EINDHOVEN UNIVERSITY OF TECHNOLOGY

MASTER’S THESIS

Speeding up the small progress
measures algorithm for parity
games using the GPU

Author: Supervisor:
P.J.A. BooTsMA dr.ir. T.A.C. WILLEMSE

November 18, 2013

Abstract

Solving parity games is interesting because it is equivalent to model checking
for p-calculus. The small progress measures (SPM) algorithm by Jurdzinski
is originally a sequential algorithm for solving parity games. The nature of
this algorithm allows easy parallelization, and previous research has already
adapted it to work on multi-core machines. Here, SPM is adapted to work
on the many-core architecture used by modern graphics processing units
(GPUs). Additionally, some existing techniques to speed up SPM or parity
game solving in general are discussed, such as alternating SPM and simple
graph preprocessing. A new technique is introduced that can help to reduces
parity game solving times by assigning priorities to edges instead of vertices,
after which shortcut edges can be added to the graph. Experimental vali-
dation shows that using the GPU for small progress measures can result in
faster solving for some games, but the best solution is to let the CPU and
GPU calculate in parallel and stop when either is done. Adding shortcuts
when priorities are assigned to edges can also improve solving times for some
games.

Contents

5__Alternating SPM 39
[5.1 Determining winning vertices oo 39
5.2 _Implementing alternating SPM 42

6 Ed oritiod a7
6.1 _Adding priorities to edged 47
6.2 Creating shorteutdo o o 48
6.3 Edge priorities in small progress measures 52

l7_Graph preprocessing 55
[7.1_Selfloop elimination 55
[7.2 Sorting verticed 56

|8 _Experiments 59
BRI Datasel . . o oo oo 60
8.2 CPU Strategied 62
8.3 GPU Strategies o v v v vt 65
R4 Combining CPUand GPU 70
8.5 Edge priority shortcutd 72
R.6 Sorting input grap 74
R.7 Existing toold oo 76
R.8 Scalabilitsl 7
RO Discussion 78

9 Related work 81

[10 Conclusion 83
0.1 Future worll 84

Introduction

Software is everywhere nowadays. For example, modern cars have software
consisting of millions of lines of code, and modern medical devices are oper-
ated almost entirely via software. It is crucial that cars and medical devices
operate safely to avoid accidents, but bugs in their software can impede their
safe operation. The influence of bugs can be disastrous in a large number of
software systems, ranging from financial transaction processing applications
to industrial control systems. It is therefore important to be able to detect
errors in these systems, so they can be fixed before any damage is done.

The difficulty in finding bugs in large systems is that their complex-
ity makes it very hard to reason about their behavior. For example, two
seemingly correct subsystems can interact in unforeseen ways, with possible
results ranging from incorrect behavior to a complete deadlock of the system.
Since the 1980s, research has focused on how to validate the correctness of
complex systems. One of the methods developed for this is model checking,
where all possible behaviors of the system are captured in a model, on which
various properties can be checked. Validating whether these properties hold
for the model is called the model checking problem. This problem can be
translated to the problem of determining the winner of a parity game.

Algorithms for solving the model checking problem have almost exclu-
sively focused on implementations for classical CPUs. Recently, graphical
processing units, GPUs, are being used more and more for general-purpose
computations. Due to the large difference in architecture in CPUs and
GPUs, it is possible to solve some problems considerably faster on a GPU,
especially if those problems involve applying simple operations often to a
large amount of data. The small progress measures algorithm is an algo-
rithm for solving parity games, and therefore also the model checking prob-
lem, which fits that description, so adapting this algorithm to be suitable for
GPUs could provide a significant speed boost to solving the model checking
problem.

Section [IT] gives an introduction to the model checking problem, and
describes how parity games can be used to solve this problem. Section
provides a description of parity games and their rules. Section [[3lintroduces

the basic concepts of general-purpose GPU programming using the CUDA
framework developed by NVIDIA.

1.1 The model checking problem

The model checking problem is the problem of, given a model of a system,
validating whether a certain property holds on that model.

A model of a system is usually created as a labeled transition system
or some variation on this formalism, such as a (mixed) Kripke structure.
Such models can be used to describe the behavior of the, usually simple,
subsystems that make up an entire system. These small models can be
combined to form larger models which describe the complex behavior of the
entire system when the subsystems work together.

The properties to validate on the model are described using some form
of logic, such as linear temporal logic (LTL) [14], computational tree logic
(CTL) [3] or modal p-calculus [I1]. Of these forms of logic, p-calculus is the
most expressive one and formulas written in most other forms of logic can
be translated to formulas in p-calculus.

A large number of different approaches to validating whether a property
holds on a model exist. Some approaches work directly on the specified
model and formula, while other approaches first translate the model and
formula to a different formalism. One of the formalisms often used is that of
boolean equation systems (BESs) [12]. A BES is a system of boolean fixpoint
equations, where every equation assigns the result of a boolean formula to
a boolean variable. Solving a BES consists of finding the values of every
boolean variable.

A number of different techniques exist to solve a BES. Some techniques,
such as Gauf} elimination, work directly on the BES, while another way is
to convert the BES to a parity game, which is a graph-based representation.
This conversion is a simple linear-time process. Every vertex in the parity
game corresponds to one of the boolean variables in the BES, and by solving
the parity game the values of these variables can be obtained.

1.2 Parity games

A parity game is a game involving infinite paths played by two players on a
parity graph [I8]. A parity graph is a directed, total graph with an integer
priority assigned to each vertex. The two players of a parity game are called
¢ (even) and O (odd) and every vertex is owned by one of these two players.
The game starts by putting a token on one of the vertices. Every turn, the
player who owns the vertex which currently holds the token can decide where

>—1[3]
1D

Figure 1.1: A parity game containing 5 vertices, of which 8 are owned by player ¢
and 2 are owned by player O. The priorities are noted inside of each vertex.

the token goes next, as long as the token moves only over edges. There is no
end to this: every game is infinite. The path taken by a token is called a play
and each play is infinite. The winner of a play is determined by the lowest
priority which occurs infinitely often in the play: if this priority is even,
player ¢ wins; otherwise, player O wins. This game is called a min-parity
game because we look at the lowest priority occurring infinitely often; there
is also a max-parity variant where the highest priority occurring infinitely
often wins. In this report, we only consider min-parity games. An example
of a parity game is included in Figure [Tl

Formally, a parity graph G = (V, E, p) is a directed graph with a priority
function p : V' — N, which assigns a non-negative priority to each vertex in
the graph. A parity game I' = (V, E, p, (V&, Vg)) consists of a parity graph
and a division of the vertices in a set owned by ¢ (V&) and a set owned by O
(Vo). These sets are disjoint (Vo NV = () and together contain all vertices
(Vo UV = V). Whenever player o is mentioned it can be either player ¢
or player O; player O is then the opposite player.

The choices both players make are represented by a strategy oo : Vo —
V for each player. This strategy is a function which returns the next vertex
in the play for every vertex the player owns. Moves are valid if and only if
they are along an edge in the graph, so if and only if (v,00(v)) € E for all
v € Vo. A play m = (vy,va,v3,...) is consistent with a strategy oo if and
only if for all vertices v; in the play owned by player o, the next vertex is
the outcome of the strategy function for v, so if and only if v 1 = oo (v;)
for all v; € Vo.

If we have a set of vertices W C V and a strategy oo for player o, then
oo is a winning strategy for o if every play started from some vertex in W
and consistent with oo, is won by 0 regardless of the strategy of ©. So ©
wins all vertices in W if he has a winning strategy from W. Now let Wo C V
be the largest set that o can always win and likewise for Wi5. These sets
always exist, are disjoint (Wo N Wg = () and together cover all vertices
(Wo UWg = V) [4]. This means that the vertices can be divided uniquely
into two sets: one containing all vertices won by ¢ and one containing all
vertices won by 0. The problem of solving a parity game is to find these
sets: given a parity game I' = (V, E, p, (Vo, V)), find the winning sets W

and W for player ¢ and O respectively.

Before we discuss how to solve this problem using the small progress
measures algorithm in Chapter 2 we first present some notation used for
reducing a parity game. A parity game can be reduced by removing some
vertices from the game. If we have a parity game G = (V, E, p, (Vo, V)) and
a set of vertices W C V' we can remove all vertices in W from G to obtain
the parity game G\ W. This game is defined as G\W = (V', E, p, (V&, V4))
with V! =V \W, E ={(u,v) € E : (WgW)AvgW)}, VE=Vo\W
and V5 = Vg \ W. Instead of removing all vertices in W, the game can also
be restricted to all vertices in W giving the game G N W. This is defined
similar to G\ W. Note that these reductions can affect the totality of the
resulting graph.

1.3 Using CUDA for GPGPU programming

A modern GP consists of hundreds or even thousands of cores which each
can process separate data. This facilitates the processing and rendering of
(3D) graphics, which requires applying a small amount of code to a large
number of items in the rendering pipeline. Other computations can also ben-
efit from this computation model. This led to the introduction of GPGPU@
programming.

One of the leading platforms in GPGPU programming is CUDA@, de-
veloped by GPU-manufacturer NVIDIA. CUDA introduces a programming
model tailored for running computations on the highly-parallel GPU archi-
tecture. Additionally, CUDA supplies a platform based on C++ to effi-
ciently work with this programming model.

In the CUDA programming model, the CPU is called the host and the
GPU is called the device. A device in CUDA is more general than just a
GPU: it can be any co-processor which can execute CUDA programs and
which has its own memory. Every CUDA application consists of code run-
ning on the host, which can copy data to and from the device memory and
can start calculations on the device.

This section outlines the most important aspects of CUDA. For a more
detailed description of the possibilities of the CUDA programming model
and platform, and for exact device limitations, refer to the CUDA C Pro-
gramming Guide[I3].

! Graphics Processing Unit
2General-Purpose computing on Graphics Processing Units
3Compute Unified Device Architecture

Grid, size 3 x 2
Block (0,0) Block (1,0) Block (2,0)
Block (0,1) -] Block (1,1) [~ Block (2,1)
P - - - / \ b = ~ <
-7 ” 4 A T~ ~
. - / \ ~ N
- /7 \ ~

Thread block (1,1), size 6 x 2

Thread (0,0) || Thread (0,1) || Thread (0,2) || Thread (0,3) || Thread (0,4) | Thread (0,5)

Thread (1,0) || Thread (1,1) || Thread (1,2) || Thread (1,3) || Thread (1,4) || Thread (1.5)

Figure 1.2: A 3x2 grid of thread blocks, with each thread block having 6 X 2 threads.

1.3.1 Managing threads

An important aspect of programming with CUDA is the ability to manage
a large number of threads. A single CUDA computation might use millions
or possibly even billions of threads. In general, a single thread performs a
computation for a single data element, so there should be a thread for every
data element.

The basic building block of a CUDA computation is a single thread.
These threads are organized in thread blocks, which are a 1-, 2- or 3-
dimensional block of threads. These thread blocks are then combined into
grids, which can again be 1-, 2 or 3-dimensional. All thread blocks within
a grid have the same dimensions. See Figure [[.2] for an example of a grid
with thread blocks. Every thread knows the coordinates of itself inside of its
thread block and the coordinates of its thread block inside the entire grid.
This can be used to compute a unique index, e.g. for use when addressing
data.

Since a single CUDA computation can use millions of threads, and the
hardware resources on a GPU are limited, not all threads are active on the

GPU at the same time. The hardware of a GPU is divided into indepen-
dent multiprocessors, and each multiprocessor has a limit on the number of
simultaneously active threads. The exact limit of active threads depends on
the hardware. For example, a current high-end GPU is the GeForce GTX
680, which can have at most 2048 simultaneously active threads per multi-
processor. The number of physical cores in a multiprocessor is lower; for the
GTX 680, there are 192 cores in each multiprocessor and the entire GPU
contains 8 multiprocessors for a total of 1536 cores.

To launch a computation on the GPU, a CPU-program has to specify
the dimensions of the grid and thread blocks, as well as a kernel used for
the computation. A kernel is a (short) piece of code which is run by every
thread. Since every thread knows its thread index, a unique index can be
calculated for each thread which is usually used to identify a single data-
element for the thread to work on. For example, if a single calculation
must be done for every vertex in some graph, a kernel is written which
calculates a vertex index depending on the thread index, and then performs
the required calculation on the vertex with the calculated index. This kernel
is then launched with a total number of threads equal to the total number
of vertices.

All threads running the same kernel must execute the same code on a
different piece of data. The CUDA scheduler operates on warps of 32 threads
each. The threads in a warp are run in lock-step: every thread executes
the same instruction on different data. This works even when conditional
statements and loops require different code paths: all relevant code paths are
executed for all threads, but threads only actually store their results if the
instruction is part of the thread’s code path. If multiple threads in the same
warp require different code paths it is called divergence. High divergence is
bad for the performance of the algorithm, since calculations and/or memory
transfers are performed for threads which ignore the results.

1.3.2 Memory hierarchy

CUDA exposes a memory hierarchy consisting of local, shared and global
memory. Each of these memories has different characteristics and different
ways to get the best performance out of them. Since CUDA algorithms
often require a lot of data, it is important to design the algorithms to use
the available memory optimally.

Local memory: Every thread has its own per-thread local memory. This
is generally used for temporary variables such as loop counters, storing
intermediate values, etc. If possible, all this memory is stored in on-
chip registers which are very fast to read from and write to. If the
required amount of memory is too big, part of the local memory can

also be stored in global memory, which is substantially slower. It is
therefore useful to keep the amount of local memory used low enough
to fit within the available registers. The number of available registers
depends on the number of thread blocks running on a multiprocessor
simultaneously, and on the exact hardware used.

Shared memory: Every multiprocessor has shared memory, which can be
used by all threads within the same thread block. It is also fast to
access and can therefore not only be used to share data within a thread
block, but also as a self-controlled cache. There is not much shared
memory, usually 48 KiB per multiprocessor, and it has to be shared by
all thread blocks currently active on the multiprocessor. The shared
memory is divided into 32 banks and data can be read from or written
to all banks simultaneously.

Global memory: The entire GPU has a large amount of global memory —
modern high-end GPUs usually have 2 GiB of global memory. Reading
from and writing to this memory is slow, but if all threads in a warp
request a consecutive piece of memory, then these request can be coa-
lesced into fewer, longer requests. This increases memory throughput.
Basically, memory is read and written in 128-byte chunks, and if all
memory requests from a warp fall into the same 128-byte chunk, only
a single memory transfer is needed.

10

Small progress measures

To describe the small progress measures algorithm by Jurdzinski [§], we will
only use the case where we want to solve the game for player ¢. This means
that we will look at the game from the viewpoint of player ¢ and that we
can calculate a winning set W¢ and strategy oo for player ¢. Because the
winning sets are disjoint and together contain all vertices, this also gives
us the winning set W for player O, but we will not have a strategy op.
Solving the game for player O is similar, but can also be implemented by a
preprocessing step which converts the game to one to be solved for player ©:
all priorities have to be increased by 1 (to swap evenness of the priorities)
and the owners of all vertices have to be swapped.

The following description of the small progress measures algorithm is
based on both the original work by Jurdzinski [§] and a different description
of the same algorithm by Klauck [10].

The basic idea behind small progress measures is to characterize the
cycles reachable from each vertex. A vertex can be won by player ¢ if it
can steer the game to a cycle where the lowest priority of that cycle is even,
regardless of the strategy of player 0. To characterize the cycles reachable
from a vertex, a measure is assigned to each vertex which counts the maximal
number of times each odd priority can be seen until a vertex with a smaller
priority is seen. If this measure is sufficiently large then player O can steer
the game to a cycle where the lowest priority is odd.

A cycle in a parity graph is a path (v, va, ..., v,) such that v; = v, and
V1,2, . ..,U,—1 are all different. Each cycle has an index 7 which is equal to
the lowest priority occurring in the cycle. A cycle with index i is referred to
as an i-cycle. A cycle is an even cycle if it is an i-cycle for even i.

To describe the cycles in a parity game, a progress measure will be
attached to each vertex in the parity game. The progress measure used
here is a d-tuple m € N%, a tuple with d elements, where d is the highest
priority in the game plus 1. For example, if the highest priority in a parity
game is 4, then d = 5. Each tuple will then have 5 elements: one for each
priority occurring in the game. The first element of such a tuple has index
0 and characterizes reachable 0-cycles; the second element has index 1 and

11

characterizes reachable 1-cycles, and so on. The index of the last element is
equal to the highest priority in the game.

Comparing d-tuples is done using lexicographical ordering. Additionally,
it is possible to compare only the first few elements of the tuple by using
operators such as >; and >;. The expression a >; b means that tuple a must
be strictly larger than tuple b when considering only the elements up to index
1. This can be generalized to other comparison operators. For example,
(0,2,0,1) >1 (0,1,0,2), (0,1,0,0) >2 (0,1,0,2) and (0,2,0,1) =¢ (0,0,0,0),
but (0,1,0) #1 (0,2,0).

2.1 Progress measures in solitaire games

A solitaire game is a parity game where one of the players cannot make any
choices. This can for example be a game where all vertices are owned by the
same player, or a game which is obtained by removing all edges inconsistent
with the strategy of one player. For the latter case, we use the notation
Goo to indicate the parity game G where all edges inconsistent with oo
have been removed. In these solitaire games, vertices in Vo have an out-
degree of exactly 1, since the graph is total and there is no choice for o.
Before explaining the small progress measures algorithm on game arenas,
where two players can make choices, this section will explain the algorithm
for solitaire games since that is conceptually simpler.

Definition 2.1. A strategy oo is closed on W C V if every play starting in
W and consistent with oo stays within W. Formally, oo is closed on W if

e YVoveWnVo : ogo(v) € W), and
o (V(v,w)EE cveWnVg = wGW).

