \omega^g = \omega \}$$

Cauchy-Frobenius lemma: If the finite group G acts on the finite set Ω , then the number of orbits equals

$$\frac{1}{|G|} \sum_{g \in G} |\Omega_g|$$

Proof: Exercise, but note that

$$\sum_{\omega \in \Omega} \frac{1}{|\omega^G|}$$

is the total number of orbits.

Computing orders: strategy and example

10/25

Strategy: use repeatedly the orbit-stabilizer formula: $|G| = |G_{\omega}| \cdot |\omega^G|$

• The symmetry group obviously acts transitively, hence

 $|G| = 8 \cdot |G_1|$

• Use (2, 5, 4)(3, 6, 8) to see that the G_1 -orbit of 2 contains precisely 3 elements. So

 $|G| = 8 \cdot 3 \cdot |G_{1,2}|$

• The 'reflection' (4,5)(3,6) shows: the $G_{1,2}$ -orbit of 3 contains precisely 2 elements. Hence

$$G| = 8 \cdot 3 \cdot 2 \cdot |G_{1,2,3}|$$

• Since $G_{1,2,3}$ is trivial: |G| = 48.

Exercise: The symmetry group of the cube also acts on the 6 faces. Do the computation with the permutations of the faces. /department of mathematics and computer science July 2009 TU/e Technische University of Technische

11/25

• The icosahedron: (20 faces, 12 vertices):

 $12 \cdot 5 \cdot 2 = 120$

12 vertices, 5 vertices at distance 1 from vertex 1, and a reflection leaving two neighbouring vertices fixed.

• The cube: The symmetry group also acts transitively on the 6 faces. Fixing 1 face, there is still an orbit of length 4. Fixing 2 neighbouring faces, there is still an orbit of length 2, so

$$6 \cdot 4 \cdot 2 = 48$$

• The cube: The symmetry group acts transitively on the 4 main diagonals:

$$4 \cdot 3 \cdot 2 = 24?$$

What's going on?

Computing orbits

- $G = \langle X \rangle$, generator set X. Computing the orbit of ω can be done as follows:
 - 1) orbit-to-be:= $\{\omega\}$
 - 2) Have each element of X act on ω ; put elements $\neq \omega$ in a set new.
 - 3) Update orbit-to-be by taking the union with new
 - 4) Have each element of *X* act on **new**. Update, if necessary, **new** by putting in the elements found at this stage, but not yet in **orbit-to-be**.
 - 5) Go back to 3), and continue.

Example $G = \langle a = (1, 2, 3, 4)(5, 6, 7, 8), b = (2, 5, 4)(3, 6, 8) \rangle$, orbit of 1

- Action of generators: $1^a = 2$ and $1^b = 1$ yielding: new = $\{2\}$ and orbit-to-be = $\{1, 2\}$
- Action of generators: $2^a = 3$, $2^b = 5$ yielding: new = $\{3, 5\}$ and orbit-to-be = $\{1, 2, 3, 5\}$
- Action of generators: $3^a = 4$, $3^b = 6$, $5^a = 6$, $5^b = 4$, yielding

 $new = \{4, 6, \}$ and $orbit-to-be = \{1, 2, 3, 4, 5, 6\}$

• Action of generators: $4^a = 1$, $4^b = 2$, $6^a = 7$, $6^b = 8$ yielding

new = $\{7, 8\}$ and **orbit-to-be** = $\{1, 2, 3, 4, 5, 6, 7, 8\}$

Schreier trees

Given: $G \leq \operatorname{Sym}(\Omega)$, $G = \langle X \rangle$, $\alpha \in \Omega$.

A Schreier tree with root α for X is a tree rooted at α and with edges labelled by the elements of X s.t.

- Vertices: α^G
- Labelled edges: For each edge i, j with i closer to α than j there is a $g \in X$ s.t. $i^g = j$. Notation for the edge: [i, g, j].

Example: $G = \langle a = (1, 2)(3, 4), b = (1, 3)(2, 4) \rangle$, root 1.

Schreier trees can be constructed as suggested.

Schreier trees: how to use them

For $\omega \in \alpha^G$, a vertex in the tree

• follow the path/edges down the tree until α is reached:

$$g_1, g_2, \ldots, g_k$$

Then

$$\omega = \alpha^{g_k g_{k-1} \cdots g_1}$$

• This yields a permutation $t_{\omega} = g_k g_{k-1} \cdots g_1$, expressed as a product of generators, mapping α to ω .

From the picture we see that $1^{ab} = 4$.

Schreier trees and stabilizers (1)

Elements of G_{α} can be constructed as follows.

- Take $i \in \alpha^G$, a vertex, and $b \in X$
- Then *i^b* is a vertex
- From the Schreier tree we find

 t_i and t_{i^b}

• Then $t_i b t_{i^b}^{-1}$ is an interesting element.

Schreier trees and stabilizers (2)

What does $t_i b t_{i^b}^{-1}$ do?

- t_i takes α to i
- then b takes i to i^b
- and $t_{i^b}^{-1}$ takes i^b back to lpha

So $t_i b t_{i^b}^{-1}$ is an obvious element of G_{α} . An element of this form is called a Schreier generator.

