Computational Group Theory

Soria Summer School 2009 Session 3: Coset enumeration

Technische Universiteit
Eindhoven
University of Technology

July 2009, Hans Sterk (sterk@win.tue.nl)

Where innovation starts

TU

Coset enumeration: contents

- What is coset enumeration about?
- The set-up for coset enumeration
 - Subgroup tables
 - Relator tables
 - Coset table
- How to fill the tables
- Examples
- Theorem on coset enumeration

Given group G given by generators and relators, like $\langle x, y \mid x^2, y^2, (xy)^3 \rangle$

• Coset enumeration: a procedure to obtain the permutation representation of G on the set of cosets of a subgroup of finite index, so a morphism

$$G \to \operatorname{Sym}(H \backslash G)$$

• Todd-Coxeter coset enumeration: is what we discuss here; named after Todd and Coxeter.

• Start:

- G: group given by generators (X) and relators (R);
- H: subgroup $\langle Y \rangle {\rm ;}$ each element of Y is expression in generators of X
- Intermediate process: construction of various tables
- Output: a table containing the (right) cosets and the action of the generators on the right cosets

Example:

coset	x	y
1	1	2
2	3	1
3	2	3

Here, H is labeled by 1, and there are two more cosets:

Hy and Hyx

The table describes a permutation representation of G into S_3 , with x mapped to (2,3) and y mapped to (1,2).

Presentations of groups: some basics

5/25

- $G = \langle x,y ~|~ x^2,y^2,(xy)^3 \rangle \text{ means}$
 - Group elements are 'words' in x, x^{-1} , y, y^{-1} , like

 $xy^{-1}x^{3}$

• The relators tell you which words represent *e*:

$$xy^{-1}x^3 = xy^{-1}x$$

since $x^2 = e$

Formally: quotient of the free group on x and y by the normal closure of the subgroup generated by $x^2,\,y^2,\,(xy)^3$

Free groups (1)

• Free group:

Group ${\cal F}$ is free on its subset X if every map

 $\phi:X\to \Gamma$

into a group Γ extends in a unique way to a morphism

 $\Phi: F \to \Gamma$

• Fact:

Free groups F_1 on X_1 and F_2 on X_2 are isomorphic iff $|X_1| = |X_2|$.

• Construction:

Free groups can also be constructed explicitly

Free groups (2): outline of construction

7/25

• Set of symbols X: a (finite) set of symbols

- X^{-1} : the set of symbols x^{-1} where $x \in X$
- A_X or $A: X \cup X^{-1}$
- Strings or words:

 $x_1x_2\cdots x_r$

with each $x_i \in A$. Empty string: *e*. Words can be concatenated.

• Equivalence relation on words:

- Direct equivalence of v and w: if one can be obtained from the other by insertion or deletion of a subword $x\,x^{-1}$ for $x\in A$
- $-v \sim w$: equivalence relation generated by direct equivalence, so if there is a sequence

$$v = v_0, v_1, \dots, v_r = w$$

s.t. v_i and v_{i+1} are directly equivalent.

• Candidate free group F_X : equivalence classes [v] with multiplication

$$\left[u\right]\left[v\right] = \left[uv\right]$$

July 2009

Free groups (3): construction

Theorem:

- F_X is free group on $[X] = \{ [x] \mid x \in X \}$
- The map $X \to [X]$, $x \mapsto [x]$ is bijective

Idea of proof

• Given a map $\phi: X \to \Gamma$ into group Γ , extend to F_X :

$$\Phi([x_1^{s_1}x_2^{s_2}\cdots x_r^{s_r}]) = \phi(x_1)^{s_1}\phi(x_2)^{s_2}\cdots \phi(x_r)^{s_r}$$

Show that it is well-defined and unique.

- Then deal with a given map $[X] \to \Gamma$.
- $X \to [X]$ is bijective: Take an injective map $X \to \Gamma$ and apply the above

$G = \langle X \ \mid \ R \rangle$ is defined as

 F_X/N

where N is the normal closure of $\langle R\rangle.$

Universal property:

Given:

- any map $\phi:X\to \Gamma$ into group Γ , with obvious extension to $A=X\cup X^{-1}$
- $\phi(x_1) \cdots \phi(x_r) = e_{\Gamma}$ for all $x_1 \cdots x_r \in R$

Then there is a unique morphism

 $\Phi:G\to \Gamma$

extending ϕ

10/25

- $G = \langle X \mid R \rangle$
- $H = \langle Y \rangle$ where Y consists of words in X

Todd-Coxeter enumeration is based on (here cosets are labeled by integers):

