
Department of Mathematics and Computer Science
Formal System Analysis Research Group

An approachable language for
formal requirements

Master’s Thesis

Kevin Antonius Henricus Maria Nogarede
0907625

Master: Embedded Systems
Department: Mathematics and Computer Science
Research Group: Formal System Analysis
In collaboration with: ASML

Committee:
(TU/e) Supervisor: dr.ir. T.A.C. Willemse
(ASML) Supervisor: dr.ir. R.R.H. Schiffelers

Prof.dr.ir. J.F. Groote

Report ID: version 1.2.3

Eindhoven, December 2019

Abstract

Formal systemverification is amathematical technique for establishingwhether a processmeets cer-
tain design requirements. Typically, such techniques require notation in academic languages which
are difficult for engineers to write and interpret. We aim to develop a new DSL for formalizing re-
quirements that dramatically lowers the barrier of entry by introducing notation and concepts that
are intuitively understandable yet still amenable to automated verification. We prove the correct-
ness of a translation from this new DSL to mCRL2, a well-established tool in formal model analysis.
The applicability of the new language is assessed via user experience studies.

An approachable language for formal requirements i

Executive summary

Formal system verification is a mathematical technique for establishing whether a (software) sys-
tem meets certain design requirements. Typically, such requirements are phrased in academic lan-
guages such as temporal logics (e.g. CTL or LTL), or modal languages (e.g. the modal µ-calculus).
A downside of such languages is that these are hard to understand and not tailored to the prob-
lem domain, thus preventing their use in practice. We aim to develop a new way of formalizing
requirements that is (1) more accessible to engineers, (2) sufficiently expressive, and (3) amenable
to automated verification. The applicability of the new way of formalizing requirements is assessed
via user experience studies.

By establishing a broad knowledge-base of the kinds of requirements that are being written by stu-
dents, as well as what templates they use to convey these requirements in natural language, what
verbiage they use, and what paradigms are more popular than others, we find that students do not
tend to deviate far from the template requirements theywere originally taught, suggesting that they
are not comfortable enough to write more complex requirements, or to leverage techniques other
than those they were explicitly taught.

When analyzing what kind of mistakes they make in translating requirements to formal specifica-
tions, it is notable that even though the students do stick to the template requirements they were
taught, they do still make simple mistakes which the course material instructed them not to make.
This suggests that the µ-calculus language is not particularly conducive to human interpretation,
and as such, students are not able to find the mistakes they make even when they have a decent
understanding of the theory.

Based on these findings, we conclude that the modal µ-calculus that mCRL2 uses is not accessible
enough for use in practice. Additionally, there is a need for a more friendly alternative which is
easier to use than the µ-calculus andmore broadly applicable than the alternatives found in the PSP
or Remenska frameworks.

As such, we have created a language that hides some of the complexity of the modal µ-calculus, by
introducing more meaningful (that is, humanly interpretable) operators that are better tailored to
constructing the types of requirements these students often write. This new language removes the
complex interplay of operators and contexts as seen in the modal µ-calculus, and replaces it with
simple syntactical rules that guide the user into writing the correct requirement.

This is backed up by the user experience studies. Given around 15minutes of explanation of the new

An approachable language for formal requirements iii

language, none of the testers wrote syntactically invalid or semantically meaningless requirements;
something which the students could not achieve using modal µ-calculus with around 7 weeks of
tuition and project supervision. Additionally, while the speed and adaptability of the testers varied
greatly, the requirements theymanaged towrite in the time available to them reflected the intention
of the given requirements. This in contrast to the students who could only manage 58%. While the
user experience studies were only done with 4 people, the gap between the results is significant
enough to be convincing.

Finally, we provide a translation from our new language to the modal µ-calculus that mCRL2 uses,
and prove that the semantics of our langauge are equivalent to the semantics of any translated
formula in the modal µ-calculus. This is particularly useful because mCRL2 is a mature and well-
established toolset for formal model analysis.

iv An approachable language for formal requirements

Preface

This thesis, named ‘An approachable language for formal requirements’, concludes the research
that I have performed as part of my graduation project. This project serves to finalize my Master
Embedded Systems study, to obtain the Master of Science title. I have been working towards this
thesis since September 2018, going fulltime on Februari 2019, until now, December 2019.

The project was done in collaboration with ASML. The sentiment of a few ASML engineers towards
requirement formalization languages has sparked the idea for this investigation, and together with
Jan Friso and Tim we were able to formulate a research question. The sheer amount of scope, flex-
ibility, and creative license that was given to me has made this by far the most challenging and
interesting project to date.

I would like to thank my supervisors of this graduation project, Jan Friso Groote, Tim Willemse, and
Ramon Schiffelers. Jan Friso for introducing this project to me, and being an invaluable source of
information and opinions throughout the project, as well as introducingme to Tim and Ramon. Your
guidance, as well as your insights, remarks, and attitude towards the current state of formal verific-
ation have shaped my perception on this subject, and have made me appreciate this project as far
more than just an intellectual challenge. Invitingme to the Formal SystemAnalysis group’s colloquia
allowed me to get a good grasp on the goals and achievements of the research group, and has on
multiple occasions inspired me on ways to give shape to this project. Tim for being a great target
to bounce ideas off of, and guiding me towards a finished project. The amount of support you have
provided to me, in reaching a formal proof as well as help on the theory behind the formalizations,
translations, and the proof reading, is very appreciated. Finally, Ramon, thank you for the opportun-
ity to work on this project with ASML, and with all the great people I met here. You have given me
the freedom to work as suited me best, and helped me take responsiblity for my own project.

Thank you to all the people I met at ASML, students and employees both, for making the experience
of working alongside others a truly memorable experience. Bharat, Sander, Hanze, Sam, Susne-
halatha, Nan, and Ferry, thank you for our brainstorm sessions, the thursday nights, and the enjoy-
able atmosphere. Sven, I really appreciate the time and effort you have put into our discussions.
Our talks were instrumental in getting an overview of the problems I was trying to solve, and helped
me recognize different perspectives. Without you, the language would be significantly less usable.
Maikel, thank you for taking the time to help me figure out how to get usable results from user
testing, as well as your willingness to believe in the value and success of this project.

An approachable language for formal requirements v

I also really appreciate the time that Nontas, Dennis, Olav, and Mark have invested in testing the
new language, having to deal with what is by any standard a very short timeframe to familiarize
themselves with a completely new language and still produce useable results for me despite this
burden.

Finally, I am eternally grateful for the unconditional love and support from my family.

Kevin
Eindhoven, December 2019

vi An approachable language for formal requirements

Contents

Abstract i

Executive Summary iii

Preface v

Table of Contents vii

1 Introduction 1
1.1 Research Objectives . 4
1.2 Main Contributions . 5
1.3 Thesis outline . 7

2 Context 9

3 Background 11
3.1 mCRL2 . 11
3.2 modal µ-calculus formulae . 14
3.3 Property Specification Patterns (PSP) . 17
3.4 Remenska . 20

4 Issues 23
4.1 Common English requirement structures . 25
4.2 Common mistakes . 28
4.3 Alternatives . 31

5 Exploration 33
5.1 Motivation . 33

5.1.1 Keeping track of state . 34
5.1.2 Composable monitors . 37
5.1.3 Specifying a requirement . 39

5.2 Syntax of µ++ . 43
5.3 Semantics of µ++ . 45

5.3.1 Formalizing requirements . 45
5.3.2 Normalizing monitors . 48

An approachable language for formal requirements vii

CONTENTS

5.3.3 Formalizing monitors . 53
5.3.4 Synchronizing monitors to a process LTS . 54
5.3.5 Adapting the modal mu-calculus . 55
5.3.6 Translating to mCRL2 . 56
5.3.7 Proof of equivalence . 57
5.3.8 A short example . 64

6 Evaluation 67
6.1 Methodology . 67
6.2 Evaluation, observations and feedback . 69

7 Discussion 77
7.1 Implications and limitations . 77
7.2 Threats to validity . 78

8 Conclusions 79
8.1 Master thesis objectives . 79
8.2 Future Directions . 81

Bibliography 83

Appendix 85

A Modal µ-calculus formulae 85
A.1 Syntax of modal µ-calculus formulae . 85
A.2 Semantics of modal µ-calculus formulae . 87
A.3 Relation between symbols . 89

viii An approachable language for formal requirements

Chapter 1

Introduction

With computing power becoming less expensive every year [1], the industry is increasingly able to
produce more complex and massive software systems. While these more complex systems allow
us to leverage the power of computers to new levels, the complexity in itself is a very big cost that
brings with it new challenges.

Exacerbating the issue is the rise of techniques such as parallel computing and data-driven design
philosophies. With the declining growth of processor speed and transistor densities as well as the
increasingly low cost of computing power in itself, the primary direction of the search for higher
performance nowadays is towards exploiting various levels of parallelism [2]. These evolutions in
the creation of software have transformed relatively simple sequential software systems into beasts
of complexity and multitudes of interacting components.

Finding bugs in highly parallel programs has traditionally been exceptionally difficult due to the non-
deterministic nature of such systems; differences in order of execution by means of, e.g., thread
interleaving, signal delivery timings, and I/O events can cause an exponential number of possible
execution traces. Artifacts such as race conditions and data racesmaymean that only some of these
exhibit incorrect behavior.

Even worse is that pinpointing bugs ‘in the wild’ is often incredibly more complex because the paral-
lelism allows all but the buggy component to continue operating as if nothing happened, such that
the effects of the bug may sometimes manifest significantly later in the execution than the cause of
the bug.

Determining whether a given (parallel or otherwise) non-trivial system is correct (that is; behaves
according to a set of requirements) with conventionalmethods such as unit testing [3] and functional
testing [4] are patently impractical; ensuring that all relevant behavior under all possible conditions
is tested is infeasible.

That is not to say that these testing techniques do not have their uses. They are powerful in their
own right in identifying programming issues and can increase reliability when done appropriately
as shown when evaluating frameworks like Test Driven Development [5].

An approachable language for formal requirements 1

CHAPTER 1. INTRODUCTION

A solution presents itself in formal methods. These provide a framework for rigorous and exhaust-
ive verification [6]. While formal methods are not a holy grail—no technique will save you from
writing a bad or incomplete specification, and formal methods have intrinsic shortcomings of their
own—there is indirect, qualitative evidence that using formal methods is beneficial in every step of
production; specifications are more thorough, concise, and convincing, development is less risky,
production costs may decrease, both coding and maintenance are easier, and the resulting system
contains fewer architectural errors [7]. However, quantitative studies into the effects of using formal
methods are difficult to find.

Formal methods come in a broad variety of approaches.

model checking whereby for a givenmodel of a system, it is automatically and exhaustively checked
whether the model satisfies a given specification. Notable examples include BLAST, CADP,
mCRL2, NuSMV, and Prism, which verify properties described in temporal logics, such as LTL,
PSL, SVA, CTL, and modal µ-calculus.

deductive verification where properties are verified using axiomatic deductive reasoning. These
generally come in the form of theorem provers such as Prover9/Mace4, HOL, ACL2, Isabelle,
Coq, and PVS, and satisfiability modulo theory (SMT) solvers such as Yices and Z3.

program synthesis where the program is automatically generated (deductively, constructively, or
supervisory) from the specification itself, usually given in a logical calculus. Notable examples
are Supervisory Control Synthesis.

static program analysis also known as extended static checking, where the code is analysed dir-
ectly using a broad range of techniques.

formal equivalence checking also known as electronic design automation, where a reference sys-
tem is given as input and a functionally equivalent, optimised (along some metric) system is
returned.

However, formalmethods can be rather difficult toworkwith. Thesemethods are primarily designed
for academic study rather than any business application, and as such tend to suffer from obscure
and intricate syntaxes. Additionally, their formality is used to solve the problem of ambiguity in
the natural languages, but this requires the user to reason in a radically different manner than they
might be used to. As an example, wemay require of an electric car that “when the throttle is released,
no more power must be sent to the motors”. This would be a perfectly reasonable statement to tell
fellow engineers, but formally this may be translated in ways that intuitively make no sense: should
the motors never again be sent any power after the throttle is released once?

Attempts have been made to allow untrained people to understand these intricacies. A particularly
noteworthy attempt is made by Dwyer et al. in constructing the PSP framework [8]. They describe a
framework in which experts have created templates of formal structures with detailed descriptions
of the subtleties of that structure. A relatively lay person may then use these descriptions to pick
suited templates and fill these in without having to gain the expert knowledge necessary to figure
out the complexities themselves.

2 An approachable language for formal requirements

CHAPTER 1. INTRODUCTION

Remenska [9][10] builds on this work by extending the knowledge base introduced by Dwyer et al.
and providing an interactive experience that helps people determine exactly which template they
need by asking for the intent and needs of the user.

However, these attempts have shortcomings of their own: a tradeoff must be made between the
number of templates and the usability of the framework. Writing a template for every requirement
ever devised is impractical, and so is trying to find the correct template when there are so many to
pick from. A better solution would be to remove (or at least reduce) the need for expert knowledge
in the first place. As such, we attempt to create a new language that is more accessible than popular
languages such as the modal µ-calculus.

An approachable language for formal requirements 3

CHAPTER 1. INTRODUCTION

1.1 Research Objectives

First, we must prove the motivation for the project; the assertion that current formal verification
techniques are inadequately accessible:

Research question 0 Can we determine that there is a need for a more approachable language to
facilitate specifying and verifying formal requirements, or does there already exist a sufficient
alternative?

Having adequately determined that there is indeed a need for a simpler, more intuitive language to
write specificationswith, we should then investigatewhat exactly it is thatwouldmake a specification
language usable to engineers;

Research question 1 What issues do engineers currently face when trying to translate require-
ments into formal specifications?

Once we have determined exactly what issues are present for engineers, we have to try to figure out
why exactly it is that these issues are present; in order to solve the problem, we should first know the
cause. When we know what the causes are, it is then imperative to try to either resolve the causes,
or minimize the impact that the causes may have.

Research question 2 What are the causes of the issues that present themselves in formalizing re-
quirements?

