
Where innovation starts

Computational Group
Theory

Soria Summer School 2009
Session 3: Coset enumeration

July 2009, Hans Sterk (sterk@win.tue.nl)

mailto:sterk@win.tue.nl


2/25

/ department of mathematics and computer science July 2009

• What is coset enumeration about?

• The set-up for coset enumeration

– Subgroup tables

– Relator tables

– Coset table

• How to fill the tables

• Examples

• Theorem on coset enumeration

Coset enumeration: contents
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Given groupG given by generators and relators, like 〈x, y | x2, y2, (xy)3〉
• Coset enumeration: a procedure to obtain the permutation representation

ofG on the set of cosets of a subgroup of finite index, so a morphism

G→ Sym(H\G)

• Todd-Coxeter coset enumeration: is what we discuss here; named after
Todd and Coxeter.

What is coset enumeration?
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• Start:

– G: group given by generators (X) and relators (R);

– H: subgroup 〈Y 〉; each element of Y is expression in generators ofX

• Intermediate process: construction of various tables

• Output: a table containing the (right) cosets and the action of the genera-
tors on the right cosets

Example:
coset x y
1 1 2
2 3 1
3 2 3

Here,H is labeled by 1, and there are two more cosets:

Hy and Hyx

The table describes a permutation representation ofG intoS3, with xmapped
to (2, 3) and y mapped to (1, 2).

Coset enumeration: basic set-up
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G = 〈x, y | x2, y2, (xy)3〉means

• Group elements are ‘words’ in x, x−1, y, y−1, like

xy−1x3

• The relators tell you which words represent e:

xy−1x3 = xy−1x

since x2 = e

Formally: quotient of the free group on x and y by the normal closure of the
subgroup generated by x2, y2, (xy)3

Presentations of groups: some basics
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• Free group:
Group F is free on its subsetX if every map

φ : X → Γ

into a group Γ extends in a unique way to a morphism

Φ : F → Γ

• Fact:
Free groups F1 onX1 and F2 onX2 are isomorphic iff |X1| = |X2|.
• Construction:

Free groups can also be constructed explicitly

Free groups (1)
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• Set of symbolsX: a (finite) set of symbols
– X−1: the set of symbols x−1 where x ∈ X
– AX or A: X ∪X−1

• Strings or words:
x1x2 · · · xr

with each xi ∈ A. Empty string: e. Words can be concatenated.

• Equivalence relation on words:
– Direct equivalence of v and w: if one can be obtained from the other by insertion or

deletion of a subword x x−1 for x ∈ A
– v ∼ w: equivalence relation generated by direct equivalence, so if there is a sequence

v = v0, v1, . . . , vr = w

s.t. vi and vi+1 are directly equivalent.

• Candidate free group FX: equivalence classes [v] with multiplication

[u] [v] = [uv]

Free groups (2): outline of construction
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Theorem:

• FX is free group on [X ] = {[x] | x ∈ X}
• The mapX → [X ], x 7→ [x] is bijective

Idea of proof

• Given a map φ : X → Γ into group Γ, extend to FX:

Φ([xs1
1 x

s2
2 · · · xsr

r ]) = φ(x1)
s1φ(x2)

s2 · · ·φ(xr)
sr

Show that it is well-defined and unique.

• Then deal with a given map [X ]→ Γ.

• X → [X ] is bijective: Take an injective mapX → Γ and apply the above

Free groups (3): construction
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G = 〈X | R〉 is defined as
FX/N

whereN is the normal closure of 〈R〉.
Universal property:
Given:

• any mapφ : X → Γ into group Γ, with obvious extension toA = X∪X−1

• φ(x1) · · ·φ(xr) = eΓ for all x1 · · · xr ∈ R
Then there is a unique morphism

Φ : G→ Γ

extending φ

Group presentations
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• G = 〈X | R〉
• H = 〈Y 〉 where Y consists of words inX

Todd-Coxeter enumeration is based on (here cosets are labeled by integers):

• TC-1: 1h = 1 for every h ∈ Y
• TC-2: jr = j for every coset j and every relator r ∈ R
• TC-3: ig = j ⇔ i = jg−1

for all cosets i, j and g ∈ X

Coset enumeration: basic set-up (ctd)
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In the process 3 kinds of tables are produced:

• Subgroup tables: is made for every generator of the subgroup. Every such
table contains information on

– the specific generator of the subgroup, expressed in terms of the gen-
erators of the group

– the action of the various factors on the subgroup

• Relator tables: for every relator a table is constructed containing informa-
tion on

– the specific relator expressed in terms of the generators of the group

– the action of the various factors of the relator on the subgroup

• Coset table: contains (in the end) all cosets plus the action of the genera-
tors ofH on the cosets ofH

The tables are gradually filled in the process. During the process it may turn
out that two possibly different cosets actually coincide.