- TC-1: $1^h = 1$ for every $h \in Y$
- TC-2: $j^r = j$ for every coset j and every relator $r \in R$
- TC-3: $i^g = j \Leftrightarrow i = j^{g^{-1}}$ for all cosets i, j and $g \in X$

Coset enumeration: various tables

In the process 3 kinds of tables are produced:

- Subgroup tables: is made for every generator of the subgroup. Every such table contains information on
 - the specific generator of the subgroup, expressed in terms of the generators of the group
 - the action of the various factors on the subgroup
- **Relator tables:** for every relator a table is constructed containing information on
 - the specific relator expressed in terms of the generators of the group
 - the action of the various factors of the relator on the subgroup
- Coset table: contains (in the end) all cosets plus the action of the generators of H on the cosets of H

The tables are gradually filled in the process. During the process it may turn out that two possibly different cosets actually coincide.

Subgroup tables

For every generator $h = g_{j_1} \cdots g_{j_l}$ in Y of H, with $g_{j_i} \in X \cup X^{-1}$ a table with one row is constructed

- The l+1 columns are indexed by 'subgroup' and the elements g_{j_1},\ldots,g_{j_l}
- A row of length l+1, starting and ending with 1 representing coset H
 - 2nd column: integer representing coset Hg_{j_1}
 - 3rd column: integer representing coset $Hg_{j_1}g_{j_2}$
 - etc.

Integers have to be found out during the process.

Example of a partially filled subgroup table for a generator x^2 :

subgroup	x	x^2
1	2	1

Relator tables

For every relator $r = g_{i_1} \cdots g_{i_k} \in R$, with $g_{i_j} \in X \cup X^{-1}$, a relation table with k + 1 columns is constructed:

- The k+1 columns are indexed by 'relator', $g_{i_1}\ldots g_{i_k}$
- each row starts and ends with the same integer (representing a coset).
- The row starting with integer t is filled with the images of the coset corresponding to this integer under g_{i_1} , $g_{i_1}g_{i_2}$, ..., $g_{i_1} \cdots g_{i_k}$
- The number of rows is determined during the process

Example of a partially filled relator table for a relator $(xy)^3$:

relator	x	y	x	y	x	y
1	1	2	3	4	5	1
2	3	4	5	1	1	2
3						3
4						4
5						5

the last k of which are indexed by g_{i_1},\ldots,g_{i_k} .

Coset table

The coset table records (at the end of the process) the permutation representation.

- The coset table has |X| + 1 columns
- \bullet The columns are indexed by 'coset', and the generators in X
- The first column contains the (integers representing the) cosets
- The g-th entry of row k contains k^g

coset	x	y
1	1	2
2	3	1
3	2	3

Sometimes columns for X^{-1} are added

- We fill the subgroup and relator tables so that
 - if H'' is in the column indexed by g and H' is in the column directly left from g, then H'g = H''.
 - It is sometimes convenient to read this as $H' = H''g^{-1}$.
- Update the coset table whenever necessary
 - In particular, if an entry m^g is not (yet) one of the known cosets, we fill it with a new number s, and add a row starting with s to the relator tables and the coset table.
 - Similar action is taken for a spot corresponding to $m^{g^{-1}}$
- Scan for 'coincidences': two integers turn out to represent the same coset.

Time for an example...

Coset enumeration: example 1

Group G and subgroup H:

- $G = \langle x, y \mid x^2, y^2, (xy)^3 \rangle$, so
 - $X = \{x, y\}$ and $R = \{x^2, y^2, (xy)^3\}$

subgroup | x

• $H = \langle x \rangle$, so $Y = \{x\}$

There is one subgroup table, it corresponds to Hx = H:

There are 3 relator tables, and 1 coset table:

 $\begin{array}{c} \hline 1 \\ \hline 2 \\ \hline 3 \\ \hline 4 \\ \end{array}$ 5 5

	x	y	x	y	x	y
1	1	2	3	4	5	1
2						2
3						3
4						4
5						5

1

coset	x	y
1	1	2
2	3	
3		4
4	5	
5		1

First rows are filled plus the coset table so far.

/ department of mathematics and computer science

Coset enumeration: example 1 (2)

	y	y
1	2	1
2	1	2
3	4	3
4		4
5	1	5

	x	y	x	y	x	y
1	1	2	3	4	5	1
2	3	4	5	1	1	2
3						3
4						4
5						5

At this point:

- $2^y = 1$ (2nd relator table) and $5^y = 1$ (3rd relator table), so '2 = 5', so we remove row 5
- From the 1st relator table:
 - $-2^x = 3$
 - $-5^x = 4$

Since '2 = 5' we conclude '3 = 4' and get another collapse.