Research question 3 How, if possible, can we minimize the impact of these causes?

Forms of minimization can include:

• [prevent] better learning material (documentation) if engineers are inadequately familiar
with the modal µ-calculus formulae;

• [guide] a clearer or more verbosely descriptive (i.e. in words, not mathematics) syntax for
specifications such that mistakes are less likely to be made, or are more easily spotted;

• [constrain] introducing an expert system like Remenska to replace the error-prone aspects
with a more approachable process, or syntactically disallow ‘obviously’ wrong translations;

• [correct] an interpreter that could report on/visualize the meaning of the specification, such
that engineers are supported in finding mistakes after they are made.

Research question 4 How could we transform either the syntax or the process in/by which engin-
eers formalize requirements, such that mistakes are less likely to occur?

Research question 5 Is the new language accessible to engineers?

4 An approachable language for formal requirements

CHAPTER 1. INTRODUCTION

1.2 Main Contributions

We aim to motivate the earlier claims that the modal µ-calculus language is inherently difficult and
exhibits the signs that we expect to find in a language that is difficult to learn and difficult to use.
Additionally, we aim to find patterns in the mistakes that people make, such that we can achieve a
better understanding of what exactly makes the language difficult to use, and howwemight be able
to improve upon these.

We can then use this information to design amore suitable language—one which preferably has the
same expressive power as the modal µ-calculus formulae offer but is restricted and/or reworked in
such a way that translations are more mechanical and intuitive, and promotes the use of structures
close to our own intuitive interpretation of systems, such that human errors are less likely to play a
role in the process, but not as restrictive as PSP and Remenska where a reported minimum of one
in five requirements cannot be described at all.

Especially useful for extracting these mistake patterns are requirement documents with their trans-
lations to the modal µ-calculus. It would be beneficial if these documents were written by people
who do not have much experience with writing modal µ-calculus formulae, so we can get a good
idea of which concepts are difficult to learn. Additionally, this is arguably the most vital stage in the
adoption of any language; a steep learning curvemotivates the user to search for alternatives which
are easier to learn, even if these alternatives are objectively less useful and/or powerful.

To source these requirement documents, we employ the lectures of Jan Friso Groote; he lectures
a course on system validation (course code 2IMF30) at the Eindhoven University of Technology, ex-
plaining howmCRL2works. The course consists of 7 weeks of in-depth lectures on the theory behind
mCRL2, and focuses specifically on the syntax and semantics of modal µ-calculus formulae for mul-
tiple weeks. We assume that this is at least as good as the tutoring that inexperienced (in mCRL2)
employees would receive in a business environment that would want to trial system validation via
mCRL2.

However, we cannot claim that the comparison is perfect; designers in the industry will likely have a
better grasp on formulating requirements, and creating consistent and encompassing requirements
documents than the students of Jan Friso Groote. As such, we try to limit our conclusions to only
the knowledge derived from the complexity and correctness of translations of requirements, not so
much the structure and classes of the requirements itself. Regardless, we can still use requirements
as defined by the students as a basis upon which to rate the ease with which the modal µ-calculus
formulae are learned and used, based on the assumption that students are less likely to formulate
similar requirements in similar ways (due to a lack of formal training) as long as they feel confident
in their mastery of the language, and thus are more likely to construct similar structures if these
were specifically taught to them and they do not feel confident enough to deviate from these.

In groups of two to three, the students are given the task to, over the course of 7 weeks and with
supervision of Jan Friso Groote, pick a suitably complex system they want to validate, create at least
10 informal (i.e. natural language) requirements for this system, design an architecture consisting
of at least three parallel actors, and model and verify these in the mCRL2 language using the formal

An approachable language for formal requirements 5

CHAPTER 1. INTRODUCTION

(i.e. modal µ-calculus formulae) translation of the informal requirements.

We analyze the following data points;

1. The language structures (templates) used to formulate requirements, in order to map the
diversity of requirements and evaluate to some degree the expressive power of modal µ-
calculus formulae;

2. The frequencywithwhich these language structures are used, in order to normalize the values
for data points 3 and 4;

3. the frequency with which language structures are mistranslated, in order to find structures
that are too complex to trivially translate into modal µ-calculus;

4. the possibility of each requirement being able to be translated into each proposed alternative,
in order to evaluate the expressiveness of the alternatives.

Based on these values, we can determine not only whether modal µ-calculus is actually adequate,
but also give a quantitative argument for the level of appropriateness of proposed alternative lan-
guages. Using these markers, we can then determine where the shortcomings and strengths of
each language lies, such that we can use this as a starting position when trying to design a new
language which is, in this context, better suited than either modal µ-calculus formulae or the altern-
atives offered by PSP and Remenska.

We will test the new language with students and professionals in the field of software engineering
to evaluate their experience with using the language and make a comparison to their experience
with the modal µ-calculus to argue the success of the project.

Finally, we provide a formal semantics for this new language, as well as a translation of this new
language to mCRL2’s modal µ-calculus, and prove that the translation preserves semantics.

6 An approachable language for formal requirements

CHAPTER 1. INTRODUCTION

1.3 Thesis outline

The rest of this thesis is organized as follows. In Chapter 2 (Context) we will go deeper into the
context of the project and discuss why we assume that formal verification is so difficult. Chapter 3
(Background) will provide some background knowledge of the mCRL2 toolset, and the alternative
specification frameworks of PSP andRemenska. Chapter 4 (Issues) discusses howwedetermined the
issues faced by students in verifying formal processmodels, andwhy the alternatives are (ir)relevant
to the use cases studied. Chapter 5 (Exploration) will go into detail about our proposed language
and its structure. In Chapter 6 (Evaluation) we discuss the methodology of the user experience
evaluation as well as its results and feedback. In Chapter 7 (Discussion) we discuss the implications
of the project, and howwemay interpret the results. Specifically, we discuss the threats to validity as
a result of the assumptions made during the project. Finally, in Chapter 8 (Conclusions), we discuss
the results of the thesis, and future directions.

An approachable language for formal requirements 7

Chapter 2

Context

mCRL2 is a formal specification language specifically designed to mathematically and rigorously
model a software or physical process; it is used in conjunction with µ-calculus formulae to prove
properties of these models, and therefore of the software or physical process it models. With it
comes a broad range of tooling which is used in the verification and analysis of such models. Its
applicability is broad, and companies have started adopting the practice of formally testing their
software systems using it, often through higher level software packages that use mCRL2 as a com-
pilation target; notable instances include CERN [11][12], ASML [13][14], and TNO Automotive [15].

Regardless of its broad applicability, the rate at which the language is adopted by users is quite low.
One of the reasons for this, is that the entry cost of the language is incredibly high; the combination
of mCRL2 and modal µ-calculus formulae (see section 3.2) is one that is mainly mathematical in
nature, and little to no effort has been taken to make these languages accessible to people not
familiar with the theories behind them.

mCRL2 has the benefit that most of its syntax can be trivially translated to concepts that most engin-
eers are already familiar with; it looks similar to functional languages with some peculiarities, like
unconditional choice and the notation of sequential behavior, that could be learned rather quickly
even without proper understanding of the theory.

In contrast, themodalµ-calculus formulae do not benefit similarly; these formulae have no similarity
to anything an engineer is reasonably expected to have experience with, the formulae do not have
a structure that is easily interpreted by humans, and are difficult to translate to and from natural
language. As such, learning this language is an expensive endeavor.

Engineers at ASML have conveyed a disapproval of the modal µ-calculus formulae used in mCRL2
models, because they are deemed to be too complex and too error-prone to serve as a scalable
solution for their system validation needs. Simply said, the translation of requirements to formulae
is notmechanical enough, and as a result toomany human errors are introduced during thismanual
step. As such, there is a clear and strongneed for a language that canbemore intuitively understood,
and is more straightforward in its translation.

An approachable language for formal requirements 9

CHAPTER 2. CONTEXT

However, we might question whether a new language is necessary in the first place. There are
languages other than modal µ-calculus formulae that attempt to solve the same problem. One
such system that is cited often and uses as motivation many of the points raised here is PSP (see
section 3.3), created in response to the observation that the amount of expert knowledge needed
to work with LTL logics would form a substantial obstacle to adoption rates [8]. PSP is originally
defined in terms of LTL, but third-party translations to modal µ-calculus formulae can be found [16].
In addition to this, Remenska (see section 3.4) extends the PSP framework to be more expressive,
and provides a computer-assisted process for non-expert users to generate the required modal µ-
calculus formula by means of a question tree—essentially a decision tree-like questionnaire that
progressively elicits the specific intention from the user.

Both these frameworks have an inherent issue that is difficult to work around; they are incredibly
restrictive in their expressiveness. This is not necessarily bad; indeed, both PSP and Remenska are
intentionally restrictive such that the choices are easier to comprehend and the framework can be
familiarized more quickly. They can get away with this restrictiveness because they conclude that
most requirements can be expressed using a small set of formulations; PSP can allegedly be used
on around 70% of requirements, and Remenska claims an additional 10% improvement [10].

This has severe practical implications, however. If only a percentage of the requirements can be
described using a framework, then that would necessitate the use of at least one other framework
to describe the remaining requirements, which would in turn require additional training. Or in the
absence of another framework, the user may try to fit the requirement into the original framework
that does not support it, or abandon checking the requirement in the first place. As such, there is a
very real consideration to be made as to whether the use of PSP or Remenska is appropriate for a
given project.

10 An approachable language for formal requirements

Chapter 3

Background

To get a better idea of this report’s goals and findings, it may be illustrative to give a brief overview
of how the µ-calculus, PSP, and Remenska frameworks work and how they can be used. This section
is dedicated to providing exactly that.

3.1 mCRL2

In the context of mCRL2, µ-calculus formulae are used to verify properties of anmCRL2model. Fore-
going toomany intricacies, mCRL2models may be best understood to define three things about the
system that it models; the data types that the system uses internally, the actions—both external (i.e.,
interactions “visible” from outside the system) and internal (i.e., (mostly) communications of system
components)—that the system can perform, and a formal description of which actions may be per-
formed at a given point in time.

This latter component, the formal description of when actions may happen, usually comes in the
form of an entity that tracks a certain state, and which (dis)allows actions based on its state. In the
case of a (particularly dumb) coffeemachine, for example, wemight define amodel that can receive
a request for coffee for either a small or large cup, to which it will respond by activating a water
pump, the heating element, a timer, and deactivates the water pump and heating element once the
timer runs out, after which it will wait for a request again. In code, this would look as follows;

1 sort Size = struct small | large; % defines a data sort named Size,
2 % of which ‘small‘ and ‘large‘ are instances
3
4 act
5 get_request : Size; % get_request has a parameter of type Size
6 activate_pump;
7 activate_heater;
8 start_timer : Size; % start_timer has a parameter of type Size
9 timer_ended;

An approachable language for formal requirements 11

CHAPTER 3. BACKGROUND

10 deactivate_heater;
11 deactivate_pump;
12
13 proc CoffeeMachine = % this process models our system behaviour
14 sum s:Size . (% instance the following sequence for all sizes
15 get_request(s). % the system will start a procedure only after
16 activate_pump. % getting a request with a Size instance as
17 activate_heater. % parameter.
18 start_timer(s). % the start_timer action uses the same parameter
19 timer_ended. % as the original get_request to ensure a
20 deactivate_heater. % proper amount of coffee is dispensed.
21 deactivate_pump
22) . CoffeeMachine;
23
24 init CoffeeMachine;

This system tracks state implicitly; after an action get_request with a certain parameter s of type
Size, the following actions must be done in order. Alternatively, we can define the same system as
follows, with slightly more explicit state;

1 sort Size = struct small | large;
2
3 act get_request : Size;
4 activate_pump;
5 activate_heater;
6 start_timer : Size;
7 timer_ended;
8 deactivate_pump;
9 deactivate_heater;
10
11 proc CoffeeMachine(serving:Bool = false, size:Size = small) =
12 (!serving) −> sum s:Size . (
13 % if the system is not serving anything, listen for a request of a certain
14 % size, and change the state to reflect a pending request of size ‘s‘.
15
16 get_request(s).
17 CoffeeMachine(true, s)
18) <> (
19 % otherwise, if the system is pending service, fulfill the request of
20 % size ‘size‘, and return to the state in which we are waiting for a
21 % request (serving = false).
22
23 activate_pump.
24 activate_heater.
25 start_timer(size).
26 timer_ended.
27 deactivate_heater.
28 deactivate_pump.
29 CoffeeMachine(false, size)
30);

12 An approachable language for formal requirements

CHAPTER 3. BACKGROUND

31
32 init CoffeeMachine(false, small);

Behind the scenes, these definitions are translated to a labeled transition system. That is, the specific
state that a system is in has no inherent meaning, other than what actions it allows to be performed
at that state. We can informally motivate this as follows; if we cannot distinguish it from a correct
system by all of the externally visible actions it performs, then it is a correct system.

It is important to note that the actions have a specific name that distinguishes it from other actions.
Additionally, actions may have parameters, such as the get_request and start_timer actions
in the previous examples. These can be used to make the life of the engineer easier by allowing to
dynamically refer to actions (say, starting a timer of a given length), but also to handle parameters
of infinite or even partially defined domains. In essence, the task of a parameter is to distinguish the
action from other similarly named actions with different parameters. Indeed, if we were to replace
the actions get_request:Size and start_timer:Size with the actions get_small_request,
get_large_request, start_small_timer, and start_large_timer, and rewrote the mCRL2
model to use choice rather than the variable-binding operator sum, then we would essentially have
an indistinguishable model.

An approachable language for formal requirements 13

CHAPTER 3. BACKGROUND

3.2 modal µ-calculus formulae

The modal µ-calculus formulae allow us to reason about what sequences of actions are possible. To
do this, we use the so-called signature of the mCRL2 model. That is, the data sorts, data functions
(not discussed in section 3.1), and actions defined in the mCRL2 model. As mentioned before, we
do not care about the state; only about what actions can be done from that state. For this, we tend
to use the structures [α] ϕ and ⟨α⟩ϕ; these can loosely be translated to the ∀ and ∃ quantifiers
respectively on the states that are reachable from a certain state;

[α] ϕ is true in a state iff for allα actions possible from that state, ϕ holds after taking saidα action.
Specifically, [α] false denotes that after allα actions, falsemust hold, which can only be true
if there are no such actions α possible from the current state. If ϕ = true, then this is trivially
true regardless of state or α.

