Computational Group Theory

Soria Summer School 2009
Session 2: Permutation groups

Permutation groups

- Permutation groups
- Schreier trees
- Schreier-Sims
- Applications

Permutation groups

- $\operatorname{Sym}(\Omega)$: symmetric group of permutations of set Ω
- Special case: S_{n} if $\Omega=\{1,2, \ldots, n\}$
- Composition: is read from left to right:

$$
(1,2)(2,3)=(1,3,2)
$$

(and not (1, 2, 3))

- Permutation representation of G : homomorphism $G \rightarrow \operatorname{Sym}(\Omega)$. Each element $g \in G$ acts on Ω; notation ω^{g}. The degree of the representation is $|\Omega|$.
- Permutation group: subgroup of some $\operatorname{Sym}(\Omega)$

Interesting situations arise when Ω has some extra structure, examples:

- (the graph on the vertices of a) tetrahedron, cube,...
- A vector space \mathbf{Z}_{p}^{n}

Every group is a permutation group

For each $g \in G$ define $R_{g}: G \rightarrow G$ by

$$
h \mapsto h g
$$

This is a bijection. Define

$$
G \rightarrow \operatorname{Sym}(G), \quad g \mapsto R_{g}
$$

- Homomorphism: $R_{h} * R_{k}$ acts on g like $R_{h k}$:

$$
(g h) k=g(h k)
$$

- Injective: test R_{h} and R_{k} on e to find h and k.

So we find:
Theorem: Every group is a permutation group
Useful...

Permutation groups: orbits and stabilizers

G acts on Ω.

- G-orbit of $\omega \in \Omega$:

$$
\omega^{G}=\left\{\omega^{g} \mid g \in G\right\}
$$

- Orbits partition Ω; 'being in the same orbit' is an equivalence relation
- Transitive action: $\omega^{G}=\Omega$
- t-transitive action: if $\left(x_{1}, x_{2}, \ldots, x_{t}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{t}\right)$ are t-tuples of distinct elements, then there exists a $g \in G$ with $x_{i}^{g}=y_{i}$ for every i.
- Examples: symmetries of the cube, S_{n}, A_{n}
- Stabilizer of $\omega \in \Omega$:

$$
G_{\omega}=\left\{g \in G \mid \omega^{g}=\omega\right\}
$$

- subgroup of G
- There is a relation between the cardinalities of G, G_{ω} and $\omega^{G} \ldots$

Orbits: examples

Cube with labels $1, \ldots, 8$.

- Rotation around z-axis: $s=(1,2,3,4)(5,6,7,8)$
- Rotation around diagonal: $t=(2,5,4)(3,6,8)$
- Orbit of 1:
- Group $\langle s, t\rangle$ transitive? And 2-transitive?
- Order of $\langle s, t\rangle$?
- Order of $\langle s,(2,3,7,6)(1,4,8,5)\rangle$?
- Order of $\langle s,(1,2)(3,4)(5,6)(7,8)\rangle$
-What is the whole group of symmetries?

Orbits, stabilizers: relating their cardinalities

If G acts on Ω, then:
a)

$$
|G| /\left|G_{\omega}\right|=\left|\omega^{G}\right|
$$

b) In particular, if G acts transitively:

$$
|G| /\left|G_{\omega}\right|=|\Omega|
$$

Proof: G acts on ω^{G}, hence we have

$$
f: G \rightarrow \omega^{G}, \quad g \mapsto \omega^{g}
$$

- f is surjective

$$
f(g)=f(h) \Leftrightarrow \omega^{g}=\omega^{h} \Leftrightarrow \omega^{h g^{-1}}=\omega \Leftrightarrow h g^{-1} \in G_{\omega} \Leftrightarrow G_{\omega} g=G_{\omega} h
$$

So every preimage has cardinality $\left|G_{\omega}\right|$, and the formulas follow.
Note that f induces a bijection between ω^{G} and the right cosets $G_{\omega} \backslash G$.