Coset enumeration: various tables
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For every generator h = gj1
· · · gjl

in Y ofH, with gji
∈ X ∪X−1 a table with

one row is constructed

• The l+ 1 columns are indexed by ‘subgroup’ and the elements gj1
, . . . , gjl

• A row of length l + 1, starting and ending with 1 representing cosetH

– 2nd column: integer representing cosetHgj1

– 3rd column: integer representing cosetHgj1
gj2

– etc.

Integers have to be found out during the process.

Example of a partially filled subgroup table for a generator x2:

subgroup x x2

1 2 1

Subgroup tables
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For every relator r = gi1 · · · gik ∈ R, with gij ∈ X ∪X−1, a relation table with
k + 1 columns is constructed:

• The k + 1 columns are indexed by ‘relator’, gi1 . . . gik

• each row starts and ends with the same integer (representing a coset).

• The row starting with integer t is filled with the images of the coset corre-
sponding to this integer under gi1, gi1gi2, . . . , gi1 · · · gik

• The number of rows is determined during the process

Example of a partially filled relator table for a relator (xy)3:

relator x y x y x y
1 1 2 3 4 5 1
2 3 4 5 1 1 2
3 3
4 4
5 5

the last k of which are indexed by gi1, . . . , gik.

Relator tables
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The coset table records (at the end of the process) the permutation represen-
tation.

• The coset table has |X| + 1 columns

• The columns are indexed by ‘coset’, and the generators inX

• The first column contains the (integers representing the) cosets

• The g-th entry of row k contains kg

coset x y
1 1 2
2 3 1
3 2 3

Sometimes columns forX−1 are added

Coset table
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• We fill the subgroup and relator tables so that

– ifH ′′ is in the column indexed by g andH ′ is in the column directly left
from g, thenH ′g = H ′′.

– It is sometimes convenient to read this asH ′ = H ′′g−1.

• Update the coset table whenever necessary

– In particular, if an entry mg is not (yet) one of the known cosets, we
fill it with a new number s, and add a row starting with s to the relator
tables and the coset table.

– Similar action is taken for a spot corresponding tomg−1

• Scan for ‘coincidences’: two integers turn out to represent the same coset.

Time for an example...

How to fill the tables?
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GroupG and subgroupH:

• G = 〈x, y | x2, y2, (xy)3〉, so

X = {x, y} and R = {x2, y2, (xy)3}

• H = 〈x〉, so Y = {x}
There is one subgroup table, it corresponds toHx = H:

subgroup x
1 1

There are 3 relator tables, and 1 coset table:

x x
1 1 1
2 2
3 3
4 4
5 5

y y
1 2 1
2 2
3 3
4 4
5 5

x y x y x y
1 1 2 3 4 5 1
2 2
3 3
4 4
5 5

coset x y
1 1 2
2 3
3 4
4 5
5 1

First rows are filled plus the coset table so far.

Coset enumeration: example 1
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x x
1 1 1
2 3 2
3 3
4 5 4
5 5

y y
1 2 1
2 1 2
3 4 3
4 4
5 1 5

x y x y x y
1 1 2 3 4 5 1
2 3 4 5 1 1 2
3 3
4 4
5 5

coset x y
1 1 2
2 3
3 4
4 5

At this point:

• 2y = 1 (2nd relator table) and 5y = 1 (3rd relator table), so ‘2 = 5’, so we remove row 5

• From the 1st relator table:

– 2x = 3

– 5x = 4

Since ‘2 = 5’ we conclude ‘3 = 4’ and get another collapse.