Let G be a parity game, let W C V be a subset of vertices in the game,
and let o¢ be a strategy for ¢ closed on W. Now consider the solitaire game
Goe, MW, which is the solitaire game (for O) obtained by removing all edges
inconsistent with o¢ from G and then reducing this game to only include
the vertices in W. The strategy o¢ is winning for player ¢ for all vertices
v € W if and only if all cycles in Gy, "W are even [10].

Given this observation, we can attempt to characterize vertices that can
only reach even cycles. To do this, a parity progress measure is introduced,
which is a function that assigns a measure to every vertex in the game. These
measure are d-tuples as defined earlier, which are denoted by the type M.

Definition 2.2. Given a solitaire game G, the function p : V — Mg is a
parity progress measure for G if for all edges (v, w) € E it holds that:

L. p(v) Zp) p(w) if p(v) is even

2. p(v) >p p(w) if p(v) is odd

12

There can only be a parity progress measure if all cycles are even. If
there is an odd cycle, then the lowest priority in that cycle is odd; let
this priority be p’ and let it be the priority of vertex v;. Then we have a
cycle (v1,v9,...,v,,v1) and according to the definition of a parity progress
measure we have p(vi) >y p(v2) >p -+ >y p(vp) > p(vi), which means
that p(v1) >, p(v1), which is impossible, so no parity progress measure can
exist if there is an odd cycle.

For the measures of type Mg, the d-tuples are restricted to a certain
maximal value for each component of the tuple. The maximal value of a
component with odd index i depends on the amount of vertices with priority
i in the graph. Let V; be the set of all vertices with priority ¢, then |V}| is
the number of vertices with priority ¢. The maximal value for components
in a restricted d-tuple with odd index i is |V;|. For even index i, the value
is always 0, regardless of |V;].

The rationale for these maximal values is that they describe how often a
vertex with a certain priority can be seen before a vertex with a lower priority
is seen. For even priorities this number does not matter: we want to look for
even cycles. This also corresponds with the greater-equal comparison in the
definition of parity progress measures as given above. For odd priorities the
number does matter: if we see some vertex with odd priority more than once
without seeing a vertex with lower priority, this means that we have reached
a cycle with odd priority and a parity progress measure cannot exist. All
valid values for odd priority ¢ are thus at most |V;|: for any value higher
than this, some vertex with priority ¢ is seen more than once and we have
reached an i-cycle.

The above idea can be extended to not only check whether all cycles are
even, but to check if some cycles are even when odd cycles may also exist.
As seen above, when some odd cycle exists no parity progress measure can
be calculated. The value T is introduced to indicate this case. This value
represents infinity for restricted d-tuples. A value of T is strictly greater
than any value m # T. Comparisons between T and T are always true,
most notably T > T and T > T.

Using this extension to restricted d-tuples, an extended parity progress
measure p : V — I\\/JIE; can be defined, where the vertices with label T con-
stitute the winning region of player 0. Using this extended parity progress
measure, there is no need to only look at a subset W C V' because we can
find subsets of vertices where each player wins in the entire game. If any
vertex has a value of T, then player ¢ has no choice at that vertex but to let
the game advance to some vertex where player O can create an odd cycle.
Similarly, if a vertex has a value different than T, then the game will end
in an even cycle regardless of any choice made by player 0. The winning

13

regions W¢ and W can thus be defined as follows:

Wo = {veV:pv)#T}
Wo = {veV:ipl)=T}

Note that this only holds if we look at the smallest parity progress mea-
sure. An obvious solution to obtain a valid progress measure would be to set
all values to T, but this does not say anything meaningful about the game.
To be able to talk about the smallest parity progress measure, an ordering
on these functions is defined.

Definition 2.3. Let p and ¢ be two extended parity progress measures,
then p C ¢ if and only if it holds that p(v) < ¢(v) for all v € V. If it also
holds that p £ ¢, then p C ¢.

The definition of the winning regions W¢ and W is valid if p is the
smallest parity progress measure under C.

2.2 Progress measures in game arenas

The previous discussion only considered solitaire games where the strategy
of player ¢ was fixed. This will now be extended to game arenas, where both
players can make choices. For vertices owned by player ¢ there must be at
least one neighbor which satisfies a certain progress relation; this would then
be the move that player ¢ makes at this vertex. For vertices owned by player
O all possible moves must satisfy this progress relation, since any possible
choice for player O must be considered.

The progress relation used is prog(p,v,w), where p is some progress
measure and v and w are two neighboring vertices ((v,w) € E). The value
of prog(p, v, w) is defined as follows:

Definition 2.4. prog(p, v, w) is the least m € Mg; such that
m >p) p(w) if p(v) is even
m >pe) p(w) if p(v) is odd

Note that the latter case can result in T if there is no m # T such that
m >pv) p(w).

Using this progress relation, a game parity progress measure is defined. If
a vertex is owned by player ¢, then some neighbor must satisfy the progress
relation and if a vertex is owned by player O, then all neighbors must satisfy
the progress relation. This is because we solve the game for player ¢: we
can decide the choice for player ¢, but must consider all possible choices by
player O.

14

Definition 2.5. A function p: V — I\\/JI<T> is a game parity progress measure
if for all v € V it holds that

3 (v,w) € E : p(v) Zp) prog(p,v,w)) ifve Vo
v (va) €E : p(U) zp(v) prOg(pvvvw) ifvelg

If p is a least game parity progress measure, where least is defined using
the ordering C as defined in Definition [Z3] then we can say that p(v) # T if
and only if all cycles reachable from vertex v are even. This means that using
a least game parity progress measure, we can calculate the winning regions
We and Wr. They are defined identical to the winning regions in solitaire
games, where We contains all vertices from which all cycles reachable are
even (p(v) # T) and W contains all other vertices.

What remains is that given a parity game, a least game parity progress
measure must be calculated. The ordering C is monotonic and gives a com-
plete lattice on the set of functions V' — Mg, so according to the Knaster-
Tarski theorem [I5] a least game parity progress measure exists and it is
computable by fixed point iteration. To structure this fixed point iterations
the function lift,(p) is defined as follows for all v € V:

.) plv=min((v,w) € E : prog(p,v,w))] ifveVy
lift. (p) = { plv:=max ((v,w) € E : prog(p,v,w))] ifve Vg

This lift function is derived from the definition of game parity progress
measures as given above. For vertices owned by player ¢, the resulting mea-
sure must be greater than or equal to the measure of at least one neighbor-
ing vertex, so we can pick the lowest measure of all neighbors. For vertices
owned by player O, the resulting measure must be greater or equal to the
measures of all neighboring vertices, so we must pick the highest measure of
all neighbors.

Using this function the algorithm can now be described easily. The algo-
rithm uses fixed point iteration to calculate the least game parity progress
measure, where lift, (p) is used to find the next value if the least fixed point
is not yet found. The pseudocode for the algorithm is as follows:

JURDZINKSIo (G)

Input: a parity game G = (V, E,p, (Vo, V)
Output: the least game parity progress measure p
(1) p: V=M « MeV(0,...,0)

(2) while p CC lift,(p) for some v € V/
(3) p < lifty(p)
(4) return p

15

Note that this algorithm keeps finding some vertex v which needs to be
lifted and then lifts it; there is no determined order in which the vertices
are lifted. Choosing a good lifting strategy is one of the ways to get this
algorithm to run fast. For the correctness of the algorithm, any lifting
strategy will do; the lifting strategy only influences the practical speed of
the algorithm.

The calculated game parity progress measure can not only be used to
determine the winner of each vertex in a parity game, but can also be used
to determine the strategy o¢ for player © for all v € Vo.

Definition 2.6. Given a least game parity progress measure p for player <,
the strategy for a vertex v € Vi can be determined by picking the successor
with the least measure assigned to it, i.e. oo(v) = v/ such that p(v') =
min (p(w) : (v,w) € E) for all v € Vo.

16

GPU algorithm for Small Progress
Measures

This chapter contains a description of the small progress measures algorithm
that is adapted to be suitable for the GPU. Section [B:1] contains additional
notations used in the algorithms. Section describes the necessary global
state. Section B3] contains the kernels for the basic small progress measures
algorithm, and the corresponding host algorithm. Section B4 contains two
non-trivial lifting strategies suitable for GPUs.

3.1 Notation for CUDA-algorithms

An introduction to the CUDA programming model was already given in
Section [L3l This section provides some generic implementation details, as
well as pseudocode notations for CUDA constructs.

Both thread blocks and grids can be 1-, 2- or 3-dimensional, but here we
only require 1-dimensional thread blocks and grids. Furthermore, since the
algorithm does not depend on the number of threads in a thread block, we
will only refer to the total number of threads started and leave the size of
each thread block as an implementation detail.

The following statements will be used in the pseudocode of the algo-
rithms to describe the special properties of CUDA algorithms:

e launch SOME_KERNEL(v) for each v € V

This is used to indicate that the kernel SOME_KERNEL(v) will be called
with argument v, where every thread has a different v, such that v € V
and all v € V are assigned to some kernel. The number of kernels
launched is equal to |V].

e Synchronize all threads in current thread block

It is possible to synchronize all threads in one thread block. When this
line is encountered, every thread in the thread block will wait until all
threads reach that point, and only then will execution continue. This
is useful when working with shared memory.

17

e shared var

This indicates that a certain variable is placed in shared memory,
meaning that every thread in a thread block has access to this mem-
ory. All further occurrences of this variable refer to the same shared
variable. This can be used to synchronize various properties inside
of a single thread block. Shared memory in one thread block is not
accessible from any other thread block, and will be released when all
threads in the thread block have finished execution.

Some more notation is used which is specific to the small progress mea-
sures algorithm. These are the following constructions:

® T<Hpy

This can be used when assigning, to x, a progress measure stored in
1. In some cases the progress measures must only be copied partially.
The subscripted assignment indicates that the elements up to and
including the element with index p are copied from y to x, and the
remaining elements are filled with the value 0.

The kernels can be theoretically analyzed on both running time and
global memory efficiency. The running time is analyzed in roughly the same
way as for normal algorithms, with the exception that divergence is taken
into account: when multiple different code paths can be executed for differ-
ent threads in a warp, then the time for running all code paths is counted.
For example, if half of the threads execute a code path with a running time
of O(n), and the other half execute a code path with a running time of
O(m), then the running time of both code paths combined is O(n + m),
even if no single thread actually executes both code paths.

The global memory efficiency of a kernel is analyzed by looking at the
number of values transfered from and to global memory, and determining
how many of those values are actually used by the kernel. If a single coa-
lesced memory transaction reads 32 consecutive values from memory, and
every value is used by at least 1 thread, then 100% of the memory bandwidth
for this transaction is used for useful data.

A non-coalesced memory access also reads 32 consecutive values from
memory, but in the worst case only 1 of those values is used by any thread.
The memory efficiency of all 32 memory transactions is only 1/32 = 3.125%.
This is also the efficiency when a single global value is read from memory to
be used by all threads, with the difference that it requires only 1 memory
transaction to read the value for all threads: the block of 32 consecutive
values to which the value belongs is read from memory, but only 1 value is
actually used.

18

This memory efficiency analysis is based on the assumption that all val-
ues can be stored in 4 bytes, which is a reasonable assumption for the im-
plementation of small progress measures.

3.2 Global state

Kernels cannot return any value, so all they can do is change the global
state of the algorithm. This global state is stored in memory residing on the
GPU. Data can be uploaded to or downloaded from the GPU by issuing a
memory copy between host memory and device memory.

The global state used in this algorithm consists of the variables and
arrays described below, which are always available to all threads. Arrays
are described using a notation similar to functions. For example, T : V — B
denotes an array 1" which contains a boolean for every vertex in the parity
game. All vertices and all edges have a sequentially numbered index which
is used to lookup the correct element in such an array.

G = (V,E,p,(Vo,Vg)) — The parity game to solve, including its vertices
V', edges FE, priority function p and distribution of the vertices to the
players using Vo and V.

p: V= M<T> — An array containing the current measure assigned to each
vertex. This corresponds to the function p as introduced in Section

21

e B — Mg — An array containing the current measure assigned to each
edge. This array is used to store the values of the progress relation
prog(p, v, w) for every edge (v,w) € E.

M Mg; — The maximal value a measure can have before reaching T: the
only m € Mg such that m > MTis T.

3.3 Kernels and host algorithm

The most important operation of the small progress measures algorithm is
the lifting operation. The algorithm continuously lifts some vertex until no
more vertices need to be lifted. GPU algorithms must exploit some form
of parallelism, and this is done by lifting multiple vertices in parallel. For
now we will assume a lifting strategy that lifts all vertices at once until all
of their measures stabilized; further strategies are discussed in Section 3.4

When a vertex v € V' is lifted, all of its outgoing edges (v, w) € F must
be iterated to find either the minimum or maximum value of prog(p, v, w),

19

depending on the owner of the vertex. For the GPU algorithm, this pro-
cess is split into two separate stages. First, PROG_ KERNEL is launched for
every edge (v, w) € E to calculate the value of prog(p,v,w) and store it in
pe[(v,w)]. Then, LIFT__KERNEL is launched for every vertex v € V' to find
either the minimum or the maximum measure — depending on the owner of
the vertex — stored in pg|[(v,w)] for all (v, w) € E, and to store this in p[v].

Splitting up the process of lifting into these separate stages introduces
memory safety, because both kernels write to different memory than they
read from: PROG__KERNEL reads measures from p and writes them to pg,
while LIFT__KERNEL reads measures from pp and writes them to p. This
way, a thread will never overwrite a value that another thread is currently
reading.

It is possible to create two stages in a different way by using distribu-
tivity of min over prog when v is fixed: min ((v,w) € E : prog(p,v,w)) =
prog(p, v, w) with (v,w) = min ((v,w) € E : p(w)). The first stage would
then calculate for every vertex v its successor w with minimal p(w), and
store the corresponding measure in a separate array p’. The second stage
then applies prog(p, v, w) to the measure of this successor, stored in p'(v),
and stores the result in p(v). This is more efficient, since the number of ex-
tra measures stored and the number of calls to prog are equal to |V| instead
of |E|, but it is incompatible with edge priorities introduced in Chapter
Bl Because of this, the previously described stages, PROG__KERNEL and
LIFT _KERNEL, are used.

prog__kernel

The first kernel, PROG__KERNEL, effectively assigns the value of prog(p, v, w)
to pele] when called with argument e = (v,w). For this, it assigns p[w]
(the measure of w) to pgle], but only up to priority p(v) (the priority of
v). After this assignment we have that pg(e) is the least value such that
pEle] Zpw) plw]. However, if p[v] is odd we need to have the least value for
which pgle] >,u) plw]. In this case the value needs to be increased to the
smallest valid value, which is handled by the function INCREASE.

PROG__KERNEL(e)

Input: an edge e = (v,w) with e € F
Output: nothing — updates pgle]

(1) pele] <pu) plw]

(2) if p(v) is odd

(3) pule] « mormas(psle], p(v))

The function INCREASE returns the smallest measure that is strictly
greater than the input measure m when compared up to priority p; that

20

is, it returns the smallest m’ € M such that m’ >, m. This is done under
the assumption that all fields in the measure for priorities greater than p
are set to zero. The function loops over all priorities from p down to 0, and
increments the value stored at that position ¢ of the given measure; that
is, it increments m[i]. It then checks whether the measure is still valid by
comparing m[i] with MT[i] to check if the value is still within bounds. If
mli] is not greater than MT[i] the measure is still valid and it is returned.
Otherwise, ml[i] is set to 0 and 7 is decremented to try the next lower pri-
ority. If there are no further priorities to increment, then no value greater
than m exists in M<T> and T is returned instead.

INCREASE(m, p)

Input: a measure m € Mg;

Output: a measure m’ € M such that m’ is the least m’ >, m
1) ifm#T

(

(2) for i < p down to 0
(3) if m[i) < M'[i]
(4) mli] <~ m[i] + 1
(5) return m

(6) else

(7) m[i] «+ 0

(8) return T

The running time of INCREASE depends on the maximum priority to
loop over in a warp. The number of priorities to loop over can be at most
d, the maximum priority in the game plus one, so the loop on line 2 will be
executed at most O(d) times. In every loop, a constant number of operations
is performed, resulting in a running time of O(d).

Measures can be stored coalesced, so we can assume that every global
memory transaction involving measures has an efficiency of 100%: 1 trans-
action is required to read a single element of a measure for every thread.
When updating the measure m in-place, there are 2 global memory trans-
actions for every mli]: one to read mli] and one to write its new value. All
operations on m[i] can be performed in registers, after which the new value
is copied back. All threads read the same value for M'[i], which means that
a single memory transaction with 32 values is performed, of which only 1
value is used. There is one additional memory access at the end of the func-
tion, where T is set if required. This means that there is a total of 3d + 1
memory transactions, used for 2d+d/32+ 1 separate values in every thread.

The kernel PROG__KERNEL first copies a measure and then optionally
calls INCREASE. Copying a measure requires O(d) time, as does the call to
INCREASE. The running time of PROG__KERNEL is therefore O(d).