⟨α⟩ϕ is true in a state iff in that state at least one action α is possible after which ϕ holds. Spe-
cifically, ⟨α⟩ true requires that an action α is possible from that state, whereas ⟨α⟩ false is
trivially false.

Since these structures are resolved to a Boolean value, i.e. true or false, we can chain them. These
chains have the expected meanings;

[α1] [α2] ϕ is true in a state iff from that state, all possible sequences of first an α1 action followed
by an α2 action must result in a state where ϕ holds.

⟨α1⟩⟨α2⟩ϕ is true in a state iff from that state there exists a sequence of first anα1 action followed
by an α2 action which results in a state where ϕ holds.

[α1]⟨α2⟩ϕ is true in a state iff from that state, all actions α1 result in a state where an action α2 is
possible which results in a state where ϕ holds.

⟨α1⟩[α2] ϕ is true in a state iff from that state there exists an action α1 such that in the resulting
state, all possible actions α2 actions result in a state where ϕ holds.

For convenience, we can group homogeneous sequences of [·] and ⟨·⟩ together, using the following
rewrite rules;

[α1
. α2] ϕ = [α1] [α2] ϕ ⟨α1

. α2⟩ϕ = ⟨α1⟩⟨α2⟩ϕ

So far, we have only discussed these structures with the understanding that α is a singular action.
However, there are situations in which we do not particularly care about which action it is as long
as some action is being done, or where we might want one of a set of actions to be done. For
convenience, we allowα to be a set of actions, with true denoting the set of all possible actions, and
false denoting the empty set of actions. This allows us to define properties such as the absence of
deadlock (i.e., an action is possible) in a state;

⟨true⟩ true

14 An approachable language for formal requirements

CHAPTER 3. BACKGROUND

or more easily define properties on our coffee machine from section 3.1;

[get_request(small) ∪ get_request(large)]⟨activate_pump⟩ true

Alternatively, we may use the ∀γ . (ϕ) and ∃γ . (ϕ) quantifiers to construct these sets;

∀s:Size . ([get_request(s)]⟨activate_pump⟩ true)
[∃s:Size . (get_request(s))]⟨activate_pump⟩ true

We refer to such constructs as an action formula. Actions and action formulae are interchangeable
(in the modal µ-calculus, not mCRL2): the action formula describing a singular action is analogous
to that action. The entire set of operations allowed in an action formula is described in detail in
Appendix A.

Additionally, we want to be able to write that we eventually or after any number of actions expect
something to happen. We use the star notation to signify a sequence of zero or more actions. The
property of global absence of deadlock would look as follows;

[true⋆]⟨true⟩ true

However, we cannot rewrite this star notation to any of the structures that we have discussed so far.
To do this succinctly, we need to introduce a new structure entirely; the µ and ν fixed points. These
are quite mathematical in nature and difficult to define in a way that is easy to reason about, but
we can give a decently simple intuition about how to interpret them; the µ and ν fixed points are
essentially units of recursion.

The ν fixed point is usually used in situations where we expect the recursion to potentially happen
forever, or; infinitely. It essentially resolves to true unless somewhere in the recursion it encounters
some state in which its body resolves to false. To assert that the system does not deadlock before
some action finish, we could use;

νX .
(
[finish]X ∧ ⟨true⟩ true

)
Here we use finish to represent the set complement of finish, i.e., all actions except finish.
As such, the property above can be read as recursing further into every action that is not a finish
action, and requiring that in each of the states that we recurse into at least one action is possible.
Since we do not recurse into finish actions, we do not require the absence of deadlocks after any
such actions. We can define the box-star notation as a ν fixed point;

[α⋆] ϕ = νX . (ϕ ∧ [α]X)

As such, the following structure also represents the absence of deadlock before an action finish;

[finish⋆]⟨true⟩ true

However, this is not to suggest that the fixed points (both µ and ν) are not incredibly more powerful

An approachable language for formal requirements 15

CHAPTER 3. BACKGROUND

than just a rigorous definition for the star notation. The body of the fixed points can be a lot more
complex than in this simple example, and can define an infinite amount more (classes of) properties
than what is possible with any of the structures so far. These are generally achieved through em-
bedding fixed points inside others in interesting ways. The intuition described here can still be used
in these cases, but their exact meaning can get intricate rather quickly.

Alternatively, the µ fixed point is usually used in situations where we require the recursion to end
at some point, or; finite. In addition to resolving to false if it encounters some state in which its
body resolves to false, it also resolves to false if it has to recurse infinitely to find whether it is false.
This is particularly useful if we require something to happen inevitably; up until now we could only
require that something is possible to happen after any point, not that itmust happen at some point.
For example, to say that the system must inevitably deadlock, i.e., there are no infinite paths, one
might use;

µX . ([true]X)

We can now define the diamond-star notation as a µ fixed point, as well;

⟨α⋆⟩ϕ = µX . (ϕ ∨ ⟨α⟩X)

Having properly butchered the semantic meanings of these structures, we refer to Appendix A for a
more rigorous andmathematical definition of the syntax, semantics, and identities of the µ-calculus
formulae.

16 An approachable language for formal requirements

CHAPTER 3. BACKGROUND

3.3 Property Specification Patterns (PSP)

The original paper by Dwyer et al. [8] asserts that actually working with property specification logics
requires a decent amount of expert knowledge about the respective language onewould beworking
in, even for relatively simple requirements. This in spite of tooling for property specification logics,
such as LTL, CTL, and the modal µ-calculus, having received (at the time) a fair bit more interest and
automated verification having matured a lot.

PSP is designed as an efficient framework with which to transfer experience from experts to people
who have no reason to be more familiar with the respective language than strictly necessary to
translate the requirements they want to express. The assumption is that the requirements that
need to be expressed are relatively simple—or at least quite standard for the industry they are in—
but the intricacies of the logic are such that, for someone to formulate the requirement correctly in
said language, they need a high level of expertise.

As such, they propose a common knowledge base in which ubiquitous properties have been worked
out by people with an expert knowledge in the language (specifically, of best practices), with detailed
explanations and use-cases for each of the patterns, such that relatively lay peoplemay simply “copy
and paste” the respective components of the patterns they need to write what requirements they
want. As such, we cannot truly speak of a singular PSP, as this essentially only describes the method
by which such a knowledge base should be constructed. However, the original paper does provide
an initial version upon which can be built. In the rest of this document we will use PSP to refer to
the given knowledge bank rather than the framework.

PSP uses two levels of abstraction: patterns and scopes. Patterns describe properties, often resem-
bling the explicit part of a natural language requirement. Scopes define the range of the program
execution in which these patterns must hold, often (but far from always) resembling the implicit
“intuitive, common sense” part of the natural language requirement. Using the requirement “when
the throttle is released, no more power must be sent to the motors” introduced in the introduction,
we can see the scope “after the throttle is released(, and before the throttle is applied again)” and
the pattern “no (more) power must be sent to the motors”. The patterns of PSP are defined in the
following hierarchy;

An approachable language for formal requirements 17

CHAPTER 3. BACKGROUND

Property Patterns

Order
Precedence

Response

Occurrence

Absence

Universality

Existence

Bounded existence

Compound
Chains

Chained precedence

Chained response
Boolean

With the following descriptions given for each;

Occurrence Patterns

Absence A given state/event does not occur within a scope. This pattern is also known as
Never.

Existence A given state/event must occur within a scope. This pattern is also known as Fu-
ture and Eventuality.

Universality A given state/event occurs throughout a scope. This pattern is also known as
Globally, Always, and Henceforth.

Bounded Existence A given state/event must occur k times within a scope. Variants of this
pattern specify at least k occurrences and at most k occurrences of a state/event.

Ordering Patterns

Precedence A state/event P must always be preceded by a state/eventQ within a scope.

Response A state/event P must always be followed by a state/eventQ within a scope. This
pattern is also known as Follows and Leads-to. This pattern is a mixture of Existence
and Precedence, and expresses a causal relationship between two subject patterns.

Compound Patterns

Chained Precedence A sequence of states/events P1, . . . , Pn must always be preceded by
a sequence of states/eventsQ1, . . . , Qn. This pattern is a generalization of the Preced-
ence pattern.

18 An approachable language for formal requirements

CHAPTER 3. BACKGROUND

Chained Response A sequence of states/events P1, . . . , Pn must always be followed by a
sequence of states/eventsQ1, . . . , Qn. This pattern is a generalization of the Response
pattern. It can be used to express bounded FIFO relationships.

Boolean Combinations Most of the patterns delimit scopes and describe inter-scope prop-
erties in terms of individual events/states. There are cases where we want to generalize
the patterns to allow for sets of states/events to describe scopes and properties. In
some cases this is straightforward and disjunctions or conjunctions of state/event de-
scriptions can be substituted into patterns; in other cases this yields the incorrect spe-
cification. These patterns outline how Boolean combinations can be applied in different
cases.

Additionally, PSP presents 5 kinds of scope;

Global The entire program execution.

Before Q The execution up to a given state/event.

After Q The execution after a given state/event.

Between Q and R Anypart of the execution fromonegiven state/event to another given state/event.

After Q until R Like Between Q and R but the designated part of the execution continues even if
the second state/event does not occur.

Note should be taken that the delimited scopes start at the very first instance of the “early/left”
action, and ends at the first encountered instance of the “late/right” action. Note; for event-based
verification, the scopes’ intervals are open on both sides. So, for the scopeBetweenQandR, neither
the delimiting Q nor the delimiting R action are included in the scope.

Each pair of scopes and patterns can be rewritten tomCRL2 such that they adhere to the descriptions
given here (and the more rigorous definitions on the website by Dwyer et al. [17]). In fact, the CADP
group has done this and made their translations public, over at [16]. However, these translations
are not quite true to the original intentions of the definitions of Dwyer et al. Specifically, the right-
delimiting actions may be deferred once if the property pattern requires the right-delimiting action
to happen. Compare for “R is false beforeR” (Absence Before Q);

LTL (Dwyer et al.) µ-calculus formula (CADP group)
⋄R→ ¬R U R [R

⋆ . R .R
⋆ . R] false

is trivially true, as no state satisfiesR until
the first state that satisfiesR

false iff there exists a sequence containing
two events (or; actions)R

This reinforces the claim made by Dwyer et al. that writing the right specification requires lots of
expert knowledge and is sensitive to the specifics of the logic whichmay not immediately be obvious.

An approachable language for formal requirements 19

CHAPTER 3. BACKGROUND

3.4 Remenska

Remenska’s main goal was to create a tool with which to integrate model checking into the com-
mon software development cycle by automating the aspects that require formal methods expertise
[9][10], but to achieve this goal a suitable formalism needed to be found. This formalism ended up
being an extension to the PSP specification mentioned in section 3.3. Specifically, these extensions
include the following scopes;

Until R Like the original Before R, but conditional on the Global Existence ofR.

After Last Q Like the original After Q, but additionally requires that no more actionsQ occur after
the delimiting actionQ.

Between Last Q And R Like the original Between Q and R, but additionally requires that no more
actionsQ occur after the delimiting actionQ and before the delimiting actionR.

After Last Q Until R Like the originalAfterQUntil R, but additionally requires that nomore actions
Q occur after the delimiting actionQ and before a possible delimiting actionR.

As well as the following property patterns;

Order

Precedence Variant Like the original Precedence, but the preceding action is required to
happen.

Response Variant Like the original Response, but the stimulating action is required to hap-
pen.

Compound

Precedence 3-Chain 1 Instead of allowing an arbitrary number of actions in P and Q, this
handles the case of 1 action P , and 2 actionsQ1 andQ2.

Precedence 3-Chain 2 Instead of allowing an arbitrary number of actions in P and Q, this
handles the case of 2 actions P1 and P2, and 1 actionQ.

Response 3-Chain 1 Instead of allowing an arbitrary number of actions in P and Q, this
handles the case of 1 action P , and 2 actionsQ1 andQ2.

Response 3-Chain 2 Instead of allowing an arbitrary number of actions in P and Q, this
handles the case of 2 actions P1 and P2, and 1 actionQ.

Constrained Response 3-Chain 2 Like Response 3-Chain 2, but defines an extra action R
that, if encountered before some P2, cancels the search for P2—and thus the require-
ment forQ to happen after a P2 does occur is void as well.

Note; in the thesis there are references to property patternsAlways Enabled, Existence Under Fair-
ness, Precedence Variant Under Fairness and Response Variant Under Fairness, but these are
not actually implemented [18]. Additionally, the property pattern Constrained Response 3-Chain 2

20 An approachable language for formal requirements

CHAPTER 3. BACKGROUND

is implemented, but not mentioned in the thesis. Finally, since the µ-calculus formulae are based on
those provided by the CADP group, these suffer the same issues as noted for their PSP translation
in section 3.3.

An approachable language for formal requirements 21

Chapter 4

Issues

As mentioned in the introduction, we aim to prove that the µ-calculus formulae are difficult to learn
and difficult to use. To substantiate these claims, we have sourced a number of requirement doc-
uments made by students of Jan Friso Groote’s course on System Validation, where students learn
to work with both mCRL2 and µ-calculus formulae. This is a first-year Master course, such that stu-
dents should already be familiar with creating thorough requirement documents. The students are
free to choose a system of their choosing to validate, but are given a predefined system as a fallback.
As such, there are a few systems for which there exist a great number of requirement documents
and thus there is a decent chance that most relevant requirements are stated, often in multiple
forms; but there are also a decent number of requirement documents that describe a wide variety
of systems. Specifically, these students are instructed to;

1. find a suitable software system to formalize (or use the provided suggestion)

2. write at least ten requirements in English

3. make a list of externally measurable actions (not artifacts produced by or for any software)

4. rewrite each requirement using a structured English grammar in terms of the externallymeas-
urable actions or the state of the system as a deterministic result of past actions.