We are left with:

x x
1 1 1
2 3 2
3 2 3

y y
1 2 1
2 1 2
3 4 3

x y x y x y
1 1 2 3 4 5 1
2 3 4 5 1 1 2
3 2 1 1 2 3 3

coset x y
1 1 2
2 3 1
3 2 4

Coset enumeration: example 1 (2)
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The final coset table
coset x y

1 1 2
2 3 1
3 2 4

yields a permutation representation ofG into S3 with

x 7→ (2, 3) and y 7→ (1, 2)

Since

• H is of index 3

• H has order≤ 2, soG has order≤ 6

our representation is an isomorphism

Coset enumeration: example 1 (finish)
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F:=FreeGroup("x","y"); %free group on x and y
x:=F.x;
y:=F.y;
rels:=[x^2,y^2,(x*y)^3];
G:=F/rels;
gens:=GeneratorsOfGroup(G);
xG:=gens[1];
yG:=gens[2];
H:=Subgroup(G,[xG]);
ct:=CosetTable(G,H);
# g1, g1^-1, g2, ...
Display(TransposedMat(ct));
[ [ 1, 1, 2, 2 ],
[ 3, 3, 1, 1 ],
[ 2, 2, 3, 3 ] ]

# g1, g2, ...
Display(TransposedMat(ct{[1,3..3]}));
[ [ 1, 2],
[ 3, 1 ],
[ 2, 3 ] ]

Same example in GAP
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G = 〈a, b | baba−2, abab−2〉
F:=FreeGroup("a","b"); %<free group on the generators [ a, b ]>
a:=F.a; %a
b:=F.b; %b
rels:=[b*a*b*a^-1*a^-1,a*b*a*b^-1*b^-1]; %[ b*a*b*a^-2, a*b*a*b^-2 ]
G:=F/rels; %<fp group on the generators [ a, b ]>
gens:=GeneratorsOfGroup(G); %[ a, b ]
aG:=gens[1]; %a
bG:=gens[2]; %b
H:=Subgroup(G,[aG*aG]); %Group([ a^2 ])
ct:=CosetTable(G,H);
[ [ 2, 1, 4, 8, 6, 7, 3, 5 ], [ 2, 1, 7, 3, 8, 5, 6, 4 ],
[ 3, 5, 6, 1, 4, 2, 8, 7 ], [ 4, 6, 1, 5, 2, 3, 8, 7 ] ]

Display(TransposedMat(ct{[1,3..3]}));
[ [ 2, 3 ],
[ 1, 5 ],
[ 4, 6 ],
[ 8, 1 ],
[ 6, 4 ],
[ 7, 2 ],
[ 3, 8 ],
[ 5, 7 ] ]

Left column: action of a; right column: action of b. Image has order 24.

Coset enumeration: another example
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Theorem:
Given: H of finite index inG. Any Todd-Coxeter enumeration in which

a) each row is completely filled (or deleted) in finitely many steps

b) there are only finitely many steps between two scannings of the tables for
coincidences,

will terminate.

Proof: The basic idea is to show that if the procedure does not terminate, the
number of rows increases beyond any bound, yielding a transitive permuta-
tion action on an infinite set withH in the stabilizer, contradicting thatH has
finite index inG.

Theorem on Todd-Coxeter enumeration
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Step 1: first rows of any table are stable after finitely many steps

• After finitely many steps all entries are filled.

• The first entry, 1, is ‘stable’, and the other entries can only change into
smaller positive integers

• So the first rows remain stable after finitely many steps

Sketch proof: step 1
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Step 1: first rows of any table are stable after finitely many steps

Step 2: Induction step, from k − 1 stable rows to k stable rows

• Suppose first k− 1 rows of every table are stable after finitely many steps

• Suppose a is the first entry of a k-th row

• Then a must have been defined as some bg for some b < a in the stable
rows. (Possibly b has been replaced at some point by a smaller integer due
to collapses.)

• So a occurs among the stable k − 1 rows and is therefore stable.

• So this k-th row must be stable after a finite number of steps.

Sketch proof: step 2
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Step 1: first rows of any table are stable after finitely many steps

Step 2: Induction step, from k − 1 stable rows to k stable rows

Step 3: towards a contradiction
If the procedure does not end, then the number of rows must grow beyond
any bound, yielding a transitive permutation action on an infinite set with H
in the stabilizer, contradicting thatH has finite index inG.

Sketch proof: step 3
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G = 〈a, b | a3, b2, (ab)3〉

• Perform coset enumeration with respect toH = 〈a〉.
• Use this to show thatG ∼= A4.

Exercise
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