Orbits and stabilizers: Lagrange's theorem

In the same vein:
if $H<G$ is a subgroup, then G acts transitively on the right cosets $H \backslash G$ by right multiplication via:

$$
H h \mapsto H h g
$$

This induces a morphism

$$
G \rightarrow \operatorname{Sym}(H \backslash G)
$$

The stabilizer of the coset H is the subgroup H itself, and the orbit of H is $H \backslash G$, so that we find:
Lagrange's theorem:

$$
|G| /|H|=|H \backslash G|
$$

In particular:

- $|H|$ divides $|G|$,
- the order of any element divides $|G|$.

More on stabilizers and orbits

G acts on Ω :

- ω^{G} : the G-orbit of ω
- G_{ω} : the G-stabilizer of ω
- Ω_{g} : The fixed point set of g

$$
\Omega_{g}=\left\{\omega \in \Omega \mid \omega^{g}=\omega\right\}
$$

Cauchy-Frobenius lemma: If the finite group G acts on the finite set Ω, then the number of orbits equals

$$
\frac{1}{|G|} \sum_{g \in G}\left|\Omega_{g}\right|
$$

Proof: Exercise, but note that

$$
\sum_{\omega \in \Omega} \frac{1}{\left|\omega^{G}\right|}
$$

is the total number of orbits.

Computing orders: strategy and example

Strategy: use repeatedly the orbit-stabilizer formula: $|G|=\left|G_{\omega}\right| \cdot\left|\omega^{G}\right|$

- The symmetry group obviously acts transitively, hence

$$
|G|=8 \cdot\left|G_{1}\right|
$$

- Use $(2,5,4)(3,6,8)$ to see that the G_{1}-orbit of 2 contains precisely 3 elements. So

$$
|G|=8 \cdot 3 \cdot\left|G_{1,2}\right|
$$

- The 'reflection' $(4,5)(3,6)$ shows: the $G_{1,2}$-orbit of 3 contains precisely 2 elements. Hence

$$
|G|=8 \cdot 3 \cdot 2 \cdot\left|G_{1,2,3}\right|
$$

- Since $G_{1,2,3}$ is trivial: $|G|=48$.

Exercise: The symmetry group of the cube also acts on the 6 faces. Do the computation with the permutations of the faces.

Computing orders: further examples

- The icosahedron: (20 faces, 12 vertices):

$$
12 \cdot 5 \cdot 2=120
$$

12 vertices, 5 vertices at distance 1 from vertex 1, and a reflection leaving two neighbouring vertices fixed.

- The cube: The symmetry group also acts transitively on the 6 faces. Fixing 1 face, there is still an orbit of length 4 . Fixing 2 neighbouring faces, there is still an orbit of length 2 , so

$$
6 \cdot 4 \cdot 2=48
$$

- The cube: The symmetry group acts transitively on the 4 main diagonals:

$$
4 \cdot 3 \cdot 2=24 ?
$$

What's going on?

Computing orbits

$G=\langle X\rangle$, generator set X. Computing the orbit of ω can be done as follows:

1) orbit-to-be:=\{ $=\omega\}$
2) Have each element of X act on ω; put elements $\neq \omega$ in a set new.
3) Update orbit-to-be by taking the union with new
4) Have each element of X act on new. Update, if necessary, new by putting in the elements found at this stage, but not yet in orbit-to-be.
5) Go back to 3), and continue.

Example $G=\langle a=(1,2,3,4)(5,6,7,8), b=(2,5,4)(3,6,8)\rangle$, orbit of 1

- Action of generators: $1^{a}=2$ and $1^{b}=1$ yielding: new $=\{2\} \quad$ and \quad orbit-to-be $=\{1,2\}$
- Action of generators: $2^{a}=3,2^{b}=5$ yielding: new $=\{3,5\}$ and orbit-to-be $=\{1,2,3,5\}$
- Action of generators: $3^{a}=4,3^{b}=6,5^{a}=6,5^{b}=4$, yielding

$$
\text { new }=\{4,6,\} \quad \text { and } \quad \text { orbit-to-be }=\{1,2,3,4,5,6\}
$$

- Action of generators: $4^{a}=1,4^{b}=2,6^{a}=7,6^{b}=8$ yielding

$$
\text { new }=\{7,8\} \quad \text { and } \quad \text { orbit-to-be }=\{1,2,3,4,5,6,7,8\}
$$

Schreier trees

Given: $G \leq \operatorname{Sym}(\Omega), G=\langle X\rangle, \alpha \in \Omega$.
A Schreier tree with root α for X is a tree rooted at α and with edges labelled by the elements of X s.t.