Theorem (Schreier's lemma):

$$G_{\alpha} = \langle t_i b t_{i^b}^{-1} \mid i \in \alpha^G, b \in X \rangle$$

$$G_{\alpha} = \langle t_i b t_{i^b}^{-1} \mid i \in \alpha^G, b \in X \rangle$$

Proof (of \subseteq):

- $g = b_1 \cdots b_r \in G_\alpha$
- j maximal s.t. $\alpha, \alpha^{b_1}, \ldots, \alpha^{b_1 \cdots b_j}$ is path in Schreier tree. Then j < r.
- Let $\beta = \alpha^{b_1 \cdots b_j}$ and take the Schreier generator

$$t_{\beta}b_{j+1}t_{\beta^b}^{-1}$$

• Replace g by

$$(t_{\beta}b_{j+1}t_{\beta^b}^{-1})^{-1}g = t_{\beta^b}b_{j+2}\cdots b_r$$

• Do the same thing with this product: in the next step at least b_{j+2} is absorbed into a Schreier generator, etc.

Schreier trees: finding stabilizers and orders

Here is the 'algorithm' it leads to:

- Start with the empty set stabilizer-to-be
- For every $b \in X$ and vertex $i \in \alpha^G$ check if

 $[i, b, i^b]$

is an edge

- If not, add $t_i b t_{i^b}^{-1}$ to stabilizer-to-be
- In the end stabilizer-to-be is a generating set for G_{lpha}

Some remarks

- Decreasing the number of generators: G^i is the pointwise stabilizer of $\{1, \ldots, i\}$.
 - Work step by step through the following:
 - If $g,h\in X\cap G^{i-1}$ with $i^g=i^h
 eq i$, replace X by

 $(X \setminus \{h\}) \cup \{gh^{-1}\}$

(possibly remove 'trivialities'). After this step all elements in $X \cap G^{i-1}$ but not in G^i act differently on i.

- G is still generated by the output X.
- The number of generators is at most

$$\sum_{i=1}^{n-1} (n-i) = \binom{n}{2}$$

20/25

Orders: Stabilizers can be used to compute orders of permutation groups. Let G act on $\Omega = \{1, 2, \dots, n\}$.

First we compute

 G_1 and G-orbit of 1

since $|G| = |G_1| \cdot |G$ -orbit of 1|

• If G_1 is not trivial, compute the G_1 -orbit of 2 and $|(G_1)_2|$, etc.

Membership: A trivial variation can be used to test membership of an element:

• For a subgroup G of S_n and an element $g \in G$, compare

|G| and $|\langle G,g
angle|$

There are more efficient ways of testing membership.

Subgroup: $G = \langle X \rangle < S_n$, $H = \langle Y \rangle < S_n$.

• To test if H < G: test memberschip of G for every element $y \in Y$

Normal subgroup: In addition:

• Test membership of H for every $x^{-1}yx$, with $y \in Y$ and $x \in X$.

Bases and strong generating sets

• Base B for $G: B = [b_1, \ldots, b_k]$ of elements in Ω s.t.

$$G_{b_1,\dots,b_k} = \{1\}$$

• Stabilizer chain wrt *B*:

$$G \ge G_{b_1} \ge G_{b_1, b_2} \ge \cdots G_{b_1, \dots, b_k} = \{1\}$$

• Strong generating set for G (wrt B): a generating set X s.t. every G_{b_1,\ldots,b_i} is generated by

 $G_{b_1,\ldots,b_i} \cap X$

The algorithm described before can be upgraded to produce a base and a corresponding strong generating set. Usually, this is done with the **Schreier-Sims algorithm**

Computing bases and strong generating sets

The algorithm described earlier allows to compute bases and (strong) generating sets for the group G.

- Start with B = [1, 2, ..., n]
- Compute generators of the various stabilizers G_1 , $G_{1,2}$, etc.
- Adapt B if necessary
- Join the generators to obtain generators of G.

Schreier-Sims is basically the above algorithm, but with avoidance of redundant generators.

• Ingredients:

- Base $B = [b_1, ..., b_k]$,
- Stabilizer chain $G^0 \ge G^1 \cdots$
- Strong generating set X
- Schreier trees: $G^{i+1} \setminus G^i \sim b_{i+1}^{G^i}$; describe the action of G^i on the cosets of G^{i+1} by a Schreier-tree T_{i+1} .
- Sifting: expresses a g in terms of X or shows $g \not\in G$

1)
$$g$$
 fixes b_1, \ldots, b_k :
If $g = 1$, then $g \in G$, else $g \notin G$
2) g fixes b_1, \ldots, b_i , but moves b_{i+1} :
If $b_{i+1}^g \notin b_{i+1}^{G^i}$, then $g \notin G$, else use a Schreier tree to find
 $b_{i+1}^g = b_{i+1}^{s_1 \cdots s_r}$
with $s_1, \ldots, s_r \in X \cap G^i$. Then $g(s_1 \cdots s_r)^{-1}$ fixes b_1, \ldots, b_{i+1} .
- Etc.

Some exercises

- 1) Finish the proof of the Cauchy-Frobenius lemma.
- 2) Compute the order of the symmetry groups of the five regular polyhedra.
- 3) Construct Schreier trees for a group of your choice and find generators of some stabilizers.