In line 1 of PROG__KERNEL a measure is copied from a vertex to the edge

21

for which PROG__ KERNEL is called. The source measure can be anywhere in
memory, giving d random memory accesses to read all d elements of that
measure. In total, 32d read transactions are performed to read d values
per thread. Writing the measures can be coalesced, so this results in only
d write transactions to write d values per thread. Checking if p(v) is odd
in line 2 requires one memory access which cannot be coalesced: p(v) is
stored for the vertices at one of the endpoints of the vertex. This is another
random memory access per thread, so reading this value for every thread
in a warp requires 32 memory transactions. The final call to INCREASE
requires 3d + 1 memory transactions for 2d + d/32 + 1 values per thread.
In total, PROG__KERNEL requires 36d + 33 memory transactions to read or
write 4d + d/32 + 2 values per thread. Most parity games encountered in
practice have d = 3 or d = 4. For d = 4, the memory efficiency is 10.24%.

lift kernel

The second kernel, LIFT__KERNEL, is launched for each vertex and assigns
either the smallest or greatest measure calculated for its outgoing edges,
depending on the owner of the vertex. If this new measure is strictly greater
than the previous known measure, we update the value stored in the global
state and mark the vertex as dirty to indicate that its measure has changed.
Marking the vertex as dirty is required for detecting termination and for the
strategies defined in Section B3.4]

LIFT__KERNEL(v)
Input: a vertex v
Output: nothing — updates p[v]

(1) ifvely

(2) m < min ((v,w) € E : pg[(v,w)])
(3) else

(4) m < max ((v,w) € E : pg[(v,w)])
(5) if m > p[v]

(6) plv] < m

(7) Mark vertex v as dirty

The running time and number of memory transactions for LIFT KERNEL
depend on the maximum outdegree of any vertex in the parity game. Since
parity games are usually sparse, |V| is an overestimation of this number.
Instead, O is used as the maximum outdegree of any vertex in the parity
game.

Finding the minimum or maximum measure stored for any outgoing edge
requires a loop over all outgoing edges and reading their measures. The
number of edges per vertex is at most O, and every measure has d values.

22

Comparing whether the new candidate measure is actually larger than the
currently stored measure, and storing it if so, requires d comparisons and
optional writes. The running time of LIFT__KERNEL is therefore O(dO).

It is important to note for the number of memory transactions that
finding the minimum or maximum measure stored for any outgoing edge
can be implemented using a single code path, and therefore does not result
in divergence. The actual comparison being done needs to differ, but reading
values from memory can be done coalesced if the measures read by all threads
are stored consecutively in memory.

The measures compared to find the minimum or maximum are stored per
edge, but LIFT__KERNEL is launched per vertex. This means that reading
the measures of all outgoing edges cannot be done coalesced, and requires
32d0O memory transactions to read dO values per thread. If the number
of elements is small, the value of m can be stored in shared memory and
accessing it requires no global memory transactions. Comparing m with p[v]
can be done coalesced, so this results in d memory transactions for d values,
as does writing m to p[v] if it needs to be updated. Finally, marking v as dirty
requires a single write to a boolean array, which is a single coalesced memory
transaction. The total number of memory transactions is (320 4+ 2)d + 1 to
read or write (O + 2)d + 1 values. For d = 4 and a maximum outdegree of
O = 20, this gives a memory efficiency of 3.46%.

Host algorithm

To let the GPU algorithms do something useful, they need to be launched at
the correct moments and in the correct order. This requires an algorithm for
the host. The responsibilities of this algorithm are to initialize the required
data structures on the GPU and to launch the kernels defined above. This
algorithm is called SPM__GPU

Measures are initialized to (0,0, ...,0) for every vertex by default. How-
ever, some measures can already be initialized to T. If the vertex has an
odd priority and a self-loop, then the self-loop is used if either player odd
owns the vertex, or if player even owns the vertex and has no other choice.
If this is the case, then player odd will always win that vertex and thus the
measure can be initialized to T.

23

SPM__GPU(G)

Input: a parity game G = (V, E,p, (Vo, V)
Output: the measures for each vertex
foreach v e V

[u—y
~—

2 if p(v) isodd A (v,v) € EA (v e VgV (3 (v,w) €E : v#w))
3 plv] + T
4 else
5 plv] + (0,0,...,0)
repeat

Mark all vertices v € V' as not dirty
launch PROG__KERNEL(e) for each e € E
launch LIFT KERNEL(v) for each v € V
) until no vertex v € V is marked as dirty
) return p

Qo

Ne) -~
= O — — —

AN AN AN AN AN AN N N N N
= (@)

—

3.4 Lifting strategies

As mentioned in Section [2.2] an important aspect for the speed of the small
progress measures algorithm is the lifting strategy used. On a CPU, a lot
of lifting strategies can be employed since vertices are lifted in sequential
order due to the sequential nature of a CPU. Often-used strategies include
adding the predecessors of a lifted vertex to a working queue or stack, or
more advanced strategies based on the structure of the graph, e.g. lifting
strongly connected components as sub-graphs.

The choice of lifting strategies on a GPU is more limited due to its
parallel nature. As explained in Section[[.3, GPU algorithms should launch a
very large number of threads to be able to hide latencies in thread execution
effectively. This means that the number of threads launched at once should
lie in the order of the number of vertices or edges in a large graph.

Given the parallel nature of a GPU, and that the number of threads
should be roughly the same as the number of vertices, an obvious strategy is
to lift all vertices in parallel until no more measures change. This is efficient
if all vertices need constant lifting, but in general most graphs only have a
relatively small number of vertices which require a lot of lifting. This means
that most calculations will be wasted on re-calculating already known values,
which can be avoided by employing a better strategy.

This section provides two possible strategies: implicit and explicit queu-
ing. In the case of implicit queuing, every thread checks whether the vertex
assigned to it could be lifted. Explicit queuing works by creating a list of
all vertices and edges that need processing, and only launching threads for
vertices and edges in those queues.

24

3.4.1 Implicit queuing

In the case of implicit queuing, a thread will be launched for every edge (for
PROG__KERNEL) and for every vertex (for LIFT__KERNEL), but the kernel will
first read a boolean value to check whether it is useful to do any processing
in the thread. The effect is that if there is an entire warp of threads that
does not need to do any work, they only do a lookup of a boolean in global
memory before terminating.

To detect whether any work has to be done, the algorithm as described
in the previous section marks vertices as dirty if their measure changed
in the last computation step. This information can be used to determine
whether any work needs to be done for an edge or vertex. The value of
prog(p, v, w) as calculated by PROG__KERNEL depends on p[w] (the measure
of w) and p(v) (the priority of v). Since p(v) is fixed, PROG__KERNEL can
detect whether to do any work by checking if vertex w was marked as dirty
in the previous step. If vertex w was not marked as dirty, then the measure
of w has not changed, and the value of prog(p,v,w) will not change from
the previously calculated value, which is still available in pg|v].

IMPLICIT__PROG__KERNEL(e)
Input: an edge e = (v,w) with e € F
Output: nothing — updates pg[e]

(1) if vertex w is marked as dirty
(2) PROG__KERNEL(e)
(3) Mark vertex v for recalculation

Since IMPLICIT _PROG__KERNEL consists of only 2 constant-time oper-
ations and a call to PROG__KERNEL, the running time is equal to that of
PROG__KERNEL: O(d).

The memory efficiency is also similar: 2 non-coalesced memory access are
added, resulting in 36d497 memory transactions to read or write 4d+d/32+4
values per thread. For d = 4, the memory efficiency is 8.35%.

If the value of pg[(v, w)] was updated, then p[v] needs to be recalculated,
because its value might change. This is indicated by marking vertex v for
recalculation in IMPLICIT _PROG__KERNEL. This information is then used by
IMPLICIT__LIFT__KERNEL to let all threads easily check whether they need
to do any work. Note that multiple threads might all mark a single vertex
for recalculation. Every vertex can safely unmark itself for recalculation in
IMPLICIT__LIFT _KERNEL, because the value for each vertex will not be read
by any thread other than the thread setting the value.

25

IMPLICIT LIFT KERNEL(V)
Input: a vertex v
Output: nothing — updates p[v]

(1) if vertex v is marked for recalculation
(2) LIFT__KERNEL(v)
(3) Unmark vertex v for recalculation

Since IMPLICIT__LIFT__KERNEL consists of only 2 constant-time oper-
ations and a call to LIFT__KERNEL, the running time is equal to that of
LIFT _KERNEL: O(dO).

The memory efficiency is also very similar: only 2 coalesced memory
access are added, resulting in (320 + 2)d + 3 memory transactions to read
or write (O + 2)d 4 3 values per thread. For d = 4 and maximum outdegree
O = 20, the memory efficiency is 3.54%.

The host algorithm needs minimal changes to support implicit queuing.
The only differences are in the marking of vertices as dirty or not dirty.
Initially, all vertices need to be marked as dirty to ensure that all values
of pgle] will be calculated at least once. Subsequently, all vertices need
to be marked as not dirty only after IMPLICIT__PROG__KERNEL was called;
otherwise, that marking cannot be used to determine whether to do work
for each edge.

IMPLICIT__SPM__GPU(G)
Input: a parity game G = (V, E,p, Vo, V0O))
Output: the measures for each vertex
1) Initialize p
Mark all vertices v € V' as dirty
repeat
launch IMPLICIT _PROG__KERNEL(e) for each e € F
Mark all vertices v € V' as not dirty
launch IMPLICIT _LIFT__KERNEL(v) for each v € V
until no vertex v € V is marked as dirty
return p

=W N

4 o

R R N R T TR
oo ot
N e e e N N N

A possible performance issue with implicit queuing is that there is a
thread being launched for every edge or vertex, even if there is no work to
do. To avoid this, kernels would need to be launched for only a subset of all
edges and vertices. This is what explicit queuing does.

3.4.2 Explicit queuing

The explicit queuing strategy creates a work queue for both edges and ver-
tices, and only launches kernels for edges and vertices when it is useful to do

26

so. This does not mean that vertices and edges are added to these queues
based on purely individual conditions. That would in most cases lead to
inefficient memory usage, since memory coalescing would no longer be pos-
sible. This inefficiency is avoided by placing entire warps into the queue at
once if at least one of the threads in that warp needs to be scheduled. Every
warp contains threads working on consecutive edges or vertices.

Calculating the threads in a work queue is a relatively costly operation,
which requires some additional kernels and global state. Because calculating
a work queue is costly, it is not done after every step of the algorithm, but
only after a certain number of steps. The following additional global state
is required for explicit queuing:

T:V — B — An array containing a boolean for each vertex, indicating
whether that vertex must be added to the work queue.

Tp: E— B — An array containing a boolean for each edge, indicating
whether that edge must be added to the work queue.

Q@ : [V] — A list containing all vertices in the work queue.

Qp : [E] — A list containing all edges in the work queue.

The ways to determine whether to add an edge or vertex to the work
queue are the same as for implicit queuing. An edge (v, w) must be added to
the work queue if p[w] (the measure of endpoint w) has changed. A vertex
v must be added to the work queue if pg[(v,w)] will be updated for any
(v,w) € E; in other words, a vertex v must be added to the work queue if
vertex w was marked as dirty for any edge (v, w) € FE.

The process of creating the work queue for vertices can be split into two
stages. The first stage calculates a boolean T'[v] for every vertex v which is
true if and only if the vertex must be added to the work queue. The second
stage creates the actual work queue @) by concatenating all vertices v for
which T[v] is true. The process of creating the work queue for edges can be
split similarly.

The first stage is implemented by two kernels, DIRTY__EDGES_ KERNEL
and DIRTY_KERNEL. First, DIRTY EDGES__KERNEL calculates the value of
Tgle] (whether edge e must be added to the work queue) for every edge
e = (v,w) by checking whether vertex w is marked as dirty. The values of
Tgle] are synchronized over all threads in a warp by using a shared boolean
d per warp. This boolean is initialized to false, and set to true by every
thread which needs to have its edge added to the work queue. At the end,
all threads use the value of d to set their value of Tgle].

27

DIRTY_EDGES__KERNEL(e)
Input: an edge e = (v, w)
Output: nothing — updates Tx[e]

(1) shared d <« false

(2) Synchronize all threads in current thread block
(3) if vertex w is marked dirty

(4) d < true

(5) Mark vertex v for recalculation

(6) Synchronize all threads in current thread block
(7) Tgle]«+d

The running time of DIRTY__EDGES__KERNEL is O(1), since it only con-
tains constant-time operations. There are 3 operations that require global
memory access: checking if vertex w is marked dirty, marking vertex v for
recalculation, and finally setting Tg[e] to the correct value. Only the latter
can be done coalesced, and the other two are essentially random memory
accesses. This results in 65 memory transactions to read or write 3 values
per thread, giving an efficiency of 4.62%.

Once DIRTY EDGES_KERNEL is done, DIRTY_ _KERNEL is launched for
every vertex v to calculate the value of T'[v]; that is, whether to add vertex
v to the work queue. This is again done using the same shared memory
technique as in DIRTY__EDGES_ KERNEL: a shared boolean is initialized to
false, then set to true by any thread which needs its assigned vertex’ measure
recalculated, and is finally used to set the values of T'[v] for every thread in
the warp. Note that this shared variable is, again, shared per warp. If a
block size is chosen such that each block contains multiple warps, then there
must be multiple shared variables in the block, such that there is one per
warp.

DIRTY__KERNEL(v)
Input: a vertex v
Output: nothing — updates T'[v]

(1) shared d <« false

(2) Synchronize all threads in current thread block
(3) if vertex v is marked for recalculation

(4) d < true

(5) Synchronize all threads in current thread block
(6) T «+d

The running time of DIRTY_ KERNEL is O(1), since it only contains
constant-time operations. There are 2 operations that require global mem-
ory access: checking if vertex v is marked for recalculation, and setting 7'[v]
to the current value. Both can be done using coalesced memory access,
since both read from or write to an array of booleans per vertex. This re-

28

sults in 2 memory transactions to read or write 2 values per thread, giving
an efficiency of 100%.

The second stage in calculating the work queue is to create the work
queues @ and Qg, containing the vertices v and edges e for which T'[v] and
Tgle] are true, respectively. To create the working queue for vertices @, the
idea is to create an array containing all vertices v € V. This array is coupled
to the matching elements in 1. The work queue () then must contain exactly
all values in the vertex-array where T[v] is true. The technique for doing
this is implemented in a number of support libraries for CUDA, such as
Thrus.

The host algorithm must be modified to calculate the work queue at
appropriate intervals, and to ensure that PROG_ KERNEL and LIFT _KERNEL
are only called for vertices and edges in the work queue.

EXPLICIT__SPM__ GPU(G)
Input: a parity game G = (V, E,p, (Vo, V)
Output: the measures for each vertex
1) Initialize p
Q, Qe+ V. E
while Q # ||
Mark all vertices v € V' as not dirty
fori<1to N
launch PROG__KERNEL(e) for each e € Qp
launch LIFT KERNEL(v) for each v €)
Unmark all vertices v € V' for recalculation
launch DIRTY EDGES KERNEL(e) for each e € E
launch DIRTY__KERNEL(v) for each v € V
Q<+ [veV : T
Qp < [e€ E : Tgle]]
return p

D O = W N

— = O 0

e N e N N N L R o e R e R
= O — — — —

—_
w N
NN

"http://thrust.github.io/

29

30

Implementing Small Progress Mea-
sures

An implementation of a CPU and GPU version of the small progress mea-
sures algorithm is created under the name spm. This implementation is
used to do performance tests of the GPU algorithm, to compare it fairly
to a mostly identical CPU implementation, and to test various other meth-
ods of speeding up the small progress measures algorithm. This chapter
describes the implementation of spm.

Section 1] describes the implementation of the GPU algorithm. Section
describes the implementation for a CPU. Section [£.3] describes how these
implementations can be combined to run in parallel.

4.1 GPU implementation

The GPU version of the small progress measures algorithm was described
in Chapter Bl including two possible strategies. To obtain an implemen-
tation which is fast on a GPU, it is important to ensure that memory is
accessed coalesced as often as possible, and that the impact of divergence is
minimized.

4.1.1 Memory layout

The parity game is stored in memory using a number of arrays. For every
property of a vertex or edge an array is created containing that property for
every vertex or edge. For every vertex there are 4 properties: its priority, its
owner, the index of its first outgoing edge, and the number of outgoing edges
it has. For every edge there are 2 or 3 properties: its source, its target, and
optionally its priority if edge priorities from Chapter [Bl are used. By using
separate arrays for every property, memory accesses to read these values can
be coalesced: every block of successive threads reads successive values from
memory.

Most of the memory used by the small progress measures algorithm is
used to store measures assigned to vertices or edges in, respectively, p and

31

HE L VNN P2

Figure 4.1: Storing the measures of 6 vertices, with each measure having 8 elements.
In the table on the left, vertices are rows and measure element indices are columns.
In the 1-dimsional array in memory, shown on the right, first all elements with
index 0 are stored, then all elements with index 1, and so on.

pE- To ensure that these measures can be read efficiently, it is important to
choose a memory layout which supports coalesced memory access. To allow
coalesced memory access, all threads in a warp must read from a consecutive
32-bits integer in global memory.

The arrays of measures, p and pg, are stored in global memory as 1-
dimensional arrays. These arrays represent 2-dimensional data: every el-
ement represents the value at one index of a measure for one vertex or
edge. If the indices within the measure are columns and the vertices are
rows, then the 2-dimensional data is packed into the 1-dimensional array in
column-major order. This means that first all first elements of all measures
are stored, followed by all second elements, etc. See Figure 1] for a visual
explanation.

The values stored in each measure element are 32-bit unsigned integers.
There is no extra space allocated for explicitly storing a value of T for a
measure. This is encoded in the first bit of the first element of a measure:
if this bit is 1, then the value of the measure is T; otherwise, the value of
the measure consists of the stored elements.

Finally, there is an array of booleans, one per vertex, to indicate whether
each vertex is marked as dirty.

4.1.2 Strategies

Section B4l introduces 2 strategies for the GPU algorithm: implicit queuing
and explicit queuing.

32

Implicit queuing

Implementing the implicit queuing strategy is straightforward. The only
extra state information required is an array where vertices are marked for
recalculation. This is stored as an array of booleans, similar to the array
used for marking vertices as dirty.