- Vertices: α^{G}
- Labelled edges: For each edge i, j with i closer to α than j there is a $g \in$ X s.t. $i^{g}=j$. Notation for the edge: $[i, g, j]$.
Example: $G=\langle a=(1,2)(3,4), b=(1,3)(2,4)\rangle$, root 1 .

Schreier trees can be constructed as suggested.

Schreier trees: how to use them

For $\omega \in \alpha^{G}$, a vertex in the tree

- follow the path/edges down the tree until α is reached:

$$
g_{1}, g_{2}, \ldots, g_{k}
$$

- Then

$$
\omega=\alpha^{g_{k} g_{k-1} \cdots g_{1}}
$$

- This yields a permutation $t_{\omega}=g_{k} g_{k-1} \cdots g_{1}$, expressed as a product of generators, mapping α to ω.

From the picture we see that $1^{a b}=4$.

Schreier trees and stabilizers (1)

Elements of G_{α} can be constructed as follows.

- Take $i \in \alpha^{G}$, a vertex, and $b \in X$
- Then i^{b} is a vertex
- From the Schreier tree we find

$$
t_{i} \text { and } t_{i^{b}}
$$

- Then $t_{i} b t_{i^{b}}^{-1}$ is an interesting element.

Schreier trees and stabilizers (2)

What does $t_{i} b t_{i^{b}}^{-1}$ do?

- t_{i} takes α to i
- then b takes i to i^{b}
- and $t_{i^{b}}^{-1}$ takes i^{b} back to α

So $t_{i} b t_{i^{b}}^{-1}$ is an obvious element of G_{α}. An element of this form is called a Schreier generator.
Theorem (Schreier's lemma):

$$
G_{\alpha}=\left\langle t_{i} b t_{i^{b}}^{-1} \mid i \in \alpha^{G}, b \in X\right\rangle
$$

Schreier's lemma: proof

$$
G_{\alpha}=\left\langle t_{i} b t_{i^{b}}^{-1} \mid i \in \alpha^{G}, b \in X\right\rangle
$$

Proof (of \subseteq):

- $g=b_{1} \cdots b_{r} \in G_{\alpha}$
- j maximal s.t. $\alpha, \alpha^{b_{1}}, \ldots, \alpha^{b_{1} \cdots b_{j}}$ is path in Schreier tree. Then $j<r$.
- Let $\beta=\alpha^{b_{1} \cdots b_{j}}$ and take the Schreier generator

$$
t_{\beta} b_{j+1} t_{\beta^{b}}^{-1}
$$

- Replace g by

$$
\left(t_{\beta} b_{j+1} t_{\beta^{b}}^{-1}\right)^{-1} g=t_{\beta^{b}} b_{j+2} \cdots b_{r}
$$

- Do the same thing with this product: in the next step at least b_{j+2} is absorbed into a Schreier generator, etc.

Schreier trees: finding stabilizers and orders

Here is the 'algorithm' it leads to:

- Start with the empty set stabilizer-to-be
- For every $b \in X$ and vertex $i \in \alpha^{G}$ check if

$$
\left[i, b, i^{b}\right]
$$

is an edge

- If not, add $t_{i} b t_{i^{b}}^{-1}$ to stabilizer-to-be
- In the end stabilizer-to-be is a generating set for G_{α}

Some remarks

- Decreasing the number of generators: G^{i} is the pointwise stabilizer of $\{1, \ldots, i\}$.
- Work step by step through the following:
- If $g, h \in X \cap G^{i-1}$ with $i^{g}=i^{h} \neq i$, replace X by

$$
(X \backslash\{h\}) \cup\left\{g h^{-1}\right\}
$$

(possibly remove 'trivialities'). After this step all elements in $X \cap G^{i-1}$ but not in G^{i} act differently on i.