5. rewrite all requirements in structured English to formal µ-calculus formulae

6. create the mCRL2 model

7. verify the model with the µ-calculus formulae

Herewe define structured English to be the logic equivalent of what pseudo-code is to programming.

Most relevant to us is step 5; analysing the translation allows us to find how often these students
make mistakes, what kind of mistakes they make, and whether there are any distinguishable pat-
terns in how they go about translating these requirements. This should give us insights into how
difficult the language is to use, since these students should be reasonably experienced with the µ-
calculus formulae. Additionally, by assessing whether there are patterns in how the requirements

An approachable language for formal requirements 23

CHAPTER 4. ISSUES

are translated, we may find out how difficult the language is to learn by seeing how expressive they
can be, or whether they fall into repetition by using the same technique over and over again.

Information is gathered inmultiple stages. First, we capture template structures (that is; oft-occurring
sentence structures) of the structured English requirements. We try to be as strict as possible when
considering whether a new requirement should be classified as an earlier template; even if a re-
quirement could have its wording slightly adapted to fit an earlier template, we should consider this
requirement as a new template precisely because the wording is different. A concrete example of
this is as follows;

• When the throttle is released, no more power must be sent to the motors
If <action> is performed, <object> must go to <state>

• When the brake pedal is released, the brakes must be set to off
When <action1> is performed, <action2> must follow

• The support vehicle can put the car in safe mode at any given time by means of a safe
mode request
At any time when <command> is sent, <object> must go to <state>

Even though the implementation may be identical, and the linguistic difference is only slight, it is
still interesting to describe these as separate templates, because the ways onemight go about trans-
lating them can differ drastically, and it allows us to find out whether different sentences with the
same meaning are translated with human errors at different rates.

Secondly, we determine for each template whether it can be translated to PSP and Remenska. If it
can be translated, we additionally determine with which scope and pattern (the taxonomy by which
both PSP and Remenska classify their templates) we can describe these templates.

And finally, we determine for each requirement whether it was translated correctly. Since these re-
quirements are written in English, it is not always perfectly clear what exactly is meant by the natural
language description nor the structured English version. This is further aggravated by the possib-
ility that the students do not have enough experience with writing requirements to appropriately
express their intentions, or misuse jargon.

We additionally classify these mistakes in groups. This allows us to give a rate at which different
classes of requirements are mistranslated, for howmuch of the total number of mistakes each class
of requirement accounts for, and the most often made mistake for each class of requirement. Each
class of mistakes is counted separately, and with these counts we can determine which classes of
mistakes happen more frequently than others.

24 An approachable language for formal requirements

CHAPTER 4. ISSUES

4.1 Common English requirement structures

These structures are manually extracted from the sourced requirement documents. There are a
couple of drawbacks to this manual extraction; while attempts were made to keep the explicit tem-
plates as close to the original language in the requirements documents, some liberties are takenwith
rewording and restructuring the descriptions in order to achieve a more general wording. When de-
scriptions are sufficiently different, but could be described by the same formal language, we still
assign a separate structure to such a requirement. However, this is subjective and interpretations
may differ.

One clear example of this phenomenon is the following requirement;

when a charging battery pack is full, the battery pack must be discon-
nected from charging.

We have three structures that seem to fit this requirement, depending on interpretation of the lan-
guage used;

1. When <action1> is performed, <action2> must follow

2. When <object> is in <state1>, then it is also in <state2>

3. When <object> is in <state>, <action> must follow

In this case, it is probably more appropriate to use the first structure, because disconnecting the
battery pack from charging is clearly a reaction to a charging battery pack becoming full, but based
purely on the language (and not any implicit models wemay conjure) any of the three requirements
seems to be valid. However, only two of these structures will return true if implemented; in the
second version, we require that the battery is never simultaneously charging and full. But this would
necessitate that the model either never fully charges the battery, or stops charging simultaneously
with the system “finding out” that the battery is full. Neither of these is likely to represent the actual
implementation (nor the intent of the requirement). Even worse, picking the second variant would
result in an internally contradicting requirement;

When <the battery> is in <charging and full>, then it is also in <not
charging>

And therefore be more succinctly described as;

While <the battery is charging>, <the battery> must never perform
<report being full>

Which is the closest appropriate structure found in the sourced documents. The complete list of
structures can be found in table 4.1.

The table clearly shows that there are only a few structures that are used significantly more often
than others. In fact, the 5 (25%) most used structures account for approximately 50% of the require-
ments. If we combine the counts for IDs 3, 6, and 10, which are essentially the same structures with

An approachable language for formal requirements 25

CHAPTER 4. ISSUES

ID English structure count
1 While <state>, <object> must never perform <action> 13
2 <action> will only be done under <state> 8
3 When <action1> is performed, <action2> must follow 16
4 <object> will never perform <action> spontaneously (without

being preempted by <action2>)
5

5 When <action1> is performed, <action2> and <action3> must
follow (in order)

6

6 If <action> is performed, <object> must go to <state> 4
7 When <object> is in <state>, <action> must follow 13
8 <action> must always be possible while <state> 5
9 When <request> is sent, <response> must be received 5
10 At any time when <command> is sent, <object> must go to

<state>
3

11 When <request> is sent, <response1> and <response2> must be
received

3

12 When <object> is in <state>, it cannot perform <action1>
before <action2>

16

13 <object> may only be in <state> if preceded by <action> 2
14 If <action> is not performed, then <object> is not <state> 1
15 When in <state1> and <action> is performed, go to <state2> 9
16 When <object> is in <state1>, then it is also in <state2> 3
17 When <object> is in <state>, then when <request> is sent,

<response> must follow
5

18 When <object> is in <state>, then when <request> is sent,
<response> must not follow

4

19 When <command1> or <command2> is sent, <action> must be
performed

1

20 There is no deadlock 1

Table 4.1: English language structures

different wordings, then this structure accounts for 10% of the requirements by itself. Additionally,
if we assume that we can exit a certain state via only a single action, then we may claim that IDs 1
and 12 are similar, for a combined count of 21% of the requirements. Moreover, if we can gener-
alize structures to account for multiple responses and an optional scope (or; state), then we might
combine IDs 3, 5, 6, 7, 9, 10, 11, 17 and 19, for a combined count of approximately 41%.

These last two numbers are highly disingenuous; while the language is similar to a degree, the spe-
cific implementation needed is significantly different between each of these structures, even though
thismay not be immediately obvious when using trivial examples. The necessary assumptions seem
rather simple, but have a big impact on the resulting µ-calculus formulae.

However, this does give us a good insight in the type of requirements that are being written; most
concern themselves with something not happening before something else, or something neces-

26 An approachable language for formal requirements

CHAPTER 4. ISSUES

sarily happening after something else. Interestingly enough, these two concepts are close to two
template µ-calculus formulae given in the System Validation course material; the safety property
(4.1) and the liveness property (4.2);

[true⋆ . a . b
⋆ . c] false (4.1)

[true⋆ . a] µX .
(
[b]X ∧ ⟨true⟩ true

)
(4.2)

This would suggest that either the µ-calculus is not expressive enough to deviate from these tem-
plates, that the students are not confident enough to deviate from these templates, or that it is
simply not all that interesting to deviate from these templates.

The first possibility is quite easily proven false; there are requirements that do not fit into these
classes and are still being translated to µ-calculus formulae. The other two possibilities are more
difficult to determine the validity of, which will be discussed later.

An approachable language for formal requirements 27

CHAPTER 4. ISSUES

4.2 Common mistakes

By analyzing the students’ translations of natural English requirements to structured English require-
ments, it is easy to see that by far the most mistakes in translation are made because of complex
logic structures that consists of multiple components. Notably, this means that the requirements
are not atomic; a property which is widely accepted by the industry to be best-practice in designing
requirements. While students are often aware enough of this best-practice that they avoid the obvi-
ous structures where the keywords “and” and “or” are used, structures like “if and only if” are often
only translated as if using an “if” structure;

English requirement Structured requirement
If and only if solar power is available, power
is supplied from the solar panel to the
battery

Before every power(solar, battery)
action, the last preceding
solar_panel(s) action must have s =
true

Other times, it seems as if students will translate a requirement to a similar seeming template struc-
ture which is taught in the lectures, but not actually equivalent to the requirement they want to
prove;

English requirement Structured requirement
The crew must be able to put the car into
safe mode at all times

After any panic_button action, a
safe_mode action must eventually occur

However, while these mistakes point to a larger issue at hand, and it would be interesting to see if
these issues pop up with subjects who are more experienced with writing requirement documents,
they are not quite as interesting to the aim of this report; we have already assumed that the students
are not well versed in writing requirements, which includes being clear and unambiguous in their
communication.

But when considering the translations from structured English requirements toµ-calculus formulae,
the same sloppiness presents itself; over 42% of requirements is mistranslated with comparatively
trivial mistakes;

Structured requirement µ-calculus
When read_brake_pedal(ON) occurs and
brake 1 and brake 2 are not defect, actions
brake1(ON) and brake2(ON) will follow.
When read_brake_pedal(ON) occurs and
brake 3 and brake 4 are not defect, actions
brake3(ON) and brake4(ON) will follow.

nu X(s:Press=ON) . (
[read_brake_pedal(ON) .
brake_monitor_light1(OFF) .
brake_monitor_light2(OFF) .
brake1(s) . brake2(s)] X(OFF) ||

[read_brake_pedal(ON) .
brake_monitor_light3(OFF) .
brake_monitor_light4(OFF) .
brake3(s) . brake4(s)] X(OFF))

This is quite clearly a faulty understanding of how the ν fixed point works. In the 136 considered
requirements, there are 10 other requirements that suffer from similar misinterpretations of the
meaning or use of the ν fixed point, in total accounting for over 21% of the mistakes, and over 8%

28 An approachable language for formal requirements

CHAPTER 4. ISSUES

of all requirements.

However, themost oftenmademistake is one that concerns a different form of poor understanding;
how to handle inevitability. A lot of students are under the impression that the best way to describe
that someactionαmust inevitably happen, is to use some structure similar to [true⋆]⟨true⋆ . α⟩ true.
But this merely describes that at any point there exists a future where the action α is possible. The
difference is small, but distinct; if we consider the state machine in figure 4.1, we can see that the α
action is always inevitably possible, but does not ever have to be done. Mistakes like these account
for over 46% of mistakes, and over 17% of requirements have this mistake. The correct requirement
is [true⋆] µX . ([α]X ∧ ⟨true⟩ true), similar to (4.2).

s0α β

Figure 4.1: “Inevitably α” only applies under the fairness assumption; [true⋆] ⟨true⋆ . α⟩ true does
hold, whereas [true⋆]µX . ([α]X ∧ ⟨true⟩ true) does not.

The complete list of mistake types can be found in table 4.2, and a breakdown of the amount and
types of errors made per structured English requirement class can be found in table 4.3.

ID Mistake type count
1 Initial condition; requires action to reset the state, but this is technically not

something we may assume without checking this property individually
1

2 Does not check for infinite loops or fairness 24
3 Requires that an initial action has been done, but is not checked 4
4 Initial condition; requires that a substate has been set to a specific instance,

but it may have been set to other instances instead. i.e. partial state check
1

5 Wrong handling of state 3
6 Claims to some property must be met before an action can be done, but then

requires the action to be done.
1

7 Incorrect/partial translation of conditions 1
8 wrong use of ν fixed point operator 11
9 error in logic 4
10 syntax error 3
11 safety instead of liveness, or vice versa 1
12 too complex/strong of a structure, tests requirement only partially 3
? difficult to categorize 5

Table 4.2: Common mistake types

An approachable language for formal requirements 29

CHAPTER 4. ISSUES

ID count Correctness Accounts for Top mistake
1 13 92.31% 1.92% 7 1×
2 8 62.50% 5.77% 3 2×
3 16 31.25% 21.15% 2 8×
4 5 80.00% 1.92% 3 1×
5 6 66.67% 3.85% 2 1×
6 4 25.00% 5.77% 2 2×
7 13 30.77% 17.31% 2 4×
8 5 80.00% 1.92% 2 1×
9 5 20.00% 7.69% 2 3×

10 3 33.33% 3.85% 2 2×
11 3 66.67% 1.92% 8 1×
12 16 68.75% 9.62% ? 2×
13 2 50.00% 1.92% 8 1×
14 1 100.00% 0.00% N/A 0×
15 9 55.56% 7.69% 2 2×
16 3 66.67% 1.92% 6 1×
17 5 100.00% 0.00% N/A 0×
18 4 100.00% 0.00% N/A 0×
19 1 100.00% 0.00% N/A 0×
20 1 100.00% 0.00% N/A 0×

Table 4.3: Mistake per structured English requirement analysis

30 An approachable language for formal requirements

CHAPTER 4. ISSUES

4.3 Alternatives

When comparing the requirement classes to the alternatives PSP and Remenska, it becomes quickly
obvious that neither PSP nor Remenska is suited for complex requirements. Specifically, require-
ments where states are involved are rather tricky to describe in the alternatives. This is not neces-
sarily because there exist no parallels in PSP or Remenska; indeed, the Between-Q-and-R scope is
likely devised specifically because of this reason. Where both alternatives fall short, however, is in
the complexity that this structure would allow. Both frameworks constrain the “between” scope to
single delimiting actions (one preceding, one succeeding the scope). Therefore, any more complex
state cannot reasonably be implemented in either alternative.

To illustrate this difficulty, we will reuse the rechargeable battery pack that has featured in previous
examples; this battery pack has three states of charge; it is either empty, charged, or full. We in-
troduce 4 actions which represent changes in this state; e2c (from empty to charged), c2e (from
charged to empty), c2f (from charged to full), and f2c (from full to charged). If we wanted to verify
that a certain property—say, the car always starts in response to starting the car—holds while the
battery is charged (but not full), thenwe cannot simply use the Between-Q-and-R scope, because this
cannot fully describe all the delimiting actions between which wemight find ourselves in the correct
state. Indeed, wewould need four such scopes in conjunction; Between-e2c-and-c2e, Between-f2c-
and-c2f, Between-f2c-and-c2e, and Between-e2c-and-c2f. For each of these scopes, the pattern
should be Response. (In fact, this is not entirely accurate either; remember that in the original defin-
itions, the Between-Q-and-R scope always matches the first Q instance, whereas here we assume
minimally matching = non-overlapping scopes. That is, we want the latest Q before a matching R).