Explicit queuing

The implementation of the explicit queuing strategy is more involving. The
extra state information required consists of the arrays T and Tg, to indicate
whether each vertex and each edge must be added to the work queue, and
of the work queues Q and Qg. The arrays T and Tr are again arrays of
booleans, while the work queues are arrays of vertex and edge indices, plus
a count to indicate how many elements in the array are actually used.

The difficult part of the explicit queuing strategy is creating the working
queue by filling it with all vertices v for which T'[v] is true — or all edges e for
which T'[e] is true; the process is the same for both. Filling the work queue
is handled by the copy__IF function of the Thrust librar. This library
contains a large number of routines for GPU-accelerated data processing.
The copry__IF function requires an array of values and a so-called stencil
array of booleans, and will copy all values for which the boolean in the
stencil array is true to a target list. The array of values is an implicit array
containing the indices of all vertices as its elements and T' (or Tg) is used
as the stencil array. The target array is the work queue @ (or Qg).

4.1.3 Reducing global memory accesses

The slowest instructions on a GPU are those accessing the global memory,
and especially instructions reading from the global memory: program ex-
ecution cannot continue until the requested value is read. This can take
hundreds of cycles, while other instructions typically finish in only 1 or pos-
sibly a few cycles. If the operation of a kernel is memory-bound, a significant
speed-up can be obtained by reducing the number of values read from global
memory. Since the small progress measures algorithm mainly moves data
around and increments some values, it is memory-bound in practice, and re-
ducing global memory accesses is a valid way to lower the actual execution
times.

One of the places where values are read more often than is necessary is in
PROG__KERNEL. First a measure is copied, and then it is possibly increased.
It is possible to read the value from memory only once, optionally increase

"http://thrust.github.io/

33

it, and then write it to memory only once. The intermediate value is stored
in a register and can thus be accessed quickly.

Another way to reduce global memory access is by copying data to
shared memory during processing. This technique can be used to speed up
LIFT _KERNEL. When selecting either the minimum or maximum measure
of a vertex’ outgoing edges, the current minimum or maximum measure can
be stored in shared memory. This means that every comparison between the
current minimum measure and a new candidate happens between 1 value in
global memory and 1 value in shared memory, instead of between 2 values
in global memory. Once the minimum measure has been found, it can be
copied to the correct place in global memory using only reads from shared
memory.

A limitation of this approach is that the amount of available shared
memory is relatively low: on devices with CUDA compute capability 2.1,
there is only 48 KiB of shared memory per multiprocessor. These devices can
have 1536 threads resident on each multiprocessor, and since every measure
value is a 32-bit integer, there is only enough shared memory to store 8
values per vertex in shared memory. Therefore, this technique can only be
used when measures have at most 8 values.

Note that using shared memory can introduce bank conflicts, which can
negate the performance gain obtained by using shared memory. To avoid
bank conflicts, the measures need to be stored in the same order as used in
global memory to enable coalesced memory access.

4.1.4 Reducing divergence

Another source of slow kernels is divergence. If different threads in a warp
require different execution paths, they both need to execute both paths but
can only use the result of one path.

The most important cause of divergence in the small progress measures
algorithm is comparisons. It is easy to create a set of functions which do less-
than, less-equal, greater-equal and greater-then comparison, but by creating
4 different functions a source of divergence is introduced. A single compar-
ison function is created instead, which has 4 arguments: the 2 measures to
compare, whether to return true or false if the first measure is smaller than
the other, and the value to return when both are equal. The calls to the
separate comparison functions can then be replaced by a call to the single
comparison function with proper arguments.

A place where this is very useful is when determining either the mini-
mum or the maximum measure assigned to the outgoing edges of a vertex
in LIFT KERNEL. Whether the minimum or maximum measure must be
selected depends on the owner of the vertex, which can easily be translated

34

into the correct argument for the function call. If both calculations are done
independently instead, the amount of code executed is, usually, doubled.

4.2 CPU implementation

To able to objectively compare the influence of running small progress mea-
sures on a GPU, a nearly identical CPU implementation was made. Both
implementations share a large part of the codebase, including basic routines
for working with measures and graph preprocessing. Both implementations
also use the same memory layout. The differences are in the code doing the
lifts, and the employed strategies. The code for the lifts consists of kernels
being launched for the GPU algorithm, but these concepts do not apply
for the CPU algorithm. The strategies differ because the CPU can employ
different strategies due to its serial instead of parallel nature.

The reason to use a nearly identical CPU implementation is to be able to
objectively compare the the influence of running the algorithm on the GPU.
The biggest difference between an implementation specifically tailored for
the CPU and the implementation inspired by the GPU implementation is
the memory layout. The effects of this on the running time would be the
result of caching effects on the CPU, but these effects are negligible.

4.2.1 Strategies

There are 3 strategies implemented for the CPU: a queue, a stack and a
random strategy. These are simple strategies that seem to work well in
practice. The queue and stack strategies are completely deterministic, and
it is possible to construct parity games in such a way that these strategies
will always use the worst-case lifting order when solving the games. The
random strategy does not suffer from this drawback, since it selects the
next vertex to lift in a non-deterministic way.

All three strategies are based on the idea that the measure assigned to
a vertex can only change if the measure of one of their successors changed.
The predecessors of all vertices are stored in memory, and when the measure
of a vertex is updated, all of its predecessors are added to the work queue.
The order in which the vertices are extracted from the work queue differs
per strategy. Every strategy has a single-occurrence version where vertices
can be present in the working queue only once at a time.

Queue

The queue strategy employs a basic first-in-first-out queue. To implement
the single-occurrence variant, a boolean is stored for every vertex which is

35

true if and only if the vertex is present in the queue. This results in a queue
with O(1) push and pop operations, and O(n) memory usage.

Stack

The stack strategy is based on a last-in-first-out queue. The implementation
of the single-occurrence variant of a stack is a bit more involving, since a
vertex added to the stack must be moved to the top of the stack if it is
already present. The stack is implemented as a doubly-linked list, and for
every vertex a pointer to its element in the list is stored, if present. If a
vertex is then pushed onto the stack, it is checked whether its pointer is set.
If it is set, it is removed from the list. Finally, that vertex is added to the
top of the stack and its pointer is saved. Both push and pop operations are
O(1), and memory usage is O(n).

Random

The random strategy assigns a random priority to every vertex when it is
pushed into the working queue, and puts the vertex in a priority queue using
the random priority as its weight. Vertices are extracted from the priority
queue in increasing order of their priority. The single-occurrence variant is
implemented similar to the queue strategy: a boolean is stored for every
vertex which is true if and only if the vertex is present in the queue. The
resulting push and pop operations are O(logn), and memory usage is O(n).

4.3 Combining the CPU and GPU

The GPU and CPU algorithms have different characteristics: the CPU is
versatile since lifts are handled one by one, while the GPU can handle mul-
tiple lifts in parallel but requires large amounts of lifts to be launched at the
same time. Different parity games might require one or the other, or some
might even fare well by combining both implementations. To facilitate this,
both implementations can be run in parallel and their intermediate results
can be shared between both games.

Both implementations are initialized and executed independently, with
the exception of sharing their results between each other periodically. There
is also a boolean flag which is read by both implementations, which indicates
when one of the implementations has finished their calculations. When one
implementation has finished, that implementation can provide the winners of
every vertex in the game, and the other implementation can be terminated.

The synchronization is not done after a certain number of lifts, but is
scheduled with intervals of at least one second. The exact interval depends

36

on when an implementation is ready for synchronization: for the CPU,
this can be done after every lift, but the GPU implementation requires all
launched kernels to finish before synchronization can be performed.

A synchronization buffer is used to synchronize the measures; the buffer
contains a measure for every vertex. Both implementations independently
synchronize their measure to and from this synchronization buffer. Mutual
exclusion is ensured: if the synchronization buffer is in use by one imple-
mentation and the other implementation attempts to synchronize, synchro-
nization is skipped and attempted again at the next scheduled time.

Synchronization starts by locking the synchronization buffer. The syn-
chronization buffer and the implementations array of measures are then
compared: for every vertex, the maximum measure of both the buffer and
the implementations array is selected and stored in both the buffer and the
array. If the measure stored for a vertex in the implementations array of
measure is updated, this vertex needs to be marked as dirty (or added to
the working queue on the CPU) to ensure that the updated measure is used
for further calculation. Once this is done, both the buffer and the array are
updated, the synchronization buffer can be unlocked, and synchronization
is complete. For the GPU implementation, the synchronization buffer is
copied to the global memory of the GPU and comparing the measures is
done on the GPU. The new synchronization buffer is copied back from the
GPU to the host memory.

It is allowed to select the maximum value of the measures in the buffer
and the implementations measure array because the measures can only in-
crease during computation. When a bigger measure is stored in the syn-
chronization buffer for a vertex, then the other implementation has advanced
that measure more than the current implementation. Using this bigger mea-
sure allows the current implementation to skip a number of lifts, which it
would have to calculate otherwise.

37

38

Alternating SPM

Until now we were only concerned with solving a parity game for one specific
player. Some parity games, however, might prove difficult to solve for one
player, but can be easy for the other player. Unfortunately, no known way
exists to find out the easiest player to solve the game for beforehand. An
alternative way to solve this problem is to solve the game for both players in
parallel, and then stop whenever the game is solved for one of the players.
The winning regions for both players can then be determined. When this
technique is used in a sequential algorithm, calculations for both players
are alternated instead of run in parallel, giving rise to the name alternating

SPM.

When both games are being solved in parallel, it can be beneficial to
share intermediate results between both calculations. Determining the cer-
tainly losing vertices for player © is easy by simply looking at the measures
which are T, but it is difficult to do something useful in the game for player
© with this information. It is more difficult to determine the certainly win-
ning vertices for player o in a partially solved game, but it is trivial to use
this information in the game for player o: all vertices certainly winning for
player o are certainly losing for player 0, and their measures can thus be set
to T in the game for player O.

This technique has already been implemented in both PGSolver and

mCRL2’s pbespgsolve, but neither tool provides documentation on how and
why this technique works.

Section [B.1] describes how the winning set for a certain player is calcu-
lated. Section describes how alternating SPM is implemented on both
the CPU and the GPU.

5.1 Determining winning vertices

A parity progress measure was defined in Definition to indicate when
vertices are winning for player ¢. The small progress measures algorithm
iteratively updates an intermediate measure until it reaches a final valid

39

value that adheres to the definition. Intermediate values in general say
nothing useful about the game.

In Section it was shown that a valid parity game G’ can be obtained
by only using a subset of the vertices W of a game G. An intermediate
progress measure might be useful to say something about a smaller game
G' = G NW. The measures for all vertices in W can together form a valid
parity progress measure for only G’. It is important to ensure that the
strategy for player ¢ on all vertices in W N Vg is closed on W; otherwise,
there is not enough information to be certain about the winning vertices,
and additionally the totality of the graph can not be guaranteed.

Using the definition for parity progress measures, a definition for the
set Wo can be given, such that all vertices v € We will certainly be won
by player ¢. This definition is valid for a, possibly partially-computed,
game parity progress measure p that is calculated using the small progress
measures algorithm. This means that p is at most the least game parity
progress measure, but possibly smaller than that.

vEWo —

p(v) # T
A (3 (v,w) € B 0 weWo Ap(v) Zpw proglp,v,w)) ifve Vo

AN (VY (v,w) €E we Wo Ap(v) >4, progp,v,w)) ifv e Vg

This definition is similar to the definition of a game parity progress
measure. The only differences are the inclusion of the 'w € Wg’ clauses,
to ensure that the strategy is closed on Wq, and the additional restriction
that p(v) # T, since those vertices are won by player 0. The game G N W
is still total: all v € Voo N W must have at least one outgoing edge, and all
v € VN We can only be in We if all outgoing edges of v in G are included.

To aid in proving that all vertices in W are indeed won by player <,
some additional notation is introduced. The function py,, : Wo — M<T> is
the function p limited to all vertices in W¢. Note that only the domain is
changed and not the range; the type I\\/JI<T> is still based on the entire game
G.

The strategy o, is the strategy for player ¢ on all their vertices in W,
as obtained from pyy,,. This strategy is obtained similar to the strategy o¢
on the entire game as given in Definition 2.6 with the exception that only
successors in We, are considered. So o, (v) = v’ s.t. v € Wo A p(v') =
min (p(w) : (v,w) € EAw € W) for all v e Vo N Wo.

Theorem 5.1. All vertices in W¢ will be won by player ©: Wo C We.

Proof. As noted in Section [Z7], it is only possible to form a parity progress
measure for player < if all vertices for the game are won by player ¢. To

40

prove that player ¢ wins from all vertices in W, it must be proven that
the strategy oy, is closed on Wo, and that pyy,, is a valid parity progress
measure on G’ = G N We.

1. The strategy ow,, is closed on We

The strategy o, is defined for all vertices owned by player ¢ in We.
For all these vertices, the successor w with w € W¢ and minimal value
for prog(p, v, w) is chosen. Additionally, if v € W is owned by player
0, then no possible move may end up outside of Wg.

If v € Wo NV, then the definition of W tells that there is a successor
w of v, such that w € Wo Ap(v) >p,) prog(p, v, w). Because p is being
constructed using the small progress measures algorithm, we know
that p(v) < min (v,w € E : prog(p,v,w)). This means that there is
an edge from v to some w, such that w € We and w is a possible value
for oy, (v). Since oW, only considers vertices that are in We, and we
know that there is such a vertex, we can conclude that o, (v) € Wo
for all v € Wo N Vo

If v € Wo NV, then by definition of W, all successors of v are
included in We.

2. pwy is a valid parity progress measure on G'=GNWs

Recall that pyy, is a valid parity progress measure if, for all v € W,
PWe (V) € Mo, and:

3 (v,w) e E : PWQ(U) > p(v) prog(pwo,v,w) ifveVs
A (Y (v,w) € E 1 pwe (V) Zp0) Proglpw, v,w)) if v e Vg

The function py,, : Wo — M<T> assigns a game parity progress measure
(of type M) to every vertex in We, while it must be a valid parity
progress measures (of type Mg). The difference between M<T> and Mo,
is that Mg adds a possible value of T. Since v € W¢ implies that
PWe (V) # T, we have that py, (v) € Mo for all v € Wo.

The remainder of the proof is a simple rewriting step: the only re-
maining difference between the definition of W¢ and the definition
of parity progress measures is the inclusion of the w € Wg clauses.
These clauses are known to be true, so by removing these clauses the
predicate is weakened, resulting in the definition of parity progress
measures.

Since both are proven to be true, it is shown that all vertices in We will
be won by player ©. O

41

5.2 Implementing alternating SPM

The implementation of alternating SPM consists of two parts: the game
must be solved for both players at the same time, and the winning sets of
both players need to be copied to the other game.

CPU implementation

In a sequential implementation, solving the game for both players at the
same time can be done in two different ways. One is to have a single game
which contains measures for both players, but only has a single working
queue for its strategy. This method is employed by pgsolver and by my im-
plementation, spm. The other method, employed by mCRL2’s pbespgsolve,
is to create 2 independent games, each with their own working queue, and
let them each run a number of steps in alternation.

After a certain amount of work, the results of both games need to be
analyzed to determine the winning set for each player, which can then be
used to set some measures to T in the complementing game. The amount of
work to do between subsequent updates is measured in the number of lifts
attempted. A number of |V lifts gives a good performance in practice.

Calculating the winning set is done by an iterative calculation. Initially,
all vertices whose measure is not already T are marked as part of the winning
set and added to a working queue. While the working queue is not empty, a
vertex is popped from the queue and analyzed. If the vertex does not satisfy
the criteria for being included in the winning set, then it is marked as not
part of the winning set and all of its predecessors that are still part of the
winning set are added to the working queue. This process continues until
the working queue is empty.

WINNING__SET(G, po)

Input: a parity game G = (V, E,p, (Vo, Vg)) and corresponding (partial)

game parity progress measure pc

Output: the set of vertices certainly won by player ¢

(1) WoA{veV : pv)#T}

(2) Initialize queue @ with all v € We

(3) while —=EMPTY(Q)

(4) v < POP(Q)

(5) if (v eVo N —|(EI (v,w) € E : we Wo Ap(v) Zp0) prog(p,v,w)))\/
(v ceVoAn —\<V (v,w) €L we Wo Ap(v) Zp0) prog(p,v,w)))

(6) Wo Wo \ {v}

(7) foreachw e {w eV : (w,v) € EAw € We}

(8) PUSH(Q, 1)

(9) return Wo

42

If the queue is implemented as a single-occurrence queue, as used in the
single-occurrence queue strategy for the CPU implementation of SPM, then
a vertex can be in the queue at most once at any given time. An additional
benefit of this is that all vertices in the queue are guaranteed to be in W:
they can only be added to the queue if they are in W, and they can be
only removed from Wq if they are first removed from the queue.

A vertex v can only be added to the queue outdegree(v) 4 1 times: once
at the beginning, and once for each of its outgoing edges. Summed over
all vertices this means O(|E|) push, and therefore also pop, operations.
Handling a single vertex v when it is popped from the queue has a running
time of O(d|V|): popping is done in constant time, checking the properties
of all successors, of which there are at most |V|, is done in O(d) time per
successor because a measure is compared, and finally all predecessors, of
which there are again at most |V, can potentially be added to the queue.
Summed over all O(|E|) pops, this gives a total running time of O(d|E||V|)
to determine the winning set of one player.

After calculating the winning set for one player, using this in the game
for the other player is straightforward: for all vertices v € We, po(v) is set
to T. This is done in a simple loop, and it is obvious that the running time
of the entire operation is dominated by actually finding the winning set.