We are left with:

	x	x
1	1	1
2	3	2
3	2	3

	y	y
1	2	1
2	1	2
3	4	3

	x	y	x	y	x	y
1	1	2	3	4	5	1
2	3	4	5	1	1	2
3	2	1	1	2	3	3

coset	x	y
1	1	2
2	3	1
3	2	4

echnische Universiteit Eindhoven Jniversity of Technology

/ department of mathematics and computer science

Coset enumeration: example 1 (finish)

The final coset table

yields a permutation representation of G into S_3 with

$$x \mapsto (2,3)$$
 and $y \mapsto (1,2)$

Since

- *H* is of index 3
- H has order ≤ 2 , so G has order ≤ 6

our representation is an isomorphism

Same example in GAP

```
F:=FreeGroup("x", "y"); %free group on x and y
x := F \cdot x;
v := F \cdot v;
rels:=[x^2, y^2, (x*y)^3];
G:=F/rels;
gens:=GeneratorsOfGroup(G);
xG:=gens[1];
yG:=qens[2];
H:=Subgroup(G, [xG]);
ct:=CosetTable(G,H);
# g1, g1^-1, g2, ...
Display(TransposedMat(ct));
[ [ 1, 1, 2, 2 ],
  [3,3,1,1],
  [2, 2, 3, 3]]
# q1, q2, ...
Display(TransposedMat(ct{[1,3..3]}));
[ [ 1, 2],
  [3, 1],
  [2,3]]
```


Coset enumeration: another example

```
G = \langle a, b \ | \ baba^{-2}, abab^{-2} \rangle
```

```
F:=FreeGroup("a", "b"); %<free group on the generators [ a, b ]>
a:=F.a; %a
b:=F.b; %b
rels:=[b*a*b*a^-1*a^-1,a*b*a*b^-1*b^-1]; %[ b*a*b*a^-2, a*b*a*b^-2 ]
G:=F/rels; %<fp group on the generators [ a, b ]>
gens:=GeneratorsOfGroup(G); %[ a, b ]
aG:=qens[1]; %a
bG:=qens[2]; %b
H:=Subgroup(G, [aG*aG]); %Group([ a^2 ])
ct:=CosetTable(G,H);
[ [ 2, 1, 4, 8, 6, 7, 3, 5 ], [ 2, 1, 7, 3, 8, 5, 6, 4 ],
  [3, 5, 6, 1, 4, 2, 8, 7], [4, 6, 1, 5, 2, 3, 8, 7]]
Display(TransposedMat(ct{[1,3..3]}));
[[2, 3],
  [ 1, 5],
  [4, 6],
  [ 8, 1],
  [ 6, 4 ],
  [7, 2],
  [ 3, 8],
  [5,7]]
```

Left column: action of *a*; right column: action of *b*. Image has order 24.

chnische Universiteit **ndhoven** niversity of Technology

Theorem:

Given: *H* of finite index in *G*. Any Todd-Coxeter enumeration in which

- a) each row is completely filled (or deleted) in finitely many steps
- b) there are only finitely many steps between two scannings of the tables for coincidences,

will terminate.

Proof: The basic idea is to show that if the procedure does not terminate, the number of rows increases beyond any bound, yielding a transitive permutation action on an infinite set with H in the stabilizer, contradicting that H has finite index in G.

Step 1: first rows of any table are stable after finitely many steps

- After finitely many steps all entries are filled.
- The first entry, 1, is 'stable', and the other entries can only change into smaller positive integers
- So the first rows remain stable after finitely many steps

Step 1: first rows of any table are stable after finitely many steps **Step 2:** Induction step, from k - 1 stable rows to k stable rows

- Suppose first k-1 rows of every table are stable after finitely many steps
- Suppose a is the first entry of a k-th row
- Then *a* must have been defined as some *b^g* for some *b* < *a* in the stable rows. (Possibly *b* has been replaced at some point by a smaller integer due to collapses.)
- So a occurs among the stable k-1 rows and is therefore stable.
- So this *k*-th row must be stable after a finite number of steps.

24/25

Step 1: first rows of any table are stable after finitely many steps

Step 2: Induction step, from k - 1 stable rows to k stable rows

Step 3: towards a contradiction

If the procedure does not end, then the number of rows must grow beyond any bound, yielding a transitive permutation action on an infinite set with H in the stabilizer, contradicting that H has finite index in G.

$$G = \langle a, b \mid a^3, b^2, (ab)^3 \rangle$$

- Perform coset enumeration with respect to $H = \langle a \rangle$.
- Use this to show that $G \cong A_4$.