This is also the single instance where Remenska lacks a feature that PSP offers (outside of not allow-
ing more than three actions per chain property pattern); Boolean combinations of templates. How-
ever, Remenska technically only offers a tool that makes the mechanical translation of the question
tree to theµ-calculus as an attempt at eliminating human error, but encourages human intervention
to fine-tune the result. This is likely because the tool would be a lot more complex if Boolean com-
binations were added, whereas humans would likely be able to manually create these combinations
without toomuch effort or error. However, regardless of whether it is possible within the framework,
it should be clear that this solution is not scalable in any case; if we would instead model a cruise
control mode which can be set to integer speeds of 0 to 150 kmh−1, and wanted to check proper-
ties regarding safety measures activating at and above 70 kmh−1, the resulting µ-calculus formula
would get incredibly complex, and likely inadvertently introduce more possibilities for human error
than the completely manual procedure would have.

Ignoring this shortcoming, and considering only the simplest cases for each structure, in table 4.4
we have mapped each structure to the appropriate PSP and Remenska classification where possible
(and feasible, see previous paragraph). Notably, Remenska does not seem to give us any benefit
over PSP. Additionally, 13% of requirements cannot be described by PSP, whereas 19% cannot be
described by Remenska. Moreover, another 38% of requirements considers a state and can only be
translated if the state were trivial (i.e. one incoming action, one outgoing action).

An approachable language for formal requirements 31

CHAPTER 4. ISSUES

ID count PSP Scope PSP Pattern Rem. Scope Rem. Pattern
1 13 Between-Q-and-R Absence Between-Q-and-R Absence
2 8 Boolean combinations not possible
3 16 After-Q Existence After-Q Existence
4 5 Before-Q Existence Before-Q Existence
5 6 After-Q Chain-response After-Q Chain-response
6 4 After-Q Existence After-Q Existence
7 13 Between-Q-and-R Existence Between-Q-and-R Existence
8 5 Between-Q-and-R Universality Between-Q-and-R Universality
9 5 Globally Response Globally Response
10 3 After-Q Existence After-Q Existence
11 3 Globally Chain-response Globally Chain-response
12 16 Between-Q-and-R Precedence Between-Q-and-R Precedence
13 2 Before-Q Absence Before-Q Absence
14 1 Before-Q Absence Before-Q Absence
15 9 not possible not possible
16 3 not possible not possible
17 5 Between-Q-and-R Response Between-Q-and-R Response
18 4 not possible not possible
19 1 not feasible not possible
20 1 not possible not possible

Table 4.4: Translation of the structured English requirement classes to alternative formalizations

Considering this, it should be clear that PSP or Remenska alone could never be sufficient as the sole
solution to the problem. As predicted, they simply miss too large a portion of the requirements to
stand alone. Simply adapting these frameworks to be more suited to this domain is not likely to
work either; regardless of the type of state-handling scope we add, for example, there are many
types that we will miss. Additionally, the structures that were impossible to translate are not quite
similar enough to group together in anymeaningful way, and as the number of uses of each of these
structures is quite low, their inclusion will likely remove what positive aspects the frameworks had;
a small size that was easy to comprehend and familiarize. As such, it is clear to us that the solution
should be found elsewhere.

That is not to say that PSP nor Remenska are not useful, even in this context; it may be extremely
useful to have a systemwithwhich a significant portion of the requirementsmay be translated rather
quickly and with little to no expert knowledge necessary. However, the trade-off is that if they were
used in conjunction with other systems, the parties responsible for translating requirements using
PSPor Remenskawould have to be knowledgeable inwhat requirements canbe translated, andwhat
the limits of these formalizations are. This brings an additional level of complexity to the process, as
the user without expert knowledge would essentially be in charge of deciding which requirements
would be translated using which formalization. Additionally, a secondary formalization would be
necessary to fill the gaps, which would require additional expert knowledge.

32 An approachable language for formal requirements

Chapter 5

Exploration

5.1 Motivation

The µ++ language is primarily designed around the concept of state-based event handling. That is,
the paradigm that the language is based on is that of requirements on future behavior and the state
of the process after some initiating event.

This is motivated by our study of requirement documents written by students (Section 4); most of
the requirements are formulated from the perspective of either some condition on the state of a
process being met, or some initiating event. Some popular requirement structures are:

• while <state>, <object>must never perform <action>,
• when <action1> is performed, <action2>must inevitably follow,
• when <object> is in <state>, <action>must inevitably follow,
• when <object> is in <state>, it cannot perform <action1> before <action2>,
• <action>may only be done while <state>.

It should be plain to see that all but one of these requirements use terms that are not native to the
modal µ-calculus; there is no easy way to reason using states or from the perspective of certain
(sub)processes (or; objects), i.e., ignoring irrelevant aspects such as other parallel processes. The
prevalence of state and object-based reasonings in the studied requirement documents suggests
that we should consider using a paradigm that supports them natively.

An approachable language for formal requirements 33

CHAPTER 5. EXPLORATION

5.1.1 Keeping track of state

To achieve this, we usemonitors to track the states of (sub)processes as intuitively as possible. These
monitors have an internal state which represents the state of some (sub)process, as well as trans-
itions based on which events (actions) are performed in the process. As a simple example;

1 monitor powered(OnOff state = off):
2 on powerOn: powered(state=on)
3 on powerOff: powered(state=off)

This example demonstrates a simple monitor which tracks a certain object’s powered state, i.e.,
whether it is turned on or off. The state of the monitor exists of a single variable called state.
The state variable is of type OnOff, here taken to mean a Boolean set containing the literals on
and off. Additionally, we can see that the monitor responds to two events; a powerOn event, and a
powerOff event, upon which it sets its state to on and off, respectively. If we were to translate this
monitor to the modal µ-calculus—which would not give a useful result, like how the monitor on its
own is not useful: nothing is being checked—we would get the following requirement;

1 nu powered(state:OnOff = off) . (
2 [powerOn] powered(on) &&
3 [powerOff] powered(off) &&
4 [!powerOn && !powerOff] powered(state)
5)

We see that the modal µ-calculus translation is virtually identical to the µ++ version. Indeed, this
is by design; µ++ is not meant to be a novel language but a restriction on the feature set of the
modal µ-calculus. However, we can (and do) introduce quality-of-life improvements that make the
verbose and tedious aspects of creating modal µ-calculus formulae easier. A good example of this
is the case in which the state of the monitor does not change; in the modal µ-calculus we have to
explicitly note the set of actions (events) which have no impact on the state, because the maximal
fixed point ν can be used for more than just a state monitor, whereas in µ++we restricted the syntax
and can therefore infer which events have no effect on the state merely from its context (specifically,
the complement of the set of events which do impact the state). As a result, in the simple examples
presented earlier, the µ++ monitor does not need a fourth line to describe secondary behavior.

The on keyword allows an action formula af as defined for the modal µ-calculus. This would give
the user the freedom to introduce conditionals and sets over data. However, at times we will have to
define the same sets of data or conditionals for multiple actions, and thus it would be nice to allow
a scope in which these are defined only once. Additionally, this would allow us to define dynamic
‘reactions’ as well:

1 monitor car(Int speed = 0, Bool legal = true):
2 for n in Int:
3 if n > 130:
4 on speed(n): car(speed=n, legal=false)

34 An approachable language for formal requirements

CHAPTER 5. EXPLORATION

5
6 if n <= 130:
7 on speed(n): car(speed=n)

It is not always the case that in the undefined behavior the state should stay equal. For example,
if we wanted to keep track of when the powered state changed instead of its specific state at any
point, we should “reset” the state on uninteresting events instead.

1 monitor button(Bool pressed = false):
2 on button_press: button(pressed=true)
3 otherwise: button(pressed=false)

The otherwise clause allows us to define behavior for all events that statements in its current scope
do not address. However, these should be used with caution, as they may not always do what one
might expect:

1 monitor powered(OnOff state = off, Int toggles = 0):
2 for state’ in OnOff:
3 if (state’ != state):
4 on power(state’): powered(state=state’, toggles=toggles + 1)
5 otherwise: powered(state=state’) ← very, very wrong

In this example, we might erroneously expect that the otherwise clause would set the state of the
monitor to the new state state’ in the cases where we encounter an event power(state’) for
which state = state’ holds. This is only partially correct; it will additionally set the state to both
on and off for all events other than power(...).

It may seemweird how we can set the state to be both on and off, but we can intuitively understand
this as follows; we create two recursions, each with their own state, but which both have to hold. We
can use this property to create very interesting requirements. To illustrate, we can require that the
number 42 does not have a simple bit representation as follows;

1 % mCRL2 model
2 act step, stop;
3 proc create_binary_number = step . ((stop . delta) + create_binary_number);
4 init create_binary_number;

1 monitor bit(Int value = 0):
2 on step: bit(value = 2 ∗ value + 0) % append 0
3 on step: bit(value = 2 ∗ value + 1) % append 1
4
5 require:
6 after stop:
7 assert bit.value != 42 % false

An approachable language for formal requirements 35

CHAPTER 5. EXPLORATION

In this example, each action step essentially ‘picks’ a next bit where the specific choice is abstracted
away from, and themonitor similarly abstracts over this choice by allowing both a 0 and a 1 bit to be
picked. Since we can pick a sequence of 0s and 1s to represent 42 (namely 101010), the requirement
that we should not be able to stop on a value of 42 resolves to false. This is in spite of the missing
information in the model (due to abstraction).

However, that is more of a drawback than a good thing; because such structures are legal, they will
not throw an error when verifying the requirement. As such, extreme care should be taken when
defining the requirement that such properties are not introduced without intending to. Because
this format is extremely unlikely to be the intended behavior when using otherwise, we forcefully
disallow otherwise keywords inside for keywords. If for some reason this behavior is what the
requirement calls for, then the behaviormust be explicitly written downusing an on keyword instead.

36 An approachable language for formal requirements

CHAPTER 5. EXPLORATION

5.1.2 Composable monitors

In the interest of reusability, we may want to define multiple monitors that each have their own
responsibility. This is especially useful when we want to verify more complicated requirements that
have multiple components to them; the more complex we make individual monitors, the less con-
vinced we can be that they are indeed defined correctly. There is, after all, no step that would verify
that we defined our formula correctly.

In the same vein, we might want to extend another monitor to create a compound monitor. For
example, if we wanted to keep track of whether some state is entered after some action preceding,
we could create a general monitor to keep track of the state (which we could reuse for other require-
ments), and a separate monitor to keep track of the preceding action;

1 monitor object(State state = s0, Bool left = false):
2 on state_in: object(state=s1, left=false)
3 on state_out: object(state=s0, left=true)
4 otherwise: object(left=false)
5
6 monitor preceded(Bool b = false):
7 on preceding: preceded(b=true)
8 otherwise: preceded(b=b && !object.left)

As you might be able to see, we can use the state of other monitors in a monitor. In this example,
we use object.left to reset the state of preceding when the object leaves whatever state we
are monitoring for. Attentive readers may have noticed, however, that the state of preceded does
not behave exactly as we would want; since object.left only updates after the state is left, and
preceded.b only updates after an event happens and object.left is true—essentially, preceded
.b lags behind by one event.

For this use case, we propose a new unary prefix operator >which instead of using the current value
of the following expression, it will use the values for the next state, instead. This operator only works
in monitors, not in requirements. To be able to compute the proper value for the assignment, the
definitions should not have circular dependencies. Using this newoperator, we candefinepreceded
in a way in which it does not lag behind;

1 monitor preceded(Bool b = false):
2 on preceding: preceded(b=true)
3 otherwise: preceded(b=b && !>object.left)

Alternatively, we could offload the task of keeping track ofwhether the state is fresh topreceded too,
as we can now do this without having to rely on knowledge outside of how the preceded monitor
interface was defined (specifically, without knowledge of what events cause object to leave state
s1);

1 monitor object(State state = s0)

An approachable language for formal requirements 37

CHAPTER 5. EXPLORATION

2 on s_in: object(state=s1)
3 on s_out: object(state=s0)
4
5 monitor preceded(Bool b = false):
6 on preceding: preceded(b=true)
7 otherwise: preceded(b=(b && !(>object.state == s0 &&
8 >object.state != object.state)))

38 An approachable language for formal requirements

CHAPTER 5. EXPLORATION

5.1.3 Specifying a requirement

Writing a requirement is quite similar to writing a monitor, but instead of changing the state of the
monitor, we assert boolean propositions. In addition to the keywords we could use for monitors, we
can also use initially for assertions that should only be made in the initial state, and invariant
for assertions that should be made in every reachable state. If we take response(af) to mean the
proposition that at any time before an action af is taken there is a possibility of taking an action af
in the future, then we might write the “no deadlock” requirement in the following way;

1 require:
2 invariant:
3 assert response(any) ← deadlock-free

Here we use the special action formula any to denote the action formula matching any action. Be-
cause using true and false as action formulaemay not be themost intuitive, we have aliased these
keywords with any and paradox respectively.