GPU implementation

Implementing alternating SPM for the GPU has mostly the same considera-
tions. It is also possible to either solve a single instance for both players, or
to solve a single instance for each player. In the latter case, synchronizing
the winning set is slightly more difficult: both instances need to synchronize
at the same time to avoid writing to measures which are being read by a dif-
ferent kernel. As with the CPU implementation, my GPU implementation
solves a single game for both players at the same time.

The most important difference is in the process of calculating the winning
set. The CPU version contains a queue to which vertices are added if their
state might change, but using such a queue is difficult on a GPU. Instead,
a mechanism similar to the implicit queuing strategy for small progress
measures is used. The contents of the loop of WINNING _SET are wrapped
in a kernel, WINNING__SET__KERNEL, which is called for every vertex of the
graph as long as some vertex changes. As an optimization, since a vertex
can only be removed from Wc if it is in there, it is first checked whether
the current vertex is still in We and if not, no further work is done in the
kernel.

For the GPU, the set W¢ is implemented as an array of booleans such
that every vertex has a single boolean indicating whether it is in the set, i.e.

43

Weo : V' — B. Marking vertices as changed can be handled by a single global
boolean, since it does not matter which vertex has changed, just whether
any vertex has changed.

WINNING__SET__KERNEL(G, po, Wo, v)

Input: a parity game G = (V, E,p, (Vo,V0)), a corresponding (partial)
game parity progress measure po, the current state of We, and a vertex v

to process

Output: nothing — updates We

(1) if Wolv] = true

(2) if (’U e Vo A ﬂ(ﬂ (v,w) €E : weWo Ap(v) Zpw) prog(p,v,w)))\/

(v e VoA —|<V (v,w) €E : weWo Ap(v) >pw) prog(p,v,w)))
(3) Wes[v] « false
(4) Mark v as changed

The running time of this kernel is dominated by the checks on line 2: for
every successor, a measure is compared. The maximum outdegree of any
vertex in the parity game is O, and the number of elements in every measure
is d. Therefore, the running time of WINNING__SET _KERNEL is O(dO).

The checks on line 2 also require the most memory transactions. A
measure for every edge is compared to a measure for the current vertex.
Reading the edge measure cannot be done coalesced, while reading the mea-
sure current vertex can be done coalesced. This results in 33dO memory
transactions to read 2dO values per thread. One additional value is read
per successor, to check if w € We. This cannot be done coalesced either, so
this adds 320 memory transactions to read O values per thread. There are
3 additional memory accesses: reading and writing We[v], and marking v
as changed. These can be done coalesced. In total this gives (33d+32)O +3
memory transactions to read or write (2d 4+ 1)O + 3 values per thread. For
d = 4 and O = 20, this gives an efficiency of 5.57%.

WINNING__SET__GPU(G, pg)

Input: a parity game G = (V, E,p, (Vo,V)) and corresponding (partial)
game parity progress measure peo

Output: the set of vertices certainly won by player ¢

(1) foreachv eV

(2) Wolv] + (po(v) # T)

(3) repeat

(4) Mark all vertices v € V' as not changed

(5) launch WINNING__SET__KERNEL(G, po, Wo, v) for each v € V
(6) until no vertex v € V is marked as changed

(7) return {veV : Wo[v] =true }

44

Initializing the array We and constructing the resulting winning set
to return requires O(|V'|) operations. If checking whether any vertex has
changed is done using a single global boolean, these checks require only
constant time. Since WINNING__SET _KERNEL is launched for every v € V,
a single launch has a running time of O(d|E|). The kernel is launched at
most |V| + 1 times: it is launched once at the beginning, and then it is
only launched if at least one vertex has been removed from We¢. Every
vertex can be removed from We only once. The total running time of
WINNING__SET__GPU is O(d|V||E|).

45

46

Edge priorities

A play in a parity game is an infinite path, and, since it is sufficient to
consider memoryless strategies only, must end in a cycle which is traversed
an infinite number of times. Many algorithms for solving parity games,
including small progress measures, attempt to find these cycles and their at-
tractor sets, the paths leading to these cycles. When these cycles are made
shorter by adding shortcuts, there are less steps to investige and solving par-
ity games could get a speed boost. To aid in creating these shortcuts, while
still taking the priorities of all vertices in account, priorities are assigned to
edges instead of vertices. These edge priorities then allow shortcuts to be
created in the parity graph.

Section introduces the concept of edges with priorities. Section
describes various shortcut edges which can be added to the graph. Sec-
tion [6.3] shows the modifications required to use edge priorities with small
progress measures.

6.1 Adding priorities to edges

A parity game with edge priorities Gg = (V, E,p,pr, (Vo, VO)) is a parity
game with an additional edge priority function pr : £ — N, which assigns
a priority to every edge in the game. An edge priority function for a parity
game without edge priorities can be created using the existing vertex priority
function p. The priority of an edge e = (v, w) is set to the priority of the
vertex v:

pe((v,w)) = p(v) for all (v,w) € E

The winner of a play in a parity game with edge priorities is determined
by the lowest edge priority occurring infinitely often in that play. Compare
this to regular parity games, where the winner of a play is determined by
the lowest vertex priority occurring infinitely often. In parity games with
edge priorities, the winning condition has moved from vertex priorities to
edge priorities.

47

Observe that the transformation of a normal parity game to one with
edge measures, using the initialization of pg as given above, does not change
the winner of any vertex in that game. The set of possible plays is exactly
the same, and the winner of those plays is also the same: all outgoing edges
of a vertex have the same priority as that vertex, and leaving that vertex is
only possible by traversing one of the outgoing edges.

6.2 Creating shortcuts

Just adding priorities to edges does not help in solving parity games. These
edge priorities, however, can be used to create shortcuts in the graph. This
section describes when shortcuts can be added to a parity graph, without
changing the winning sets for each player. Adding shortcuts might make
some of the original edges superfluous.

The most simple case when a shortcut can be created is when 3 vertices
occur on a line, with no possible choice from the first two vertices but to
advance to the third vertex; see Figure for an example. In this case, a
shortcut edge can be created between the first and the last vertex, vertices
u and w in Figure [l This shortcut edge is used to skip over two edges,
and the priority of this new edge is set to the minimum of the priorities of
the two edges skipped.

Theorem 6.1. In a parity game with vertices u, v and w, such that the
only outgoing edge from wu is to v with priority x, and the only outgoing edge
from v is to w with priority y, adding an edge between vertices u and w with
priority min(z,y) does not change the winning set of any player. Adding
this edge makes the edge (u,v) superfluous.

Proof. For every v’ € Wo, player o has a winning strategy from v’. If adding

rly
o

(a) Original situation (b) With shortcut

Figure 6.1: Adding a shortcut in a part of a parity game. Vertex u has only one
outgoing edge, to verter v. Vertexr v also has only one outgoing edge, to vertex w.
Edge (u,v) has priority © and edge (v, w) has priority y. The owners of each vertex
are irrelevant. An edge can be added between vertices u and w, with as priority the
minimum of x and y. The edge between u and v is now superfluous and can be
removed.

48

the shortcut edge does not influence the existence of a winning strategy, then
the winning set of neither player will change. The winning strategy for player
o from all v/ € Wo is oo.

The strategies in v and v are fixed: oo (u) = v and oo(v) = w. Any play
visiting vertex u will therefore also visit vertex v and w. If these vertices
are not visited infinitely often in any play, then the priorities of the edges
between u and w, possibly via v, do not matter and can thus be anything.
If these vertices are visited infinitely often in a play, then the winner of the
play is the same if the original edges are used and if the shortcut edge is
used; there are 3 possible situations to prove this for:

e x is the minimum priority occurring infinitely often in the play —
The lowest priority occurring infinitely often is x because the edge
(u,v), with priority x, is traversed infinitely often, and no edge with a
lower priority is traversed infinitely often. Since the edge (u,v) can be
skipped by using the shortcut edge (u,w), the shortcut edge must have
priority = to not alter the winner of the play. Since x is the minimum
priority occurring infinitely often, and both x and y occur infinitely
often, z < y and therefore z | y = .

e y is the minimum priority occurring infinitely often in the play — This
is similar to the previous case, but the shortcut edge must have priority
y. Since y is the minimum priority occurring infinitely often, and both
x and y occur infinitely often, y < x and therefore = | y = y.

e Neither x nor y is the minimum priority occurring infinitely often in
the play — The minimum priority occurring infinitely often is some
priority z, and both z < z and z < y. To ensure that the priority of
the new edge does not become smaller than z, it can be set to either
x or y. The result of x | y is either x or y, so this is a valid priority
for the new edge.

In all cases, changing oo(u) from v to w does not influence the mini-
mum priority occurring infinitely often in any play. Therefore, the existence
of a winning strategy from any vertex for either player is not influenced,
and adding the edge (u,w) does not change the winning set of any player.
Because oo(u) can be changed from v to w without any influence on the
winner of any play, the edge (u,v) can be avoided in all plays and can thus
be removed from the graph without consequence. O

Note that the edge (v, w) cannot be removed: it is the only outgoing
edge from vertex v and removing it would therefore result in a graph that
is not total. Any play starting in v or arriving in v using a different edge
than (u,v) would not have any way to leave v.

49

Y
’ R A
A 4
(a) Original situation (b) With shortcuts

Figure 6.2: Adding shortcuts when there is a choice in v. This is allowed if v and
v have the same owner.

Adding shortcuts only when two consecutive vertices have only trivial
choices is rather limiting. It is also possible to add a shortcut if the second
of these vertices has multiple outgoing edges, but only if the owners of the
first and second vertex match; see Figure for an example. Intuitively,
the choice made in the second vertex is moved to the first vertex. This is
only allowed if the player making the choice does not change.

Theorem 6.2. Consider a parity game with vertices u and v, and a set of
vertices W, such that the only outgoing edge from w is to v, both vertices
have the same owner, and the set W is the set of all direct successors of v.
Adding an edge between u and w with priority min(pg((u,v)), pe((v,w)))
for all w € W does not change the winning set of any player, and makes the
edge (u,v) superfluous.

Proof. For every v' € Wo, player o has a winning strategy from v’. If adding
the shortcut edge does not influence the existence of a winning strategy,
then the winning set of neither player will change. Since strategies are
memoryless, if any play visiting vertex u is won by player o, then all plays
visiting vertex w will be won by player o.

The strategy in u is fixed and the strategy in v is limited: oo(u) = v
and oo (v) € W. Any play visiting vertex u will therefore also visit vertex v
and at least one of the vertices in W.

If player o owns vertex u and v, and has a strategy oo such that he wins
any play visiting vertex v in a game without shortcuts, then player o will
have a strategy oy not using edge (u,v) such that he wins all plays visiting
vertex u in a game with shortcuts. Any play visiting vertex v and consistent
with oo will encounter the priorities pg((u,v)) and pg((v,00(v))), and will
then be in vertex oo(v). By adding the shortcut edge (u,00(v)), a valid
strategy is o5 = oofu := oo (v)]. Any play visiting vertex u and consistent

50

(a) Original situation (b) With shortcuts

Figure 6.3: Adding shortcuts when there is a choice in u. Both choices can have
shortcuts added independently.

with of will encounter priority pg((u,00(v))), and will then be in vertex
oo(v). Since pp((u,00(v))) = min(pe((u,v)),pe((v,00))), the minimum
priority occurring infinitely often in a play consistent with o5 will be equal
to the minimum priority occurring infinitely often in a play consistent with
0o, and therefore the winners of both plays are the same.

If player o owns vertex v and v, but has no strategy oo such that he wins
any play visiting vertex w in a game without shortcuts, then no strategy
o4 exists such that player o wins any play visiting vertex w in a game
with shortcuts. If such a strategy exists, then player o wins some play
visiting vertex u because either it can win any play visiting vertex o (u), or
because pg((u,05(u))) is the minimum priority occurring infinitely often,
and this priority is of the same parity as player 0. The former cannot be
true, because then a strategy oo would exist in the game without shortcuts
by using oo (v) = og(u). The latter cannot be true either, because then
either pg((u,v)) or pp((v,05(u)) would be the minimum priority occurring
infinitely often, and the strategy oo = og[u = v][v := op(w)] results in
traversing those edges infinitely often and would therefore result in player
o winning the play, but no such oo exists. Therefore, such a strategy og
cannot exist.]

Both cases for adding shortcuts handled until now assumed that there
was only on outgoing edge from the first vertex, but this restriction is not
required. When there are multiple outgoing edges from u, every outgoing
edge can be treated separately, and can have shortcuts added according to
the cases above. See Figure for an example.

o1

Theorem 6.3. Given a parity game with vertices u, v and w, and edges
(u,v) and (v, w), a shortcut edge can be created between u and w with priority
min(pg((u,v)), pe((v,w))) if v has only one outgoing edge, or if u and v have
the same owner. Doing so does not change the winning set of any player.

Proof. For every v' € Wo, player 0 has a winning strategy from v’. If adding
the shortcut edge does not influence the existence of a winning strategy,
then the winning set of neither player will change. Since strategies are
memoryless, if any play visiting vertex u is won by player o, then all plays
visiting vertex u will be won by player o.

If player o owns » and has a winning strategy oo from vertex u in
a game without shortcuts, then player o has a winning strategy og from
u in a game with shortcuts. If oo(u) has only one outgoing edge, then
05 = oolu := oo(oo(u))], and using the same reasoning as for Theorem
[6.1] shows that player o still wins the play. If oo(u) has multiple outgoing
edges, and v and oo (u) have the same owner, then the strategy o as defined
in Theorem still results in a winning play for player o from vertex w.
Otherwise, there is no shortcut to bypass the winning moves, and oo (u) is
also a winning move in the game with shortcuts.

If player o owns w but has no winning strategy oo from vertex u in
a game without shortcuts, then no strategy of, exists such that player o
wins from vertex u in a game with shortcuts. If such a strategy exists, then
06 (u) must have multiple outgoing edges, since Theorem [6.1] states that the
winner cannot change if o5 (u) has only one outgoing edge. Additionally, u
and o (u) must be owned by different players, because Theorem states
that no such strategy can exist if they are owned by the same player. But if
uand o5 (u) are owned by different players, and o (u) has multiple outgoing
edges, then no shortcuts are added over the edge (u, o5 (1)) and there would
be a strategy oo with oo(u) = o5 (u) in the original game such that player
o wins. Therefore, such a strategy o cannot exist. O

6.3 Edge priorities in small progress measures

To be able to use edge priorities in the small progress measures algorithm,
it requires some modifications. Fortunately, these modifications are very
limited.

At the heart of the algorithm is a progress relation, that ensures that the
values of measures assigned to vertices become larger than their successors
when needed. This progress relation, prog(p,v,w) is already defined for
edges, and can be easily adapted to use edge priorities instead of vertex
priorities. The progress relation progg(p, v, w) uses edge priorities and is
defined as follows.

92

Definition 6.4. progg(p, v, w) is the least m € MI} such that

M 25 ((v,w)) p(w) if pp((v,w)) is even
m >y () P(W) if pp((v,w)) is odd

By using progg(p, v, w) as the progress relation instead of prog(p,v,w),
the entire algorithm will correctly use edge priorities. This requires a small
change to the function lift,(p), resulting in lift] (p).

lift! (p) = plv :=min ((v,w) € E : progg(p,v,w))] ifve Vo
v plv :=max ((v,w) € E : progg(p,v,w))] ifve Vg

GPU implementation

Section mentioned that the process of lifting was split up in two stages,
PROG__KERNEL and LIFT_KERNEL, in such a way that it is compatible
with edge priorities. The result is that the GPU version of small progress
measures requires only a small change to make use of progg(p,v,w) in-
stead of prog(p,v,w). The value of prog(p,v,w) is stored in pg[(v,w)] by
PROG__KERNEL for every edge (v, w), and it is sufficient to change this kernel
to use the value of progg(p, v, w) instead. This results in the changed kernel
PROG__KERNEL__EDGE.

PROG__KERNEL__EDGE(e)

Input: an edge e = (v,w) with e € F
Output: nothing — updates pg|e]

(1) pele] <pye) plw]

(2) if pr(e) is odd

(3) pole) « NOREASE(psle], pi(e))

By using this kernel instead of the original PROG__KERNEL, the GPU
implementation will use the edge priorities stored in pg.

The running time of PROG__KERNEL__EDGE is equal to that of the orig-
inal PROG__KERNEL, but the memory efficiency has slightly increased: pre-
viously, p(v) was used to check if INCREASE must be called, but now pg(e)
is used instead. The value of p(v) could not be read coalesced because
PROG__KERNEL is launched per edge, but the value of pg(e) can be read co-
alesced. This reduces the number of memory transactions required to read
or write 4d + d/32 + 2 values per thread from 36d + 33 to 36d + 2. The
memory efficiency for d = 4 increases from 10.24% to 12.41%.

93

54

Graph preprocessing

The previous chapters discussed alternating SPM and shortcuts added in
parity games with edge priorities, which are techniques that should help
in speeding up small progress measures. The addition of edge priorities
already modified the graph in order to attain a possible speedup, but requires
modified algorithms to be used. There is also a number of ways to change
the parity game graph before it is being handed to the solver, and which do
not require any modification to the solver.

This chapter describes two of these techniques: self-loop elimination and
sorting the vertices. There are more possible techniques, such as priority
propagation and priority compression [5], that are not implemented in the
implementation described in this report. The implemented techniques are
only implemented on the CPU. When the parity game has been loaded
from disk, these preprocessing steps are performed on the graph in memory.
When preprocessing has finished, the graph is given to the actual CPU or
GPU solver implementation to solve.

Section [1] describes self-loop elimination. Section describes the
various possible orderings that can be used to sort the vertices of a parity
game.