- G is still generated by the output X.
- The number of generators is at most

$$
\sum_{i=1}^{n-1}(n-i)=\binom{n}{2}
$$

Schreier trees: order and membership

Orders: Stabilizers can be used to compute orders of permutation groups. Let G act on $\Omega=\{1,2, \ldots, n\}$.

- First we compute

$$
G_{1} \quad \text { and } \quad G \text {-orbit of } 1
$$

since $|G|=\left|G_{1}\right| \cdot \mid G$-orbit of $1 \mid$

- If G_{1} is not trivial, compute the G_{1}-orbit of 2 and $\left|\left(G_{1}\right)_{2}\right|$, etc.

Membership: A trivial variation can be used to test membership of an element:

- For a subgroup G of S_{n} and an element $g \in G$, compare

$$
|G| \quad \text { and } \quad|\langle G, g\rangle|
$$

There are more efficient ways of testing membership.

Schreier trees: (normal) subgroups

Subgroup: $G=\langle X\rangle<S_{n}, H=\langle Y\rangle<S_{n}$.

- To test if $H<G$: test memberschip of G for every element $y \in Y$

Normal subgroup: In addition:

- Test membership of H for every $x^{-1} y x$, with $y \in Y$ and $x \in X$.

Bases and strong generating sets

- Base B for G : $B=\left[b_{1}, \ldots, b_{k}\right]$ of elements in Ω s.t.

$$
G_{b_{1}, \ldots, b_{k}}=\{1\}
$$

- Stabilizer chain wrt B :

$$
G \geq G_{b_{1}} \geq G_{b_{1}, b_{2}} \geq \cdots G_{b_{1}, \ldots, b_{k}}=\{1\}
$$

- Strong generating set for G (wrt B): a generating set X s.t. every $G_{b_{1}, \ldots, b_{i}}$ is generated by

$$
G_{b_{1}, \ldots, b_{i}} \cap X
$$

The algorithm described before can be upgraded to produce a base and a corresponding strong generating set. Usually, this is done with the Schreier-Sims algorithm

Computing bases and strong generating sets

The algorithm described earlier allows to compute bases and (strong) generating sets for the group G.

- Start with $B=[1,2, \ldots, n]$
- Compute generators of the various stabilizers $G_{1}, G_{1,2}$, etc.
- Adapt B if necessary
- Join the generators to obtain generators of G.

Schreier-Sims is basically the above algorithm, but with avoidance of redundant generators.

Writing elements as words in the generators

- Ingredients:
- Base $B=\left[b_{1}, \ldots, b_{k}\right]$,
- Stabilizer chain $G^{0} \geq G^{1} \ldots$
- Strong generating set X
- Schreier trees: $G^{i+1} \backslash G^{i} \sim b_{i+1}^{G^{i}}$; describe the action of G^{i} on the cosets of G^{i+1} by a Schreier-tree T_{i+1}.
- Sifting: expresses a g in terms of X or shows $g \notin G$

1) g fixes b_{1}, \ldots, b_{k} :

If $g=1$, then $g \in G$, else $g \notin G$
2) g fixes b_{1}, \ldots, b_{i}, but moves b_{i+1} :

If $b_{i+1}^{g} \notin b_{i+1}^{G^{i}}$, then $g \notin G$, else use a Schreier tree to find

$$
b_{i+1}^{g}=b_{i+1}^{s_{1} \cdots s_{r}}
$$

with $s_{1}, \ldots, s_{r} \in X \cap G^{i}$. Then $g\left(s_{1} \cdots s_{r}\right)^{-1}$ fixes b_{1}, \ldots, b_{i+1}.

- Etc.

Some exercises

1) Finish the proof of the Cauchy-Frobenius lemma.
2) Compute the order of the symmetry groups of the five regular polyhedra.
3) Construct Schreier trees for a group of your choice and find generators of some stabilizers.