Similarly to monitors, requirements can also respond to actions;

1 require:
2 after request_shutdown:
3 assert response(shutdown) ← assuming fairness, shutdown follows a request_shutdown

Using monitors should hopefully be quite intuitive, then;

1 monitor object(State state = s0)
2 on alarm: object(s=s1)
3 on recover: object(s=s0)
4
5 monitor preceded(Bool b = false):
6 on emergency: preceded(b=true)
7 otherwise: preceded(b=(b && !(>object.state == s0 &&
8 >object.state != object.state)))
9
10require:
11 invariant:
12 assert object.s == s1 => preceded.b ← an emergency event precedes the alarm state

Outside of boolean equations on the used monitors’ states, we can use propositions on actions, too.
We have introduced one such proposition keyword earlier; response. However, there ismore to this
proposition than we originally mentioned; the full signature of the response keyword is as follows;

response[∗](← optionally: allow avoidable or non-existent target actions
[inevitably] ← optionally: the response must unavoidably happen
af ← target actions
[before af] ← optionally: must not encounter any of these

An approachable language for formal requirements 39

CHAPTER 5. EXPLORATION

[unless af] ← optionally: give up early after any of these are taken
[before∗ b] ← optionally: must never be true
[unless∗ b] ← optionally: give up early when this is true

)

The order in which these are applied is roughly from bottom to top. That is, starting from the ‘initial’
state (that is, the one in which the response operator is asserted), the following rules are applied
in order;

1. If the boolean expression in the unless∗ clause is true, the result of this state is true.

2. If the boolean expression in the before∗ clause is true, the result of this state is false.

3. If an action described by the before clause (not contained in the unless clause) can be taken,
the result of this state is false.

4. If the response operator is not starred and there does not exist a path such that an action
described by the unnamed clause can eventually be taken, the result of this state is false.

5. If actions can be taken which are in neither the unless, before, nor the unnamed clause,
the result is the conjunction (∧) of the results of all states reachable through these actions. If
this conjunction cannot be resolved due to cyclic dependencies, then the result of this state
is false if the inevitably keyword is used, true otherwise.

6. By default, the result of this state is true.

Note that some cyclic dependencies can be resolved; since each of the states in the cycle have as
a result the conjunction (∧) of results of states reachable by ‘uninteresting’ actions, if any of these
reachable states resolves to false, this means that the conjunction is necessarily false regardless of
the unresolved value of reachable states in the cycle. As such, states in reachable cycles in a check
without an inevitably clause may also resolve to false!

The reasoning behind this behavior of the inevitably clause is as follows: if the cycle is unresolv-
able, thatmeans that a true result is inescapable. If a false result was reachable from the cycle, then
clearly the cycle should resolve to false as well. However, inescapable does not mean that it must
inevitably happen. Indeed, we can repeatedly traverse the cycle to delay the true result indefinitely.

response is more useful than it might initially seem. To demonstrate the power of this proposition,
we consider the following two requirements;

1. When data has been received using read(d) for some d, d′, d′′ ∈ D, then—provided that no
more actions read(d′) are received—the first following action send(d′′)must satisfy d = d′′.

2. Whenarequest_shutdown event happens, themachine should emit eventsflush_journal
and shutdown in that order, unless an event cancel_shutdown happens at any point before
shutdown is emitted.

We can formalize either requirement using monitors, but it is not at all necessary to go that way.
Since the first requirement does not require the ‘correct’ send action to happen—merely that if one

40 An approachable language for formal requirements

CHAPTER 5. EXPLORATION

happens, it has the correct data—we can use response∗;

1 require:
2 for d in Data: % for some d in Data
3 after read(d): % when data has been received
4 assert response∗(% using read(d)
5 exists d’’:D . send(d’’) % first following send(d’’)
6 before exists d’’:D . send(d’’) && val(d != d’’) % must satisfy d=d’’
7 unless exists d’ :D . read(d’) % provided no more read(d’)
8) % are received

Notice here that the before clause takes precedence over the unnamed clause. Considering only
these two clauses, we can slightly reword and simplify the rules given above: “If an action described
by the before clause can be taken before an action described by the unnamed clause is taken, the
result is false”. Assuming d′′ ̸= d, this further simplifies to the following; “If a send(d′′) can be taken
before a send(d′′) is taken, the result is false”. Using this verbiage, it should be clear that the result
is false if d′′ ̸= d.

Compare this to the same requirement using a monitor, where the reasoning is a lot more difficult
to understand;

1 monitor last(Data d = null, Bool check = false):
2 for d’ in Data:
3 on read(d’): last(d=d’, check=true)
4 on send(d’): last(check=false)
5
6 require:
7 for d in data:
8 if last.check && d != last.d:
9 after send(d):
10 assert false

For the second requirements, we need to test that a proposition inevitably follows. On its own,
this keyword asserts that its contents must unavoidably happen in a finite number of steps. Inside a
response keyword it has a similar meaning; the check must always end in a finite number of steps
(get the response, or trigger an unless clause). Alternatively, we might assume that the model is
fair.

1 require:
2 after request_shutdown:
3 assert response(inevitably flush_journal before shutdown unless cancel_shutdown)
4 assert response(inevitably shutdown unless cancel_shutdown)

Here, the difference with the version using a monitor is even more pronounced;

1 monitor observed(Bool flush = false, Bool cancel = false, Bool shtdwn = false):

An approachable language for formal requirements 41

CHAPTER 5. EXPLORATION

2 on flush_journal: observed(flush=true)
3 on cancel_request: observed(cancel=true)
4 on shutdown: observed(shtdwn=true)
5 on request_shutdown: observed(flush=false, cancel=false, shtdwn=false)
6
7 require:
8 after request_shutdown:
9 assert inevitably(observed.cancel || observed.flush)
10 assert inevitably(observed.cancel || observed.shtdwn)
11
12 if !observed.flush:
13 after shutdown:
14 assert false

To improve the usability of response a little bit in relation to sequences of actions, we introduce the
sequentially keyword, which will translate to a number of response assertions. Rewriting the
second requirement to use sequentially would produce;

1 require:
2 after request_shutdown:
3 assert sequentially [
4 inevitably flush_journal unless cancel_shutdown,
5 inevitably shutdown unless cancel_shutdown
6]

Notice that we do not have to write before shutdown in this instance; the sequentially keyword
takes care of this for us by implicitly adding each of the later unnamed clauses (and only the un-
named clauses) to an entry’s before clause.

We can use a separate inevitably keyword to require that a certain condition will eventually be
met. The values of themonitor variables used in this inevitably expressionwill be updated during
its evaluation. That is, they do not retain their values of the current state. To illustrate, we translate
the requirement “if we request a machine to turn on, it must eventually be turned on”;

1 monitor machine(Status power = off):
2 for state in Status:
3 on changeMachineStatus(state): machine(power=state)
4
5 require:
6 after receiveMachineStatusRequest(on):
7 assert inevitably(machine.power == on)

We can combine the properties that we have encountered so far using Boolean operations to create
quite complex requirements. Introducing a final few keywords; possible(R, b) requires that
from this state, a sequenceR is possible such that b holds afterwards. afterall(R, b) requires
that after all possible sequences R, b must hold. Note; !possible(a, b) = afterall(a, !b).
mcf(...) allows a modal µ-calculus formula, for those rare few cases where µ++ is inadequate.

42 An approachable language for formal requirements

CHAPTER 5. EXPLORATION

5.2 Syntax of µ++

Aµ++ formula contains two types of structures; monitors and requirements. Typically, wewould only
need a single requirement as multiple requirements should combine trivially. However, when creat-
ing a monolithic µ++ formula, it may be useful to individually name and verify these requirements
to help identify issues during verification.

µ++ ::= µ++
⋆

| 'require' [identifier] ':' requirement+

| 'monitor' identifier '(' data_def [',' data_def]⋆ ')' ':'
monitor

identifier ::= /([A-z]|_[A-z0-9'])(_?[A-z0-9'])*_?/
number ::= /(0|[1-9][0-9]*)\.?(e[+-]?[0-9]+)?/

| /(0|[1-9][0-9]*)?\.[0-9]+(e[+-]?[0-9]+)?/
comment ::= '%' /[^\n\r]*/

sort ::= identifier
data ::= identifier 'in' sort

data_def ::= sort identifier '=' data_instance
data_instance ::= identifier ['.' identifier]

| t
assign ::= identifier '=' data_expression

monitor_scope ::= 'if' boolean_expression ':' monitor
| 'for' data [',' data]⋆ ':' monitor
| 'on' action_formula ':' identifier '(' assign [',' assign]⋆ ')'

monitor ::=monitor_scope+

['otherwise' ':' identifier '(' assign [',' assign]⋆ ')']

requirement ::= 'if' boolean_expression ':' requirement+

| 'for' data [',' data]⋆ ':' requirement+

| 'after' action_formula ':' assertion+

| 'initially' ':' assertion+

| 'invariant' ':' assertion+

assertion ::= 'if' boolean_expression ':' assertion+

| 'for' data [',' data]⋆ ':' assertion+

| 'assert' proposition

An approachable language for formal requirements 43

CHAPTER 5. EXPLORATION

These conclude the structural components of the µ++ language. Using these definitions, we can
describe exactly when (or; from what point in time) we want to verify (or; assert) certain properties.
What follows are the production rules that make up propositions.

proposition ::= boolean_expression[b|proposition/b]
| 'response' ['*'] '(' response ')'
| 'sequentially' '[' response [',' response]⋆ ']'
| 'inevitably' '(' proposition ')'
| 'possible' '(' regular_af [',' proposition] ')'
| 'afterall' '(' regular_af ',' proposition ')'
| 'mcf' '(' mcf ')'

response ::= ['inevitably'] action_formula
['before' action_formula]
['unless' action_formula]
['before' '*' boolean_expression]
['unless' '*' boolean_expression]

boolean_expression ::= b[data_instance/t]
action_formula ::= af ['any'/ true, 'paradox'/ false]

mcf ::= ϕ[boolean_expression/b]
regular_af ::= regular_af '+' regular_af

| regular_af '.' regular_af
| af ['*']

Here we use t, b, af , and ϕ from the modal mu-calculus syntax as defined in Appendix A.

44 An approachable language for formal requirements

CHAPTER 5. EXPLORATION

5.3 Semantics of µ++

In creating this language, we have taken care to keep the concepts Monitor and Requirement rather
separate. While these integrate nicely to create this language, they are essentially separate down to
the lowest of levels. In fact, we decided to stage the translation to µ++ formulae by first translating
the requirements, and then manipulating it a second time if it contains unbound (that is, monitor)
variables.

5.3.1 Formalizing requirements

Assume we have an adjusted modal µ-calculus which automatically updates our variables for us
every time the model takes an action (we will formalize this later in this chapter). This allows us to
translate the requirements without having to worry about possible monitor variables. Note that if
we do not use monitors, we can use the same definitions with the standard modal µ-calculus.

Definition 1 (Semantics of requirements). Let ϕ be a requirement expression. We define the inter-
pretation of requirement ϕ, notation [[ϕ]] as an adapted modal µ-calculus formula, inductively by;

[[require: ϕ]] = νX(init : Bool = true) . ([true]X(false) ∧ [[ϕ]]) (5.1)
[[ϕ ϕ]] = [[ϕ]] ∧ [[ϕ]] (5.2)

[[if b: ϕ]] = b→ [[ϕ]] (5.3)
[[for d in D: ϕ]] = ∀d:D . ([[ϕ]]) (5.4)

[[after af: ϕ]] = [af] [[ϕ]] (5.5)
[[initially: ϕ]] = init→ [[ϕ]] (5.6)
[[invariant: ϕ]] = [[ϕ]] (5.7)

[[assert ψ]] = [[ψ]] (5.8)

Definition 2 (Semantics of assertions). Let ψ be an assertion body expression. We define the inter-
pretation of assertion body ψ, notation [[ψ]] as an adapted modal µ-calculus formula, inductively
by;

[[inevitably(ψ)]] = µX . (([true]X ∧ ⟨true⟩ true) ∨ [[ψ]]) (5.9)
[[possible(R, ψ)]] = ⟨R⟩ [[ψ]] (5.10)
[[afterall(R, ψ)]] = [R] [[ψ]] (5.11)

[[b]] = b (5.12)
[[mcf(φ)]] = φ (5.13)

An approachable language for formal requirements 45

CHAPTER 5. EXPLORATION

[[response(σ)]] = ζ(inev(σ))X . ((
[af(σ)∧ ex(σ)]X ∧
[er(σ) ∧ ex(σ)] false∧
⟨true⋆ . af(σ)⟩ true∧
er∗(σ)

) ∨ ex∗(σ))

(5.14)

[[response∗(σ)]] = ζ(inev(σ))X . ((
[af(σ)∧ ex(σ)]X ∧
[er(σ) ∧ ex(σ)] false∧
er∗(σ)

) ∨ ex∗(σ))

(5.15)

Where we define the helper functions ζ , as well as inev, af , er, ex, er∗, and ex∗, as follows, such
that ζ returns the appropriate type of fixed point, and the other functions return the encapsulated
value of a response type if applicable, or false (or ’’ for inev) if not;

ζ(s) ::=

{
µ if s = inevitably
ν otherwise

response ::= [
inev

'inevitably']
af

action_formula

['before'
er

action_formula]

['unless'
ex

action_formula]

['before' '*'
er∗

boolean_expression]

['unless' '*'
ex∗

boolean_expression]

So, for example;

inev(inevitably finish before error) = inevitably (5.16)
af(inevitably finish before error) = finish (5.17)
er(inevitably finish before error) = error (5.18)
ex(inevitably finish before error) = false (5.19)
er∗(inevitably finish before error) = false (5.20)
ex∗(inevitably finish before error) = false (5.21)

One keyword was missing in the definition given above; sequentially. This is because it is quite
a complex keyword, and is more easily translated to a number of responses instead. If we define
a sequence σ of individual response blocks [σ1, σ2, . . . , σn], then we can define sequentially as

46 An approachable language for formal requirements

CHAPTER 5. EXPLORATION

follows;

sequentially[σ] =
∧

0<i≤n

response

inev(σi) af(σi)
before er(σi) ∨

∪
i<j≤n af(σj)

unless ex(σi)
before∗ er∗(σi)
unless∗ ex∗(σi)

(5.22)

sequentially∗[σ] =
∧

0<i≤n

response∗

inev(σi) af(σi)
before er(σi) ∨

∪
i<j≤n af(σj)

unless ex(σi)
before∗ er∗(σi)
unless∗ ex∗(σi)

(5.23)

Or, more plainly; for each individual response block in the given sequence, we write an equivalent
individual response (or response∗) keyword, with the exception that the before action formula
is padded with the action formulas searched for in each of the sequences following the one we are
translating.