7.1 Self-loop elimination

One way of speeding up parity game solving is to reduce the size of the input
graph without changing its structure. When a vertex has a self-loop, then
either the self-loop or the other outgoing edges can be removed from that
vertex without changing the global structure of the graph, or removing any
valid choice for an optimal strategy. Figure [[.1] shows the edges that can be
removed when a self-loop is present.

If vertex v has a self-loop, then the player owning that vertex can choose
whether to always use that self-loop, or to not use it all. Using it only
sometimes is useless, so either the self-loop or all the other outgoing edges
can be removed.

95

3

(a) Vertex with a self-loop and even

priority owned by player ©: all other
outgoing edges can be remowved.

)
—{o}—

,@>

(¢) Vertex with a self-loop and even
priority owned by player O: the self-
loop can be removed.

>
>

3

> >
> >

(b) Vertex with a self-loop and odd
priority owned by player ©: the self-
loop can be removed.

()
—{1}—

()
— 1]

(d) Vertex with a self-loop and odd
priority owned by player O: all other
outgoing edges can be removed.

Figure 7.1: Removing outgoing edges from vertices with a self-loop.

Player ¢ wins a play if the lowest priority occurring infinitely often in the
play is even, so if there is a vertex v with a self-loop and even priority owned
by player ¢, he will always choose to use that self-loop. The remainder of
the game will exist of only visiting vertex v, which has an even priority, so
player ¢ then wins any game passing through v. On the other hand, if v
has an odd priority, then using the self-loop would result in a game won
by player O, and player ¢ can only win by using one of the other outgoing
edges. The self-loop can therefore be removed.

A similar reasoning is valid for player 0O: vertices with a self-loop and
owned by player O can have their self-loop removed if their priority is even,
or can have all their other outgoing edges removed if their priority is odd.

Note that a self-loop can only be removed if there are other outgoing
edges. Otherwise, the self-loop is the only outgoing edge and removing it
would result in a non-total graph.

7.2 Sorting vertices
In the definition of a graph, the vertices are considered an unordered set.

When a graph is implemented, they are stored in an array in memory, which
does have an ordering. Because the graph does not depend on the ordering

o6

of vertices, changing that ordering does not change the solution of the parity
game.

Sorting the vertices might benefit in solving a parity game. In the GPU
algorithm, the 1ift_kernel has a loop which is run once for every outgoing
edge of a vertex. If vertices are sorted by the number of outgoing edges,
then fewer threads will run useless iterations of this loop and the impact of
this divergence is reduced. For the CPU algorithm, sorting the vertices will
change the order in which vertices are initially added to the work queue.
This could change the order in which vertices are lifted, possibly resulting
in a different solving speed.

There are 5 sorting orders defined, next to the unsorted case, which loads
vertices in the order that they appear in the input graph.

Reversed — The vertices are loaded in the reverse order of the input graph.
Vertices loaded first in the unsorted case will be loaded last when
reversed, and vice versa.

Outdegree — The vertices are sorted on the number of outgoing edges they
have. Vertices with a high number of outgoing edges will be loaded
first, and vertices with a low number of outgoing edges will be loaded
last.

Priority — The vertices are ordered by their priority. Vertices with a high
priority will be loaded before vertices with a low priority. The potential
benefit of this is a reduction of divergence on the GPU: loops which
copy, compare, or increase measures depend on the priority of the
vertex to which that measure is assigned. If this priority differs per
thread, then there can be a large number of wasted iterations for these
loops.

Depth-first search — A depth-first search is performed on the input graph,
and vertices are loaded in the order that they are visited by this depth-
first search. This means that endpoints of edges are stored close to-
gether in memory, resulting in possible positive caching effects when
retrieving information on the vertices from memory.

Breadth-first search — A breadth-first search is performed on the input
graph, and vertices are loaded in the order that they are visited by
this breadth-first search. This is a variation on the depth-first search
ordering, that could have the effect that vertices that are lifted after
each other are close to each other in memory.

o7

o8

Experiments

The GPU algorithm and other improvements discussed in this report should
help in speeding up the small progress measures algorithm in practice. To
validate whether the discussed techniques help, a number of experiments
are conducted. The various techniques implemented in spm are compared
to select a set of options which allows it to solve games fast. Using these
options, it is compared to the existing solvers pgsolver and pbespgsolve.

Every set of options is tested on multiple parity games. A single test
involves testing a single set of options on a single parity game. Every test
consists of 5 runs of the program with the same options, of which the fastest
and slowest are discarded and the remaining 3 times are averaged. For the
random CPU strategy, a test consists of 10 runs of which the fastest and
slowest are discarded and the remaining 8 times are averaged. The times
are measured using the difference in wall clock time of just before the solver
process is started and just after this process has terminated. Every run not
finished after 15 minutes was terminated prematurely.

All experiments are conducted on a laptop running Kubuntu Linux 12.04,
equipped with an Intel Core i7 2630QM CPU running at 2.00 GHz with
hyperthreading enabled, and 6 GB of main memory. The GPU is an NVIDIA
GeForce GT 555M, capable of running code for CUDA compute capability
2.1, with 144 CUDA cores running at 1.35 GHz and 2GB of global memory
accessible via a 128-bit memory bus running at 900 Mhz.

The existing parity game solvers to which spm is compared are PGSolve
version 3.3 and the pbespgsolve tool of mCRLﬂ version 201310.0.

Section B] describes the dataset used for the experiments. Section
compares the implemented CPU strategies. Section B3] compares the im-
plemented GPU strategies. Section B4 shows the effects of combining the
CPU and GPU implementations to run in parallel. Section shows the in-
fluence of adding shortcuts in parity games with edge priorities. Section
compares various sorting orders for the vertices in the parity game. Section

Yhttp:/ /www.tcs.ifi.lmu.de/pgsolver
http://mcrl2.org

99

[B1 compares spm to existing tools that solve parity games using the small
progress measures algorithm. Section [B.8 compares spm on different GPUs
to show the scalability. Section contains a discussion of the results of
the experiments.

8.1 Dataset

The test data used for the experiments is a subset of the dataset introduced
by Keiren in chapter 5 of his PhD thesis [9]. The entire dataset is very
large, and most parity games are either very simple to solve and therefore
not interesting, or very hard to generate within reasonable time and memory
limits — in my case, 1 hour and 4 GB per parity game. A selection of 12
games was made from the dataset, of which some properties are described
in Table Bl

In addition to these 12 games, an instance of the Jurdzinski game is
included, and a new class of games, called propagation games, is constructed
in the hopes of finding a class of games that can be solved faster on a GPU
then on a CPU. The Jurdzinski game[§] is a class of games for which the
small progress measures algorithm always requires an exponential amount
of lifts. The propagation games come in 2 variants: standard propagation

nr. of nr. of outdegree priorities
game . :

vertices edges min | avg | max | max | nr.
cabp8 82 434 231 945 11281 27 2 3
ctlsbc8 82 968 107 716 111.30 2 3 4
elev7f 861 780 | 1 431 610 11]1.66 8 2 3
elevru 876 780 | 2 484 252 11283 8 2 3
flctl7 49 830 122 701 11246 194 1 2
hanoil2 531 443 | 1 594 321 113.00 3 1 2
liftidl 134 162 372 852 11278 7 4 4
nesterd 62 707 82 920 1] 1.32 2 981 | 16

pdlbc8 228 787 457 571 112001871 1
swp8__1i 147 458 406 665 11]2.76 25 2 3
swpd_ 2r 869 569 | 3 200 129 11 3.68 13 2 2
abpswp4_ 1 827 137 | 2 550 529 11 3.08 18 2 2
jurdzb__ 10 170 429 11 2.52 7 11| 12
propb0_ 1k 50 003 100 002 112.00 50 4 5
tprop21 4194 305 | 8 388 607 112.00 3 2 3

Table 8.1: Vertex count, edge count, minimum/average/mazimum outdegree, maz-
imum priority, and number of distinct priorities for all parity games in the dataset
used for experiments.

60

OO UK

OO O

Figure 8.1: A standard propagation game with 4 paths of 3 nodes each.

games and propagation trees. The main idea behind them is that most
vertices need to be lifted often, regardless of the employed strategy. While a
GPU can can perform lifts faster than a CPU can, it cannot employ some of
the more efficient strategies that a CPU can use. Because most vertices need
to be lifted often, the advantage of an efficient strategy should disappear and
the GPU should benefit.

A standard propagation game contains a number of bi-directionally con-
nected paths between a source and a pair of target nodes. See Figure 8.1 for
a standard propagation game with 4 paths of 3 nodes each. The owners of
the paths are alternated, such that both players have a non-trivial game to
solve. The priority of a path owned by player ¢ is odd and vice versa, such
that no winning loop is possible inside of a path for the player owning that
path. The target nodes form an infinite 2-step loop that is won by player
even. The propagation game in the dataset, prop50_1k, contains 50 paths
of 1 000 nodes each.

A propagation tree consists of a tree with a certain number of levels
and a fixed number of children for every tree node. See Figure [B2] for a
propagation tree with 3 levels and a fanout of 2. All connections in the tree
are bidirectional, apart from an edge from one of the leafs of the tree to
a pair of target nodes. These target nodes again together form an infinite
loop won by player even. The priority of the root is high and even, and the
priorities of all tree nodes are odd, such that player ¢ cannot win unless
it uses the edge to the target nodes. The propagation tree in the dataset,
tprop21, contains 22 levels and has a fanout of 2.

61

OO0
QXD

Figure 8.2: A propagation tree with 3 levels and a fanout of 2.

8.2 CPU Strategies

The single-occurrence variants of the queue, stack and random CPU strate-
gies are compared. See Figure for the running times of all test cases
using these strategies.

The random strategy performs surprisingly well: in most test cases, its
running times are only slightly slower than for the queue or random strategy.
The most notable exception is £1ct17, where the random strategy is 5 times
faster than the other strategies. This is the only test case where the random
strategy is the fastest strategy by far; in all other cases, the deterministic
queue and stack strategies are usually faster, or are at least not much slower
than the random strategy.

Overall, the stack strategy appears to perform slightly better than the
queue strategy. Both strategies are faster in roughly half of the input files,
but the difference in running times when the stack is slower are smaller
on average. No clear best strategy can be given just yet, but enabling
alternating SPM might result in a more clear difference.

The queue and stack strategies are compared with alternating SPM en-
abled and disabled. See Figure B4l for the running times of all test cases
using these strategies.

When looking at both strategies with alternating SPM enabled, it is
now possible to point to a better strategy: the queue strategy is almost
always faster than the stack strategy, and in the test cases where it is slower
the difference is not very big. There are a few cases, such as nester5 and
abpswp4_1, where the stack strategy is slower than the queue strategy by a
large margin.

Enabling alternating SPM with the queue strategy provides a very no-

62

cabp8 ¢
ctlsbc8 it
elevrf ¢

QleVIU (Z7777777777777777777777777.

fictl7 SIS

hanoi12 ¢
liftidl 2
neSterS W///

pdibc8 Z

swp8 MW rrrs s oo o T

Parity game

swp4_2r Z
abpswp4_1 £
jurdz5_10 ¢
prop50_1k &

tpropz’] PPy s A

0.1 1 10 100 1000

Time (seconds)

M cpu-soqueue 7 cpu-sostack M cpu-sorandom

Figure 8.3: Running times for the single-occurrence variants of the queue
(cpu-soqueue), stack (cpu-sostack) and random (cpu-sorandom) strategies on
the CPU, using a logarithmic time scale. The dashed line at 900 seconds is used to
indicate that tests were terminated after 15 minutes.

ticeable speedup. The biggest differences are present for the test cases
f1ctl7 and jurdz5_10, where alternating SPM performs more than 100
times better than either strategy with alternating SPM disabled. Even when
enabling alternating SPM is slower than disabling it, the difference is almost
always small. This is not unexpected: if alternating SPM does not reduce
the number of lifts required, it requires more time because it performs the
lifts for both players and because it periodically attempts to synchronize the
winning set of both players, but the impact of this is not very large.

Figure provides a different view on the same data as already included
in Figure B4l but by using scatter plots the trends are more clear. Both
scatter plots contain a diagonal line: points on this line represent test cases
that are solved equally fast by both the queue and the stack strategy; points
above this line are solved faster using the queue strategy, while points below
the line are solved faster using the stack strategy.

In Figure B5al, alternating SPM is disabled. The points are evenly dis-
tributed on both sides of the line, but those below the line are on average
farther away from the line. This coincides with the earlier observation that

63

Cabp8 a FIIIIILILIIII 7777707777077
AR

ctlsbc8 &

AR NN NNNNNNNNY

elevif &

AR RRRR IR R RRRRRRR RN RRNNNNNNNNAN

pa
el eV7u AR N NNNNNNNNNNNNNNN

/““““““““‘I///'
AR

hanoi12 &

AR R R R R R RN RN NN

fictl7

liftid] C————————————— (* """ ITILLLTLL 7,
A NN NNNNNNNNNY

nesters Z SSLSSSLS LSS S S SSSSSSSSSSSSSSAh
L5535 5 5 SN S SR S S SR NN S S S S S S S S S S SR N NN

pdibc8 !

A5 S S NS S E S S S E N SN NNNNNN

Parity game

SVVp8 1l ————————————————— (77T IIIILLIT L
— A NNNNNNNNY

swpd_2r @ 4

AR R R R RN RN NN
abpswp4_1

jundz5 10 i (17 IIILAIILILITIL LTI LIS
—_ ANNNNANNNNNNY

prop50_1k & 77

AT R R RRRRRRRRRRRRRR R R RRRRRRRR R GGG

A5 S S SE NN NN SN SN NS S S S NS S S S SN NSNS NSNS NN NN SN NN NNNN

tpn3p21 LS LSS
AR RN

0.01 0.1 1 10 100 1000

Time (seconds)

M cpu-soqueue 7. cpu-sostack M cpu-soqueue-alt N cpu-sostack-alt

Figure 8.4: Running times for the single-occurrence wvariants of the queue
(cpu-soqueue) and stack (cpu-sostack) strategies on the CPU with alternating
SPM disabled, and the queue (cpu-soqueue-alt) and stack (cpu-sostack-alt)
CPU strategiews with alternating SPM enabled, using a logarithmic time scale.

the stack strategy works slightly better when alternating SPM is disabled.

Figure shows the effect of enabling alternating SPM: it is imme-
diately obvious that, on average, the points have moved to the lower left
corner, and are thus solved faster in general. It is also clear that most
points are now above the line, again showing that the queue strategy works
better when alternating SPM is enabled.

Considering these results, the best CPU strategy is the queue strategy
with alternating SPM enabled.

64

1000 E T T T T 1000 T T T T
E +
2 100 " . < 100} + .
> E +F + o * +
L [2
© ©
= 10 S = 10 | E
x E x + +
1) 1k . 17} 1k N .
< <
= = +
s F s *
g o1f ! 3 g o1k]
0.01 L L L L L 0.01 L L L L
0.01 01 1 10 100 1000 0.01 0.1 1 10 100 1000
time with queue strategy (s) time with queue strategy (s)
(a) Alternating SPM disabled (b) Alternating SPM enabled

Figure 8.5: A scatter plot comparing the running times for every test case when
using the queue strategy and when using the stack strategy, with alternating SPM
disabled and enabled, using a logarithmic time scale.

8.3 GPU Strategies

Before comparing the GPU strategies, there is one parameter of the explicit
queuing strategy to give a value: the number of lifting steps to perform
between two subsequent updates of the work queue. Figure shows the
impact on solving time when varying the number of loop iterations between
work queue updates, as well as the time spent performing actual lifting
calculations and time spent updating the work queue.

Figure shows the expected shapes: a low number of loops between
work queue updates results in a large amount of time spent on updating
the work queue, while a high number of loops between work queue updates
results in increased time spent on the actual lifting calculations. The optimal
value is between 32 and 128 loops, since the total solving time is at the lowest
point between those numbers.

Figure R.6D shows the graph for a different test case, which shows a
pattern that occurs for multiple test cases: the value of the parameter does
not make a big difference for the calculation times, so choosing a higher
value results in lower overall running times. The time used to update the
work queue is marginal when the number of loops is set to at least 32. Given
both graphs, the default number of loops should be between 32 and 128. A
default of 32 is chosen since that coincides with the number of threads in a
warp.

The implicit queuing and explicit queuing GPU strategies are compared
with alternating SPM disabled and enabled. See Figure for the running
times of all test cases using these strategies.

The first impression is that the implicit queuing strategy with alternating

65

time (s)

1 2 4 8 16 32 64 128 256 512 1024

nr. loops between work queue updates
i total solving ====== runnnm calculations queue updates

(a) Time spent of actual lifting calculations and work queue updates, and resulting
total solving time for the hanoil2 test case.

120
100

80

time (s)

20
0
1 2 4 8 16 32 64 128 256 512 1024
nr. loops between work queue updates
el tOtal SOIVING #2mess L TELLEN calculations queue updates

(b) Time spent of actual lifting calculations and work queue updates, and resulting
total solving time for the ctlsbc8 test case.

Figure 8.6: Time spent on actual lifting calculations and work queue updates for
two inputs using the explicit queuing GPU strategy, with varying number of lifting
steps between two work queue updates.