An approachable language for formal requirements 47

CHAPTER 5. EXPLORATION

5.3.2 Normalizing monitors

Monitors can come in quite complex and intricate shapes. To aid in the understanding and simplicity
of the translation, we will first normalize each monitor to a simpler form. Specifically, this form
contains no if and otherwise keywords. Additionally, for keywords may not be nested, and may
only have a single nested on keyword. As such, we end up with monitors where the body consists
solely of a list of on and for ... on constructions.

The first step in this process is to make the implicit otherwise: X() explicit. If the monitor already
has an unnested otherwise, this stepmay be skipped. If there is no unnested otherwise, wemust
add an unnested otherwise: X() such that all behavior is described explicitly.

Secondly, we must resolve these otherwise keywords to their equivalent on keyword. Since the
otherwise keyword should catch all actions that are not explicitly caught by the expressions in
the same nesting as the otherwise, we can replace the otherwise with on af where af is the
complement of all actions that are explicitly caught.

From here on, we will use ‘scope’ to describe this notion of nestedness. A scope is characterized
by a lineage—a single path of ‘parent’ keywords starting with the monitor itself, of which each is
contained in the scope of its predecessor. The reverse of the ‘parent’ relationship is referred to as
‘child’. A direct child is a keyword that is unnested in the scope of the direct parent. If we consider
each keyword a node in a tree, then the monitor is the root node, a lineage is the path to the direct
parent keyword, and the scope is the forest of subtrees formed by the children of the direct parent
keyword. As such, we may speak of relative rootedness within a scope.

To find af , we introduce the notion of an inaction set of amonitor (and by extension, of a scope). This
inaction set represents the action formula that an otherwise keyword responds to. More formally,
the inaction set of a monitor (or scope) is the complete set of actions that is not acted upon within
that monitor (or scope), except by a possible otherwise in the highest (sub)scope. It is constructed
as the intersection of the complements of sets that are acted upon.

Finding this inaction set is quite involved, as there may be a lot going on inside a monitor. We will
introduce the logic of keywords one by one and see how the definition of the inaction set evolves.

In the simplest case, a monitor contains a single on keyword. In this case, the inaction set should be
the complement of actions described by that single on keyword. If we have multiple on keywords,
then we should take the complement of actions described by any of the on keywords. We can con-
struct this complement by taking the conjunction of complements of individual on keywords’ action
formulas. Constructing this set in this way allows us to build the inaction set recursively.

We can generalize from on keywords to any siblings (direct children of the same parent), and say
that the inaction set of any two siblings is the conjunction of their individual inaction sets. As such,
each direct child in a scope is transformed into the set of actions that it does not catch, and the
conjunction of these is the set of actions which no child catches.

Following the same recursivemindset, we can use the boolean expression of an if keyword to imply

48 An approachable language for formal requirements

CHAPTER 5. EXPLORATION

the inaction set of its children. If the boolean expression is false, then the if will catch no actions
and its inaction set is therefore true. If the boolean expression is true, then the inaction set is the
conjunction of the childrens’ inaction sets.

Similarly, the for keyword can be transformed to the conjunction of inaction sets of its children for
each valid instantiation of the variables declared in the for keyword. Combining what we have so
far, we get the following definition:

Definition 3 (Inaction set of amonitor without otherwise). Letψ be amonitor expression. We define
the inaction set of a monitor ψ, notation (ψ) as an action formula, inductively by;

(monitor X(Dd← t): ϕ) = (ϕ) (5.24)

(ϕ ϕ) = (ϕ) ∧ (ϕ) (5.25)
(if b: ϕ) = b→ (ϕ) (5.26)

(for d in D: ϕ) = ∀d:D . ((ϕ)) (5.27)

(on af: X(d← t)) = af (5.28)

However, we have yet to include the effects of an otherwise keyword. This is not trivial, because
we cannot transform an otherwise keyword using only itself and its siblings. As such, the recurs-
ive nature of definition 3 is working against us here. Conversely, we can exploit the nature of the
otherwise keyword to help us out a litte.

Recall that the inaction set of a scope is defined as the set of actions a relatively rooted (unnested)
otherwise keyword is supposed to catch. As such, we may ignore a relatively rooted otherwise

keyword when calculating the inaction set of that scope. As with the if keyword, we can ignore a
keyword by considering its inaction set to be true. In contrast, we should observe that the inaction
set of a nested scope containing a relatively rooted otherwise keyword is false, as the otherwise
in that scope will catch all actions that its siblings do not catch.

Consider the following example, which contains multiple otherwise keywords:

1 monitor x(Bool y = false, Int z = 0):
2 if y == false:
3 on a: x(y = true)
4 otherwise: x(z = z + 1)
5
6 if y == true:
7 on a: x(y = false)
8 otherwise: x(z = 0)
9
10 otherwise: x(z = z − 1)

Here, wewouldwant to see that the first otherwise is transformed to on !a: x(z=z+1), the second
otherwise is transformed to on !a: x(z=0), and the third otherwise is transformed to on (y==

false−>(!a&&!!a))&&(y==true−>(!a&&!!a)): x(z=z−1), or something that is equivalent.

An approachable language for formal requirements 49

CHAPTER 5. EXPLORATION

This example highlights the fact that in any scope where an otherwise is present, all actions are
caught. As such, we can simplify the inaction set of such a scope to false. We can do this by, as
mentioned before, considering the inaction set of a nested otherwise keyword as false, as the
conjunction with siblings will resolve the entire scope’s inaction set to false.

The distinction between a relatively rooted otherwise and other otherwise keywords should also
be clear from the example; It should be clear that when we transformed the first two otherwise

keywords in the example, we ignored the effects of the otherwise keywords in their respective
scopes. However, we did not ignore them when we transformed the third otherwise keyword.

In the following definition, we will encode the relative rootedness of the current scope (“is this the
first scopewe have entered?”) by defining two operators (ψ) and (ψ)′, such that (ψ) defines behavior
for relative root-level scopes (where otherwise should have no effect), and (ψ)′ defines behavior
for deeper scopes (where otherwise should have an effect).

Definition 4 (Inaction set of a monitor). Let ψ be a monitor expression. We define the inaction set
(set of actions towhich amonitor does not explicitly respond) of amonitorψ, notation (ψ) as a action
formula, inductively by;

(monitor X(Dd← t): ϕ) = (ϕ) (5.29)
(ϕ ϕ)′ = (ϕ)′ ∧ (ϕ)′ (5.30)

(ϕ ϕ) = (ϕ) ∧ (ϕ) (5.31)
(if b: ϕ)′ = (if b: ϕ) = b→ (ϕ)′ (5.32)

(for d in D: ϕ)′ = (for d in D: ϕ) = ∀d:D . ((ϕ)′) (5.33)

(on af: X(d← t))′ = (on af: X(d← t)) = af (5.34)
(otherwise: X(d← t))′ = true (5.35)

(otherwise: X(d← t)) = false (5.36)

We can see that the definitions for the other keywords (5.29–5.34) stay mostly the same; we have
added a prime version of the translation whichmeans that we are in a ‘deeper’ scope than where we
started. It should be noted that from a non-prime interpretation, we only go to a prime interpreta-
tion after an if (5.32) or for (5.33) keyword. With sibling nodes we keep a non-prime interpretation
in a non-prime interpretation (5.31) and a prime interpretation in a prime interpretation (5.30).

Here we have simplified the role of the otherwise to resemble all actions in that scope, rather than
just the inaction set of that scope. This does not actually matter for the semantics; regardless of the
weaker definition, a ‘deep’ scope with an otherwise will have an empty inaction set.

We can now transform any otherwise keyword to an equivalent on keyword by calculating the
inaction set of the scope formed by all siblings of that otherwise keyword, and using this result as
the action formula of the on keyword.

To simplify the structure of the monitor to the shape we have detailed earlier on, we take four steps:
distribute children such that each keyword has at most one direct child, hoist each for keyword to

50 An approachable language for formal requirements

CHAPTER 5. EXPLORATION

the highest scope, eliminate if keywords, and finally eliminate for keywords.

To distribute the children, we use the following transformations:

if b: (ϕ1 ϕ2) 7→ (if b: ϕ1) (if b: ϕ2) (5.37)
for d in D: (ϕ1 ϕ2) 7→ (for d in D: ϕ1) (for d in D: ϕ2) (5.38)

We can apply these transformations until each keyword (except for the monitor itself) has at most
one child. It should be clear that this is a finite process with a unique result.

To hoist each for keyword to the highest scope, we must combine nested for keywords into one,
and swap if and for keywords if for is the child of an if keyword. As long as we disallow the
ghosting of variables (that is, introduce a new variable using a symbol which is already in use in this
context) this transformation is safe.

for d1’ in D1: for d2’ in D2: ϕ 7→ for d1’ in D1, d2’ in D2: ϕ (5.39)
if b: for d in D: ϕ 7→ for d in D: if b: ϕ (5.40)

If we apply these transformations until no more are possible, the result should be a monitor which
has only unnested for keywords. Again, this process is finite and produces a unique result.

We can eliminate if keywords by observing that we can encode their function into a nested on

keyword. Since at this point all if keywords must have a (possibly indirect) child on keyword and
no for children, we can use the following transformation to achieve the desired result. Again, this
process is finite and produces a unique result.

if b: on af: ϕ 7→ on b ∧ af: ϕ (5.41)

Finally, we can eliminate some of the for keywords provided that the variables they introduce do
not occur in the valuation change expression that follows the child on keyword.

for d in D: on af: ϕ 7→ on ∃d:D . (af): ϕ if d ̸∈ ϕ (5.42)

A small example of all these transformations at work is illustrated here:

1 % original
2 monitor somemonitor(Int d = 0):
3 for d’ in Int:
4 if d’ != d:
5 on a(d’): somemonitor(d=1)
6 on b(d’): somemonitor(d=d’)

1 % normalized
2 monitor somemonitor(Int d = 0):
3 on exists d’:Int . (d’ != d) && a(d’) : somemonitor(d=1)
4 for d’ in Int:
5 on (d’ != d) && b(d’) : somemonitor(d=d’)
6 on forall d’:Int . (d’ != d) => (!a(d’)) && !b(d’)): somemonitor()

An approachable language for formal requirements 51

CHAPTER 5. EXPLORATION

We refer to this simplifiedmonitor as ‘normalized’. From here on, we will reason exclusively with nor-
malizedmonitors. Themore complex forms are regarded as syntactical sugar and, as demonstrated
by the normalization transformation, do not add any functionality.

52 An approachable language for formal requirements

CHAPTER 5. EXPLORATION

5.3.3 Formalizing monitors

Monitors define the behavior through which the values of variables are updated upon following an
action transition. As seen in the previous subsection, we can simplify the structure of thesemonitors
to a simple, normalized form. In this normalized form, we have a series of descriptions of which
actions allow certain valuation changes. These descriptions each consist of a possible quantification
given through a for keyword, andmust contain an action formula upon which the valuation change
may be applied. This valuation change is described as a mapping of the monitor variables to an
expression using any quantified variables and monitor variables.

These monitor variables are of the shape i.j, where i denotes the name of the monitor of which
a variable is accessed, and j denotes the monitor-specific variable name. As such, we have a set
of monitor names X , and for each monitor i ∈ X we have a set of variable names Xi. We call a
variable a monitor variable if it is unbound and has the shape i.j, where i ∈ X and j ∈ Xi. We
group all defined variables in the set V , with disjoint subsets Vn and Vm for normal variables and
monitor variables respectively. In particular, we have �v ̸∈ V .

Thesemonitor variables keep track of interesting (data) expressions. Amonitor is said to have a state,
with the expressions e ∈ E that these monitor variables represent an encoding of that state. These
expressions have a value. Therefore, we say that the valuation function σi is the state of a monitor
i if for every j ∈ Xi, σi(j) results in the value of the expression e that the variable i.j represents.
We will use σ = σi1 ⋊⋉ · · · ⋊⋉ σin to represent the global state — that is, a single function that gives
the matching expression for each variable, such that σ(i.j) = σi(j) for all i ∈ X and j ∈ Xi.

We formalize the syntax of amonitormi ∈M as a setMoni of vectors (κ, af, f), with quantification
κ (the for keyword), action formula af (the on keyword) and partial mapping f : Xi → E (updates
in i(...)), in the following way

Moni
∆= [[monitor i(· · ·): · · ·]] (5.43)

[[monitor i(· · ·): ϕ]] = [[ϕ]]{ �v:0} (5.44)
[[ϕ1 ϕ2]]

κ = [[ϕ1]]
κ ∪ [[ϕ2]]

κ (5.45)

[[for d1 inD1, · · · : ϕ]]κ = [[ϕ]]κ ∪{d1:D1, ···} (5.46)

[[on af: x(v1 = ev1 , · · ·)]]
κ =

{
(κ, af, f)

∣∣∣∣ ∀j∈Xi

(
f(j) = ej if ∃k(j = vk)
f(j) = j otherwise

)}
(5.47)

For ease of use, we define the following shorthand notation

MonM
∆=

κ1 ∪ · · · ∪ κn,
af1 ∧ · · · ∧ afn,
f1⋊⋉ · · ·⋊⋉ fn

 ∣∣∣∣∣∣ ∀i∈X (κi, afi, fi) ∈ Moni

 (5.48)

where we again use the notation (f1 ⋊⋉ · · · ⋊⋉ fn)(i.j) = fi(j).

An approachable language for formal requirements 53

CHAPTER 5. EXPLORATION

5.3.4 Synchronizing monitors to a process LTS

We translate all monitorsmi ∈M to a single (combined) LTSM as 3-tuple (Σ,−→M , σ
∗), whereΣ

is the set of all possible valuations σ,−→M ⊆ Σ×Act×Σ is a transition relation, with σ α−→M σ′

shorthand for (σ, α, σ′) ∈ −→M , and σ∗ ∈ Σ is the initial state. We require that the transition rela-
tion provides a target for each valid action from each state. That is, ∀σ∈Σ ∀α∈Act ∃σ′∈Σ (σ

α−→M σ′).