66

cabp8 &

ANNNNANNY

ctlsbc8 &

AT RN

elevif &

ATRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR NG

pa
el eV7u ARATTARRTRRRTRRRRRARRTRRTRRRRRRRRRRRRRRRARRARRRRRRRRRRNNANANNANNNNNANNNNNNNNNNNNNNNNN N

fictl7

z
AU RN

hanoi12 &

A5 5SS S SN NS NN NN S SN NSNS S S S NN SN NSNS NSNS NSNS NN N NNNNNNNNS NSNS

liftid] i ———————————————————————————————————
AR R RN

1]
1]
1]
1]
1
1
1
1
1]
1]
1]
1]
()]
E []
.
© nesterb H
(o)) AR AR R R R R R R AR R R R R R R R RN NN NN NN 1
2 1
2]
= pdibc8
© AR AR AR R R R R R R R R R R R R RRNRRNNNANNANNNANNANANNANNNANN Ny
o []
st8 1| LSS S :
_ ANNNNNNNNNY :
swpd_2r @ }
—_ \\\:
1]
1]
wp4_1
abps p4— ARARRRRRRRRRRRRRRNNRINNNNY H
1]
JUI"dZ5 10 LSS :
—_ AT AT AR R R R NN [}
1
1
.
prop50_1k '
_— AR AR R AR AR R R R R AR RN :
1]
tprop21 LSS S S []
A BT N NN NN NN N NN NNNNNNNNNNNNNNNNNNNNNNNY :

Time (seconds)

W gpu-explicit 7 gpu-implicit ® gpu-explicit-alt N\ gpu-implicit-alt

Figure 8.7: Running times for the for the explicit quewing (gpu-explicit)
and implicit queuing (gpu-implicit) GPU strategies with alternating SPM
disabled, and the explicit queuing (gpu-explicit-alt) and implicit queuing
(gpu-implicit-alt) GPU strategies with alternating SPM enabled, using a log-
arithmic time scale.

SPM enabled is the worst option of the four GPU configurations tested.
There are however two test cases where this configuration is much faster
than the other three: cabp8 and swp8_1i. When comparing this to the
CPU implementation using the queue strategy and alternating SPM, these
times are not as spectacular: the CPU implementation solves these test
cases only slightly slower than the GPU implementation does.

The explicit queuing strategy with alternating SPM enabled is slower
than disabling alternating SPM for all test cases. While alternating SPM
resulted in much better running times for the CPU algorithm, this does not
appear to be the case for the GPU algorithm. The best results using the
GPU algorithm are obtained when alternating SPM is disabled.

When alternating SPM is disabled, the difference between the explicit

67

queuing and implicit queuing strategy is not very big. For most test cases,
the running times are within a factor 2 of each other, with nester5 as
a notable exception: the implicit queuing strategy is about 7 times faster
for this test case than explicit queuing. For this test case, the explicit
queuing strategy could be slower due to the added overhead of work queue
calculations.

60000

40000 - .

20000

nr. of vertices in work queue

5 10 15 20

running time (s)

o

=~
N3

Work queue length over time for the nester5 test case.

ooo—
800000 - 2

600000 - :

400000 - 2

200000 |- 2

nr. of vertices in work queue

| | |
0.2 0.4 0.6 0.8 1 1.2

running time (s)

(b) Work queue length over time for the elev7f test case.

Figure 8.8: The length of the work queue used in the explicit queuing GPU strategy
over time for two test cases. The marks indicate the moments when the work queue
is updated.

68

Figure B8 shows the work queue length over time for the nester5 and
elev7f test cases. The overall shapes are similar: a few iterations at the
start with nearly all vertices in the work queue, and then the size of the work
queue shrinks until the last iterations work with a nearly empty work queue.
The number of work queue updates is similar in both cases, but nester5 has
less than 10% of the number of vertices that elev7f has, and the running
time is nearly 20 times higher. This shows that a single iteration takes
much longer with nester5, which is caused by the high maximum priority
in this case, 981, which results in measures with a large number of elements.
The overhead of work queue calculations is very small for nester5, so the
difference between the explicit and implicit GPU strategy is caused by other
effects. It could be that the number of queued vertices per warp is low for
implicit queuing, which would result in less possible divergence in execution.
The impact of this is large because the number of elements per measure is
high.

In general there is not much difference between the explicit and implicit
queuing strategies, but if any strategy has to be named as the more efficient
strategy, then the implicit queuing strategy wins because of its superior
performance on nester5.

The kernels presented in Chapter [B] were theoretically analyzed for their
memory efficiency. The NVIDIA Visual Profiler (nvvp), part of the CUDA
SDK, can analyze the memory efficiency attained in practice per single kernel
invocation. The memory efficiency is measured on the nester5 input using
the implicit queuing strategy, by looking at the memory efficiency reported
by nvvp for a single kernel invocation at approximately halfway the entire
calculation.

With d = 982 and maximum outdegree O = 2, the theoretical mem-
ory efficiency of IMPLICIT__PROG__KERNEL is 11,18%. The achieved mem-
ory efficiency as measured by nvvp is 14,74%. This is slightly higher than
theoretically calculated, but not by much. The small difference can occur
because some memory accesses counted as completely non-coalesced might
be slightly coalesced, because a few threads could use multiple values from
a single memory transaction where it was assumed that all threads required
a separate memory transaction.

With d = 982 and maximum outdegree O = 2, the theoretical memory
efficiency of IMPLICIT_LIFT__KERNEL is 6.06%. The achieved memory effi-
ciency as measure by nvvp is 9.08%. As for IMPLCIT__PROG__KERNEL, this
is slightly higher than the theoretical efficiency.

69

cabp8 & e

AR NN NN NN NNNNNNNNN

ctlsbc8 &

AR RN NNNNNNNNNNSSS

elevif &

AT RRRRRRRR TR R RRRRRRRRRRRR RN RRRNNNNNNAN

pa
el eV7u AT AR AR AR AR R RN RARNARNNANNNANNNNANNNNNNNNNNNNNNN N

.
fictl7
ANRRTRRRTRRITRRNNNANNNNN
hanoi12 &
AR R R AR R R R R R AR R R AR R RN RN RN NN NN AN
||ﬂ|4| LSS
[0} AR NSNS N NNNNNNSNNNNNYY
E .
© nester5 a
(o)) AR AR R R R R R R R R R RN RN NN
£ I
© pd bC8 ANURURARRRRRRRRARRNANNNANNANNNNANN
o

SVVp8 1l —————————————————— |
— AN NN NNNNNNNNN

.
swpd_2r
—_ AT TR TR TR R RRRRRTRRRRNRRNNNNNNNNNNNY
wp4_1
abps —_ AT TR TR TR RTRERRRRRRRRNNNNNNANY
1 Ll
Jurd25—1 0 ASNNNNNNNNNNNY

prop50_1k &

AR RRRRRRRRRRRRAR R R RRRRRRRRRRRRRNNNNNNNN NN

tpn3p21 PRI
A O N NNNNNNNNY

0.01 0.1 1 10 100 1000

Time (seconds)

M both 7 both-cpu-alt ™ both-gpu-alt X\ both-both-alt

Figure 8.9: Running times for both the CPU and GPU implementation running in
parallel, with alternating SPM disabled for both (both), enabled for only the CPU
(both-cpu-alt), enabled for only the GPU (both-gpu-alt), and enabled for both
CPU and GPU (both-both-alt), using a logarithmic time scale.

8.4 Combining CPU and GPU

When running both implementations in parallel as described in Section [£.3],
the CPU implementation uses the queue strategy and the GPU implemen-
tation uses the implicit queuing strategy. Alternating SPM can be enabled
independently for both implementations. See Figure for the running
times of both implementations running at once, with all possible configura-
tions of enabling alternating SPM.

It is evident that alternating SPM must be enabled for the CPU imple-
mentation. The running times for the two configurations where it is disabled
for the CPU implementation are nearly always the slowest of the running
times.

The remaining question is whether alternating SPM must be enabled for

70

Cabp8 LIS LIS

ctlsbc8 £ R R AR 2 e P
elevrf ¢
eleviu & LILLLIILILL LI LSS IS LSS SIS IS LSS

——
fIctl7 iz rr vrrrvssssssrrsssssssrsssrsss
i ——

NanoI12 Ll i 7 7 7 /7 /L

® liftidl Z SISLLLIIILIIIILI LG ILL 7577

€

[nesterd ¢

o

_-E’ pdibc8 Z SITIIIIIIIIIIITIILL SIS IIISSSLIISSSSSS SIS SIS0
©

o

stS N Wrrrrrrrrrerreerrrorrrrrrad Ve D O R e i as

Swp4 2r LA S S S S S S S SSSSLSSSSSSSSSSSSSSSSSSSSSS
abpswp4_1 £

. —
Jurdz5_10 W///

prop50_1k &

tpr0p21 A

0.01 0.1 1 10 100 1000

Time (seconds)

M cpu-soqueue-alt 7 gpu-implicit ™ both-cpu-alt

Figure 8.10: Running times for the CPU implementation using the queue strat-
egy with alternating SPM enabled (cpu-soqueue-alt), the GPU implementation
using the implicit queuing strategy with alternating SPM disabled (gpu-implicit),
and both implementations with those strategies running in parallel (both-cpu-alt),
using a logarithmic time scale.

the GPU as well. When it is disabled, the running times are never much
slower than when it is enabled. Enabling it, however, might result in a
performance loss; see for example the test cases elev7u and hanoil2. The
best configuration is to enable alternating SPM only for the CPU, and not
for the GPU.

Combining both implementations to run at once should provide the best
of both worlds: both implementations have only a small amount of extra
overhead due to synchronizing their measures, and there might even be a
benefit due to this synchronization. See Figure 810l for the running times of
the combined implementation compared to the running times of the separate
implementations.

For every test case, combining both implementations is slightly slower
than the fastest of both implementations, which shows that combining both
implementations indeed gives the best of both worlds.

This is also a good point to compare the speed of the CPU and GPU
implementations. The CPU implementation is still the fastest implemen-

71

CPU |

8.91 4{

0 2 4 6 8 10 12 14 16
million lifts per second

(a) Number of lifts performed per second by the CPU implementation using the
queue strategy with alternating SPM disabled, in millions of lift per second.

GPU | }— 186.8 |

T T T T T T T
0 50 100 150 200 250 300 350 400
million lifts per second

(b) Number of lifts performed per second by the GPU implementation using the im-
plicit queuing strategy with alternating SPM disabled, in millions of lift per second.

Figure 8.11: Lifting speeds of CPU and GPU in millions of lifts per second

tation for most of the test cases, but there are a few test cases where the
GPU implementation is significantly faster than the CPU implementation.
For example, hanoil2 is solved approximately 50 times faster using the
GPU implementation. The GPU implementation complements the CPU
implementation, and combining both of them to run in parallel results in an
implementation which provides decent solving times for all test cases.

The GPU has a large advantage in the number of lifts it can perform per
second. See Figure B.IT] for a comparison of the number of lifts performed
per second by the CPU implementation and the GPU implementation. This
is measured by calculating the number of lifts performed for each test case,
and dividing that by the time spent on solving the game. On average, the
GPU performs over 20 times more lifts per second than the CPU.

Both propagation games can also be solved faster using the GPU im-
plementation: the GPU is over 5 times faster for prop50_1k and roughly 4
times faster for tprop21. This class of games can indeed be solved faster on
a GPU than when using a CPU, as was intended.

8.5 Edge priority shortcuts

The use of shortcuts added in parity games with edge priorities is examined.
See Figure[B.I2for a comparison of the combined implementation which adds
no shortcuts to an implementation which adds 1 or 2 levels of shortcuts.

It is obvious that adding 2 steps of shortcuts is ineflicient: it causes
timeouts to occur for 3 test cases, and it is never faster than adding only

72

Cabp8 LIS

ctlsbc8 g H
elevrf ¢

eleviu ¢ [

I
fictl7 iz e .

hanoil12 Lol 7 7

o litidl

5 nester5 2 H
o "
2 pdibc8 Z !
© H
o i

swp8 N Werrrrrrrrerrrerrrarrerrrr s s i

Swp4 A L

abpswp4_1 £
jUrdZ5_10 ——

[Z2zzesreezeay
prop50_1k & [

tpr0p21 PRI

0.01 0.1 1 10 100 1000

Time (seconds)

M both-cpu-alt # both-calt-edge1 ™ both-calt-edge2

Figure 8.12: Running times for both CPU and GPU implementations running
in parallel, with no added shortcuts (both-cpu-alt), one step of shortcuts added
(both-calt-edgel), and two steps of shortcuts added (both-calt-edge2), using
a logarithmic time scale.

1 step of shortcuts. Adding 1 step of shortcuts does help in some cases,
especially for hanoil2 and prop50_1k. It is almost never a big burden
either: the worst runtime increase is a factor 3 for nester5. Enabling one
step of shortcuts therefore seems to be a good choice overall.

Figure I3 shows the influence of adding shortcuts on the preprocessing
and solving times of prop50_1k, pdlbc8, and 1ifti4l. The preprocessing
time includes reading the graph from disk, and all graph preprocessing such
as removing self-loops and adding shortcuts. Note that the running times
given throughout this chapter involve both the preprocessing and the solving
time.

The solving times of prop50_1k greatly benefit from adding a single
step of shortcuts. This is related to the bi-directional edges used in most
of the input graph: hanoil2 also features a large number of bi-directional
edges, and shows a similar increase in running time when adding shortcuts.
Adding a second step increases the preprocessing time without speeding up
the solving times.

Neither pd1bc8 nor 1ifti4l benefits from adding shortcuts. For pdlbc8,

73

6 0.45 1.2

0.4
5 1
0.35
o 4 = 0.3 o 0.8
Es £ 0% E 06
= > 0.2 J=3
£ £ £
g2 £ 015 £ 04
2 2 2
0.1 P
1 0.2 7, %
0.05 7 /
0 iR e 0 0 j j
0 1 2 0 1 2 0 1 2
nr. of steps of shortcuts added nr. of steps of shortcuts added nr. of steps of shortcuts added
O preprocessing B solving t preprocessing B solving T preprocessing M solving
(a) prop50_1k (b) pdlbc8 (c) 1liftidl

Figure 8.13: The preprocessing and solving times for 3 test cases, when adding no,
1, and 2 steps of shortcuts.

the preprocessing time increases without any benefit to the solving time. For
1ifti4l, adding a single step of shortcuts results in a decrease in solving
time, but the increase in preprocessing time is greater.

8.6 Sorting input graph

A number of different orderings for the vertices in the graph were presented
in Section Figure B4l shows the running time of the combined imple-
mentation when vertices are sorted according to each of these orderings.

What is immediately obvious, is that sorting using the BFS-order or
DFS-order is a very bad idea: the running time increases by more than a
factor 10 in most cases.

The other vertex orderings behave roughly the same: in all cases except
for jurd5_10, they do not give any noticeable improvement. The original
vertex order is the fastest ordering in the majority of the tests. The difference
for jurdz5_10 is the biggest difference, but still it is only a factor 2 and in
absolute terms the difference in 60 ms.

Overall, sorting the vertices does not help in solving parity games faster.
The possible effects on cache efficiency do not materialize, and when using
the BFS or DFS orderings the results get a lot worse than when using the
original ordering.

74

oYY

cabp8

ctlsbc8

elevrf

eleviu |

flot]7 St

. TR
hanoi12 S>>
e ey e N Y N Y NN ¥ NI NS N NE ¥ NS E NS E NS E N SE Y SE Y NS E N SEY NS AN Y NSE SR SN SR S e s

a

lifti4l

A N NI

FIII TSI I IS
nesters S LS LU ST S Y
SN SN SN SSNSO S NS

Parity game

pdibc8

S S EE N N N N Y N N e N e Y R NSNS E S E NS N RN S NS E SRR EE e E e AN SRR VRN SRR RS NN EN)

L LI
SVVpB_JI SSNNNNNAN NN NN NN NN N
NN NN NSNS NSNS NN

swp4_2r
B e B e B B B e e e e RS E R e
LSS
abpswp4_1
B e L e e e e e s o e e
I
jurdz5_10 [rrererrerrry]
SOOI
prop50_1k e {

ya .
tpn3p21 N AN

e S S Y S Y'Y W% NUEN ¥ WS NNEN (e SN s
0.01 0.1 1 10 100 1000

Time (seconds)

W both-cpu-alt 7 both-calt-orev M both-calt-odeg
N both-calt-opri B both-calt-obfs # both-calt-odfs

Figure 8.14: Running times for the combined implementation when the vertices
are sorted in original order (both-cpu-alt), in reverse order (both-calt-orev),
by degree (both-calt-odeg), by priority (both-calt-opri), by BFES-order
(both-calt-obfs) and by DFS-order (both-calt-odfs), using a logarithmic time
scale.

75

8.7 Existing tools

The best configuration for spm — combining the queue CPU strategy with
the implicit queuing GPU strategy, enabling alternating SPM for the CPU
only, and adding 1 step of shortcuts — is compared to the best times achiev-
able using pgsolver, using the small progress measures algorithm, and
pbespgsolve, for which alternating SPM is enabled, and SCC detection
and cycle detection are disabled. See Figure for the running times of
these three tools.

For most cases, the three tools show comparable performance. It is
obvious that, overall, pgsolver is the slowest of the three: its running
times are usually at least twice as high as for the other solvers, but not
much more than that. The other two tools are very close to each other in
terms of performance, but pbespgsolve is slightly faster than spm for most
cases. There are, however, a few cases where spm is clearly faster than the
competition.

The cases where spm is clearly the fastest implementation are elevT7f,
hanoil2 and both propagation games. In Figure R0, where the CPU and

CabP8 Ll (7 (1
(WSS rrrrrrrrrrrrrrrrrrg
elevrf ¢ 2

eleviu VISLLIIIL S 2

fictl7 itz 0777 vy

hanoi12 ¢
I liftidl 2 I ss E
5 !
[nesterd ¢ '
2 L}
-'? pdibc8 £ SILILLLIIS SIS [
© L}
o H

SWp8 W errrrrrrrrrrrevrrerrrrrrzZaazd 00

Swp4 VA T T A I

abpswp4_1 2 TILILILLL LS IIILLS LSS

jurdz5_10 ZZ2rzzzzz
prop50_1k !

tpr0p21 LSS LSS

0.01 0.1 1 10 100 1000

Time (seconds)

M both-calt-edge1 7 pgsolver M pbespgsolve-alt

Figure 8.15: Running times for spm (both-calt-edgel), pgsolver and
pbespgsolve, using a logarithmic time scale.

76

GPU implementations are compared, the GPU implementation shows a clear
improvement over the CPU implementation on these same games. Adding
the GPU implementation to the solver therefore helps to solve a number of
games significantly faster than what was possible with previously existing
solvers.

8.8 Scalability

The GPU implementation should show a speedup when faster hardware is
used. Some tests are run on a system having a faster GPU: a NVIDIA
GeForce GTX 660 Ti, capable of running code for CUDA compute capa-
bility 3.0, with 1344 CUDA cores running at 1.14 GHz and 2 GB of global
memory accessible via 192-bit memory bus running at 3.00 GHz. When not
considering the possible effects of the different architecture, the computa-
tional power of the GTX 660 Ti is over 7.5 times that of the GT 555M, while
the available memory bandwidth is increased fivefold. The system contain-
ing the faster GPU is also equipped with a faster CPU. Figure[B.I6 shows the
running times for the GPU implementation and combined implementation
on both GPUs.

When considering the running times of the GPU implementation, the
running times are 2 to nearly 5 times lower on the faster GPU than on
the slower GPU; on average, the running times are nearly 3 times lower.
The average speedup is only half that of the maximal attainable speedup,
but some test cases — cabp8, ctlsbc8 and 1ifti4l — come quite close to
achieving that.

There are no test cases which were clearly solved faster by the CPU
implementation on the slower GPU, that are now clearly solved faster by
the GPU. There is one case that was solved equally fast by both, nester5,
that is now solved clearly faster by the GPU. The differences between the
GPU implementation and the CPU implementation have become smaller
though.

In general, it is clear that the GPU implementation scales reasonably
well to faster hardware.

77

a s
Cabp8 ANRRRRRARNNNNNANNNNNNNN

Z SIS
CtISbcs AR ARARNNNNNNNNNNANNY

.
elevrf
AR RRNRNARNANNANNANNNANNN

eleviu @ SIS IIIT IS LI LI IS S ST L7 7T
AN O O NN NN NNNNNNNNNY

ﬂctl? S S LSS SIS

z
AONNRRNARNNNNNNANNANNN

hanoi12 &

AR RN RRRRRRRRRRNNNANNNNNNNNNN

liftid] ———————————————— (" 177
AR NN NNNNNNNNNNNNNNN

ARRRRRRRRRRRNRIRRRNRNRRNNANNNNNNNNNNNNN

pdlbc8 7

ARRRRRRRNRRNNNNNNNNNNNT

Paritygame

SWp8 1l ———————————— ("L LA
— ARRRRRARRRRRRRNNNNANNNNNNY

SWp4 2r Z SLSLSS ST LSS
— ARRTRRRIRRRRRRRRRRRRRRRRNNNNNNNNNNNANN

abpswp4_1

jurdzs 10 ——— AL TLLIILLTLLL LS LATILT LI 77277
—_ ANRRNRNNNNNNNY

ARRRRRTRRRRRRRRRRRRRRRNRNNNNNNANNY

prop50_1k &

ARRTRRRRRRRRRRTRRRRRRRRRRRRRNRNNNNNNNAN

i
H
H
H
H
H
"
H
H
H
nesterd & H
H
r
H
H
H
H
H

tpr0p21 LI L
AR NN N O O N NN NN NNNNNNNNNNNNS

0.01 0.1 1 10 100 1000

Time (seconds)

W gpu-implicit ~ gpu2-implicit ® both-cpu-alt X both2-cpu-alt

Figure 8.16: Running times for the implicit queuing GPU strategy on a GT
555M (gpu-implicit) and a GTX 660 Ti GPU (gpu2-implicit), and the com-
bined implementation on a GT 555M (both-cpu-alt) and a GTX 660 Ti GPU
(both2-cpu-alt), using a logarithmic time scale.

8.9 Discussion

Of the implemented CPU strategies, the single-occurrence queue strategy
with alternating SPM enabled performs best. Both GPU strategies show
similar performance, but enabling alternating SPM for them resulted in
worse running times for most test cases. On first sight, the single-occurrence
queue on the CPU should behave roughly the same as the queuing strategies
on the GPU, since both implementations lift all relevant vertices before
lifting a vertex again. There are a few difference in the process of lifting
that can explain the observed differences in behavior. The most important
difference is that the GPU effectively lifts of all vertices at once, while the
CPU lifts them one-by-one. If the measure of the first vertex influences the
measures of later vertices, then this can be used in a single iteration over all

78

vertices on the CPU, while it requires multiple iterations over all vertices on
the GPU. Another difference is that the explicit queuing strategy does not
rebuild its work queue after every iteration, which means that some vertices
might be in the queue for a few useless iterations, while others are added to
the queue a number of iterations after they could have been.

Overall, the GPU implementation can perform a much larger number
of lifts per second than the CPU implementation can, but the CPU can
easily use better strategies to reduce the number of required lifts. The GPU
implementation therefore has an advantage in games where a large number
of lifts are required to solve the game, regardless of the employed strategy.
This is also the reason why the propagation games are solved faster by the
GPU: nearly all paths require a large number of lifting steps to stabilize the
measures, regardless of the strategy employed.

Combining both implementations to run in parallel gives the best of both
worlds: the running time of the combined implementation is only slightly
slower than the fastest running time achieved by the separate implementa-
tions. No cross-over effects were seen where combining both implementa-
tions resulted in a faster solving time than both could achieve independently.
This suggests that sharing the results between both implementations does
not help in solving the parity games faster.

Enabling edge priorities and adding a single step of shortcuts can sig-
nificantly reduce the solving time for some parity games, while it has no
effect or a slightly negative effect on the solving time for most games. There
is often a reduction in solving time, but the increase in preprocessing time
negates small wins in solving time. Adding shortcuts results in a larger
number of edges in the game, while only a few edges can be removed. This
is a possible cause of the increase in solving time when a second step of
shortcuts is added.

Comparing the implementation spm to the existing solvers pgsolver and
pbespgsolve shows that spm has comparable performance to those solvers,
and can even solve a number of games significantly faster because of the use
of the GPU. Using the GPU for parity game solving can have a significant
positive impact on the speed of solving some parity games.

79

80

Related work

There is currently a very active research field for model checking, part of
which is concerned with solving the model checking problem of validating
whether a given model satisfies a certain property. This chapter gives a
short overview of work related to the research presented in this report.

The related work can be broadly categorized in 2 categories: faster solv-
ing of parity games using multi-core architectures, such as quadcore proces-
sors, and solving some form of the model checking problem using many-core
architectures, such as a GPU.

Van de Pol and Weber [16] presented an adaptation of the small progress
measures algorithm to run on multi-core systems. The workload is spread
over multiple cores by dividing the parity game into a number of components
equal to the number of available cores, and assigning every component to a
separate core. Every core then performs all lifts on vertices in its component.
This method provides faster parity game solver when multiple cores are
employed, but the resulting speedup is not linear, and the effects are small
when more than 4 cores are used.

Huth et al. [7] improved on the work by van de Pol and Weber. They
reduced the critical sections of the original implementation, resulting in bet-
ter scaling to 8 cores with a more linear speedup. They also redesigned the
way work is distributed between cores, by using a parallel queue containing
all vertices that may need to have their measure updated, and letting every
core take the next vertex from the queue when they need to. This spreads
out the load more evenly over the cores, and allows the algorithm to scale
better up to 16 cores, at the expense of worse performance when employing
only few cores.

Van der Berg [17] adapted the small progress measures algorithm to
run on the multi-core Cell architecture of the Playstation 3 using a similar
approach as Van de Pol and Weber. The graph is divided into a number
of clusters of which all lifts are handled by the same core. The resulting
implementation shows comparable results to that of Van de Pol and Weber:
using more cores results in faster solving, but the speedup is not linear.

81

The general theme in scaling small progress measures to multi-core sys-
tem is to divide the graph in clusters, but Huth et al. have shown that using
a parallel queue provides better scaling when more cores are present. The
GPU implementation of spm can use 2 different strategies based on queuing.

As for model checking using a GPU, Bonsacki et al. [2] attained a sig-
nificant speedup in solving probabilistic model checking. The central part
of probabilistic model checking consists of sparse matrix-vector multiplica-
tions, which they calculated on the GPU instead of the CPU. The result is
that solving these games is up to 18 times faster when employing a GPU
then when only using a CPU.

Barnat et al. [I] redesigned the maximal accepting predecessors algo-
rithm for LTL model checking in terms of matrix-vector multiplication, and
used the GPU to calculate these multiplications. There was still some CPU
code involved to steer the GPU calculations, and those dominate the result-
ing running time. Nevertheless, using the GPU resulted in noticeably lower
computation times.

Hoffmann and Luttenberger [6] recently investigated implementing three
parity game solving algorithms on the GPU: the recursive algorithm by
Zielonka, strategy iteration, and the small progress measures algorithm.
The paper is coarse on details of how the algorithms were implemented,
but hints that values assigned to vertices are continuously recalculated until
they stabilize. Their results show that strategy iterations and, even more
so, the recursive algorithm benefit greatly from being run on the GPU: the
recursive algorithm is up to 20 times faster on a GPU then on a CPU.
The small progress measures algorithm, however, is slower on the GPU in
all of their test cases. The results obtained with spm show that there are
some cases where employing the GPU is beneficial, but these cases might
not be included in Hoffmann and Luttenbergers dataset. Another possible
explanation for the difference is that spm can use slightly more elaborate
strategies than were implemented by Hoffmann and Luttenberger.

82

Conclusion

The small progress measures algorithm is one of the algorithms used to solve
parity games. It is actually a class of algorithms, of which the practical
speed is determined by the lifting strategy used in the algorithm. Existing
implementations of small progress measures are mostly tailored for the CPU.

The small progress measures algorithm has been adapted to be suitable
for use on GPUs, and two basic strategies suitable for use on a GPU have
been introduced, implicit queuing and explicit queuing. An implementation
of this algorithm, spm, was created to be able to test the performance impact
of using a GPU. This implementation also contains an implementation of
the CPU algorithm, and a combination of both implementations running in
parallel in order to get the best results of both worlds.

Two techniques are introduced which could speed up the implementa-
tion: alternating SPM and shortcuts in games with edge priorities. When
alternating SPM is enabled, the parity game is solved for both players at the
same time, while periodically synchronizing the partial winning set of both
players. It has already been used in the pgsolver and pbespgsolve tools,
but no formal description of how and why this works was available. When
priorities are assigned to edges instead of vertices, it is possible to create
shortcut edges which skip one or more vertices, without ignoring their pri-
orities in the computation. This preprocessing step is done on parity games,
but requires modified algorithms to solve the parity games. The required
modifications to the small progress measures algorithm have been described.

Two generic parity game preprocessing techniques have been described:
self-loop elimination and sorting vertices. By applying self-loop elimination,
some outgoing edges of vertices containing self-loops can be removed, re-
sulting in a smaller graph without changing the winner of any vertex. By
sorting vertices, indirect effects such as slightly more efficient propagation
of changes in measures or better use of caching could help in speeding up
the computation time needed by the implementation.

Experiments show that using the GPU can help in solving a number
of parity games significantly faster, but the CPU implementation is still
faster for the majority of the parity games tested. Combining both to run

83

in parallel resulted in an implementation which is always competitive with
existing solvers, and is even significantly faster on games that can be solved
faster by the GPU than by the CPU.

10.1 Future work

This report is only an exploration of the possibilities of various techniques
to speed up the small progress measures algorithm, or solving parity games
in general. There are a number of techniques that appear promising and are
worth further investigation.

The strategies described and implemented for both CPU and GPU are
simple strategies, while more elaborate strategies exist for use on the CPU.
While the GPU implementation can perform much more lifts per second
than the CPU implementation, it is less efficient in general partly because
of its parallel nature, but largely because it is difficult to find a good lift-
ing strategy. The large amount of possible strategies available for the CPU
suggests that there are more possible strategies to use for small progress
measures on the GPU than the two described in this report, and investigat-
ing which strategies are possible and work well could result in a much more
competitive GPU implementation in general.

Another option that can be of benefit to the speed of the GPU imple-
mentation is the advancement of architectures, such as AMDs Heterogeneous
Computing, where classical CPU-cores are combined with GPU-cores on a
single die, where both share the same memory and where the cost of moving
computations between CPU and GPU will be negligible. Some parts of the
GPU algorithm, such as determining the work queue for the explicit queuing
strategy, or calculating the winning set in alternating SPM, are relatively
slow to execute on the GPU. When the current overhead of doing those
calculations on the CPU, consisting mostly of memory copying overhead,
disappears, these bottlenecks can be overcome by using the right processor
for the right job.

Assigning priorities to edges instead of vertices resulted in a slightly
different way of solving parity games. Doing so allows shortcuts to be cre-
ated in parity games, which can reduce the time required to solve these
games. Section described how the small progress measures algorithm
must be adapted to be able to use edge measures, but other algorithms can
potentially benefit from this technique as well. It is worthwhile to adapt
algorithms such as the recursive algorithm for solving parity games to use
edge priorities, and to investigate the hopefully positive influence of adding
shortcuts to parity games on the running time of these algorithms.

84

Bibliography

1]

[2]

Jiri Barnat, Lubos Brim, Milan Ceska, and Tomas Lamr. Cuda accel-
erated 1t] model checking. In ICPADS, pages 34—41. IEEE, 2009.

Dragan Bosnacki, Stefan Edelkamp, and Damian Sulewski. Efficient
probabilistic model checking on general purpose graphics processors.
In Corina S. Pasareanu, editor, SPIN, volume 5578 of Lecture Notes in
Computer Science, pages 32—-49. Springer, 2009.

E. Allen Emerson and Edmund M. Clarke. Using branching time tem-
poral logic to synthesize synchronization skeletons. Sci. Comput. Pro-
gram., 2(3):241-266, 1982.

E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus
and determinacy. In Foundations of Computer Science, 1991. Proceed-
ings., 32nd Annual Symposium on, pages 368-377. IEEE Computer
Society, 1991.

Oliver Friedmann and Martin Lange. Solving parity games in practice.
In Zhiming Liu and Anders P. Ravn, editors, ATVA, volume 5799 of
Lecture Notes in Computer Science, pages 182—-196. Springer, 2009.

Philipp Hoffmann and Michael Luttenberger. Solving parity games on
the gpu. In Dang Van Hung and Mizuhito Ogawa, editors, ATVA,
volume 8172 of Lecture Notes in Computer Science, pages 455-459.
Springer, 2013.

Michael Huth, Jim Huan-Pu Kuo, and Nir Piterman. Concurrent small
progress measures. In Kerstin Eder, Jodo Lourenco, and Onn Shehory,
editors, Haifa Verification Conference, volume 7261 of Lecture Notes in
Computer Science, pages 130-144. Springer, 2011.

Marcin Jurdzinski. Small progress measures for solving parity games.
In Horst Reichel and Sophie Tison, editors, STACS, volume 1770 of
Lecture Notes in Computer Science, pages 290-301. Springer, 2000.

J.J.A. Keiren. Advanced Reduction Techniques for Model Checking.
PhD thesis, Eindhoven University of Technology, 2013.

85

[10]

[12]

[13]
[14]

Hartmut Klauck. Algorithms for parity games. In Erich Gradel, Wolf-
gang Thomas, and Thomas Wilke, editors, Automata, Logics, and Infi-
nite Games, volume 2500 of Lecture Notes in Computer Science, pages
107-129. Springer, 2001.

Dexter Kozen. Results on the propositional mu-calculus. Theor. Com-
put. Sci., 27:333-354, 1983.

Angelika Mader. Verification of modal properties using boolean equation
systems. PhD thesis, Technische Universitdt Miinchen, 1997.

NVIDIA Corporation. CUDA C Programming Guide 5.0. 2012.

Amir Pnueli. The temporal logic of programs. In FOCS, pages 46-57.
IEEE Computer Society, 1977.

Alfred Tarski. A lattice-theoretical fixpoint theorem and its applica-
tions. Pacific journal of Mathematics, 5(2):285-309, 1955.

Jaco van de Pol and Michael Weber. A multi-core solver for parity
games. Electr. Notes Theor. Comput. Sci., 220(2):19-34, 2008.

Freark van der Berg. Solving parity games on the playstation 3. In 15th
Twente Student Conference on IT, June 2010.

Wieslaw Zielonka. Infinite games on finitely coloured graphs with ap-
plications to automata on infinite trees. Theor. Comput. Sci., 200(1-
2):135-183, 1998.

86

	Introduction
	The model checking problem
	Parity games
	Using CUDA for GPGPU programming
	Managing threads
	Memory hierarchy

	Small progress measures
	Progress measures in solitaire games
	Progress measures in game arenas

	GPU algorithm for Small Progress Measures
	Notation for CUDA-algorithms
	Global state
	Kernels and host algorithm
	Lifting strategies
	Implicit queuing
	Explicit queuing

	Implementing Small Progress Measures
	GPU implementation
	Memory layout
	Strategies
	Reducing global memory accesses
	Reducing divergence

	CPU implementation
	Strategies

	Combining the CPU and GPU

	Alternating SPM
	Determining winning vertices
	Implementing alternating SPM

	Edge priorities
	Adding priorities to edges
	Creating shortcuts
	Edge priorities in small progress measures

	Graph preprocessing
	Self-loop elimination
	Sorting vertices

	Experiments
	Dataset
	CPU Strategies
	GPU Strategies
	Combining CPU and GPU
	Edge priority shortcuts
	Sorting input graph
	Existing tools
	Scalability
	Discussion

	Related work
	Conclusion
	Future work