From the monitor specifications we can derive partial state space and initial state trivially: from
monitor i(D1 d1 = t1, ..., Dn dn = tn): ..., we get

Σi
∆= D1 × · · · ×Dn (5.49)

σ∗i
∆= i.d1 7→ [[t1]] ⋊⋉ · · · ⋊⋉ i.dn 7→ [[tn]] (5.50)

The LTS follows from the partial definitions and MonM

Σ ∆= Σm1 × · · · × Σm|M| (5.51)
σ∗ ∆= σ∗m1

⋊⋉ · · · ⋊⋉ σ∗m|M|
(5.52)

σ
α−→M σ′ ⇐⇒ ∃(κ,af,f)∈MonM

(
α ∈ [[∃ κ . af]]σ ∧ ∀i∈[σ] ∀j∈[σi]

(
[[f(i.j)]]σ = [[i.j]]σ

′
))

(5.53)

Note that due to this definition, we automatically satisfy ∀σ∈Σ ∀α∈Act ∃σ′∈Σ (σ
α−→M σ′) as monit-

ors have an implicit otherwisewhich requires that all actions have at least one corresponding item
in MonM .

Assume we have a process given as LTS, P = (S,−→P , s
∗). We can create a synchronized LTS

S = (S × Σ,−→S, (s
∗, σ∗)), such that

(s, σ)
α−→S (s′, σ′) ⇐⇒ s

α−→P s
′ ∧ σ α−→M σ′ (5.54)

54 An approachable language for formal requirements

CHAPTER 5. EXPLORATION

5.3.5 Adapting the modal mu-calculus

We propose an extramural extension to the modal µ-calculus, which additionally considers the data
encoded in the states of amonitor-synchronized LTS. In particular, themodalµ-calculus as described
in Appendix A is a special case where we consider the trivial monitor Mon0

∆= {({�v:0}, true, �v 7→
0)} which defines no data nor valuation in any state (or, more specifically, a quantification and valu-
ation over the unused variable �v).

We interpret a extramural modal µ-calculus formula in the context of a synchronized LTS S. We will
subscript the name of the (synchronized) LTS to the interpretation to make the distinction between
this and the regular modal µ-calculus. The interpretation of variable expressions (and action for-
mulas) get no such subscript, as they do not depend on these contexts—and to visually distinguish
them. The interpretation (semantics) of this extramural modal µ-calculus is defined as follows:

[[b]]σ̂,σ,ρS =

{
S if (σ̂ ∪ σ)(b) = true
∅ if (σ̂ ∪ σ)(b) = false (5.55)

[[⊤]]σ̂,σ,ρS = S (5.56)

[[⊥]]σ̂,σ,ρS = ∅ (5.57)

[[¬ϕ]]σ̂,σ,ρS = S \ [[ϕ]]σ̂,σ,ρS (5.58)

[[ϕ1 ∧ ϕ2]]
σ̂,σ,ρ
S = [[ϕ1]]

σ̂,σ,ρ
S ∩ [[ϕ2]]

σ̂,σ,ρ
S (5.59)

[[ϕ1 ∨ ϕ2]]
σ̂,σ,ρ
S = [[ϕ1]]

σ̂,σ,ρ
S ∪ [[ϕ2]]

σ̂,σ,ρ
S (5.60)

[[⟨af⟩ϕ]]σ̂,σ,ρS =

{
s

∣∣∣∣ ∃((s′, σ′) ∈ S × Σ,

α ∈ [[af]]σ̂,σ

)
.

(
(s, σ)

α−→ (s′, σ′) ∧
s′ ∈ [[ϕ]]σ̂,σ

′,ρ
S

)}
(5.61)

[[[af] ϕ]]σ̂,σ,ρS =

{
s

∣∣∣∣ ∀((s′, σ′) ∈ S × Σ,

α ∈ [[af]]σ̂,σ

)
.

(
(s, σ)

α−→ (s′, σ′)⇒
s′ ∈ [[ϕ]]σ̂,σ

′,ρ
S

)}
(5.62)

[[∃ x:D . ϕ]]σ̂,σ,ρS =
∪

d∈MD

[[ϕ]]
σ̂[d/x],σ,ρ
S (5.63)

[[∀ x:D . ϕ]]σ̂,σ,ρS =
∩

d∈MD

[[ϕ]]
σ̂[d/x],σ,ρ
S (5.64)

[[νX(x:D ← t) . ϕ]]σ̂,σ,ρS =
∪

f∈(Σ,MD)→2S

{
f(σ, [[t]]σ̂,σ)

∣∣∣∣ ∀(σ′ ∈ Σ,
d′ ∈MD

)
.
(
f(σ′, d) = [[ϕ]]

σ̂[d/x],σ′,ρ[X←f]
S

)}
(5.65)

[[µX(x:D ← t) . ϕ]]σ̂,σ,ρS =
∩

f∈(Σ,MD)→2S

{
f(σ, [[t]]σ̂,σ)

∣∣∣∣ ∀(σ′ ∈ Σ,
d′ ∈MD

)
.
(
f(σ′, d) = [[ϕ]]

σ̂[d/x],σ′,ρ[X←f]
S

)}
(5.66)

[[X(t)]]σ̂,σ,ρS = ρ(X)(σ, [[t]]σ̂,σ) (5.67)

An approachable language for formal requirements 55

CHAPTER 5. EXPLORATION

5.3.6 Translating to mCRL2

To include the monitor semantics into the modal µ-calculus formula, we transform an arbitrary ex-
tramural modal µ-calculus formula ϕ to a modal µ-calculus formula tr(f, ϕ), where f : Vm → En
represents some substitution of monitor variables to expressions without monitor variables. We
define the function tr(f, ϕ) recursively as follows. Without loss of generality, we can assume that
our monitors’ states can be represented using a single variable vm of typeDm.

tr(f, b) = f(b) (5.68)
tr(f,⊤) = ⊤ (5.69)
tr(f,⊥) = ⊥ (5.70)
tr(f,¬ϕ) = ¬tr(f, ϕ) (5.71)

tr(f, ϕ ∧ φ) = tr(f, ϕ) ∧ tr(f, φ) (5.72)
tr(f, ϕ ∨ φ) = tr(f, ϕ) ∨ tr(f, φ) (5.73)

tr(f, ⟨af⟩ϕ) =
∨

(κ, af ′,f ′)∈MonM (∃ κ . ⟨f(af ∧ af ′)⟩ tr(f ◦f ′, ϕ)) (5.74)

tr(f, [af] ϕ) =
∧

(κ, af ′,f ′)∈MonM (∀ κ . [f(af ∧ af ′)] tr(f ◦f ′, ϕ)) (5.75)

tr(f, ∃ x:D . (ϕ)) = ∃ x:D . (tr(f, ϕ)) (5.76)
tr(f, ∀ x:D . (ϕ)) = ∀ x:D . (tr(f, ϕ)) (5.77)

tr(f, νX(x:D ← t) . ϕ) = νX(v′m:Dm ← f(vm), x:D ← f(t)) . tr(h, ϕ) (5.78)
tr(f, µX(x:D ← t) . ϕ) = µX(v′m:Dm ← f(vm), x:D ← f(t)) . tr(h, ϕ) (5.79)

tr(f,X(t)) = X(f(vm), f(t)) (5.80)
where

(f ◦f ′)(x) ∆= f(f ′(x)) (5.81)

h(v) ∆=

{
v if v ∈ Vn
v′ if v ∈ Vm

(5.82)

Note that the translation merely encodes the state of the monitor into its fixed points and updates
using the modalities.

56 An approachable language for formal requirements

CHAPTER 5. EXPLORATION

5.3.7 Proof of equivalence

Definition 5 (fσ). Let σ be a monitor variable valuation. We can infer from the definition of this σ
(and σ from) a transformation function fσ such that for any monitor variable vm ∈ Vm we have
[[vm]]

σ = [[fσ(vm)]].

Definition 6 (dσ). Let σ be a monitor variable valuation. We can infer from the definition of this σ
(and σ from) a concrete data value dσ such that for any monitor variable v ∈ Vm we have σ(v) =
projv(dσ), where projv is some structured projection function (e.g. indexing on a tuple). Note that
we can construct such a dσ from fσ and vice versa, since [[fσ(v)]] = σ(v) = projv(dσ) for v ∈ Vm.

Definition 7 (ρ↓). Let ρ be a logical variable valuation. We can infer from the definition of this ρ (and
ρ from) an extended valuation ρ↓ such that for allX, σ, σ′ we have

ρ↓(X) = p↓ ⇐⇒ ρ(X) = p (5.83)
p↓(σ′, dσ, d) ∆= p(σ, d) (5.84)

Lemma 1 (translation equivalence). Let S be a synchronized LTS of a process LTS P and a monitor LTS
M. For any extramural modal µ-calculus formula ϕ, valuation σ̂, logical variable valuation ρ, and state
σ inM, it holds that

[[tr(fσ, ϕ)]]
σ̂,σ,ρ
S = [[tr(fσ, ϕ)]]

σ̂,ρ
P (5.85)

Proof. Due to the definition of fσ, we know that fσ will translate all monitor variables to some ex-
pression not containing monitor variables, as we assume that the result of applying fσ on some
data expression t can be interpreted without a monitor context.

In the definition of tr(f, ϕ), we can see that all placeswheremonitor variables canoccur is processed
through applying the substitution function f on it. This f can take one of two shapes: fσ[◦f ′ · · ·],
or h[◦f ′ · · ·]. In either case, the resulting expression cannot containmonitor variables by definition.
As such, we can conclude that the result of tr(fσ, ϕ) does not contain monitor variables, and there-
fore its interpretation is equal in S and P. ■

Lemma 2 (fσ-elimination). Let S be a synchronized LTS of a process LTS P and a monitor LTS M. For
any data expression t, valuation σ̂, and state σ inM, it holds that

(σ̂ ∪ σ)(fσ(t)) = (σ̂ ∪ σ)(t) (5.86)

Proof. The definition of fσ tell us that the result of fσ(t) does not contain monitor variables. As such

(σ̂ ∪ σ)(fσ(t)) = (σ̂)(fσ(t))

= [[fσ(t)]]
σ̂,ρ
P

= [[t]]σ̂,σ,ρS

= (σ̂ ∪ σ)(t) ■ (5.87)

An approachable language for formal requirements 57

CHAPTER 5. EXPLORATION

Lemma 3 (fσ action saturation). Let (s, σ), (s′, σ′) be states in S, af some action formula, (κ′, af ′, f ′)
an element in MonM , and α some action in [[af ∧ af ′]]σ̂,σ such that

fσ ◦ f ′ ̸= fσ′ ∧ (s, σ)
α−→ (s′, σ′) (5.88)

Then, by virtue of (s, σ) α−→ (s′, σ′) there exists some (κ′′, af ′′, f ′′) ∈ MonM such that

fσ ◦ f ′′ = fσ′ ∧ a ∈ [[af ∧ af ′′]]σ̂,σ (5.89)

And, by virtue of (κ′, af ′, f ′) ∈ MonM there exists state (s′, σ′′) such that

fσ ◦ f ′ = fσ′′ ∧ (s, σ)
α−→ (s′, σ′′) ■ (5.90)

Theorem 4 (synchronization–translation equivalence). Let S be a synchronized LTS of a process LTS
P and a monitor LTS M. For any extramural modal µ-calculus formula ϕ, valuation σ̂, logical variable
valuation ρ, and state (s, σ) in S, it holds that

s ∈ [[ϕ]]σ̂,σ,ρS ⇐⇒ s ∈ [[tr(fσ, ϕ)]]
σ̂,ρ↓
P (5.91)

Proof. The proof follows trivially from the claims that

[[ϕ]]σ̂,σ,ρS
?
= [[tr(fσ, ϕ)]]

σ̂,σ,ρ↓
S (5.92)

1
= [[tr(fσ, ϕ)]]

σ̂,ρ↓
P (5.93)

We can prove equality (5.92) by induction on the structure of ϕ as follows

[[tr(fσ, b)]]
σ̂,σ,ρ↓
S = [[fσ(b)]]

σ̂,σ,ρ↓
S

= (σ̂ ∪ σ)(fσ(b))
2
= (σ̂ ∪ σ)(b)
= [[b]]σ̂,σ,ρS ■ (5.94)

[[tr(fσ,⊤)]]σ̂,σ,ρ↓S = [[⊤]]σ̂,σ,ρ↓S

= S

= [[⊤]]σ̂,σ,ρS ■ (5.95)

[[tr(fσ,⊥)]]σ̂,σ,ρ↓S = [[⊥]]σ̂,σ,ρ↓S

= ∅

= [[⊥]]σ̂,σ,ρS ■ (5.96)

[[tr(fσ,¬ϕ)]]σ̂,σ,ρ↓S = [[¬tr(fσ, ϕ)]]σ̂,σ,ρ↓S

= S \ [[tr(fσ, ϕ)]]σ̂,σ,ρ↓S
IH
= S \ [[ϕ]]σ̂,σ,ρS

= [[¬ϕ]]σ̂,σ,ρS ■ (5.97)

58 An approachable language for formal requirements

CHAPTER 5. EXPLORATION

[[tr(fσ, ϕ ∨ φ)]]σ̂,σ,ρ↓S = [[tr(fσ, ϕ) ∨ tr(fσ, φ)]]σ̂,σ,ρ↓S

= [[tr(fσ, ϕ)]]
σ̂,σ,ρ↓
S ∪ [[tr(fσ, φ)]]

σ̂,σ,ρ↓
S

IH
= [[ϕ]]σ̂,σ,ρS ∪ [[φ]]σ̂,σ,ρS

= [[ϕ ∨ φ]]σ̂,σ,ρS ■ (5.98)

[[tr(fσ, ϕ ∧ φ)]]σ̂,σ,ρ↓S = [[tr(fσ, ϕ) ∧ tr(fσ, φ)]]σ̂,σ,ρ↓S

= [[tr(fσ, ϕ)]]
σ̂,σ,ρ↓
S ∩ [[tr(fσ, φ)]]

σ̂,σ,ρ↓
S

IH
= [[ϕ]]σ̂,σ,ρS ∩ [[φ]]σ̂,σ,ρS

= [[ϕ ∧ φ]]σ̂,σ,ρS ■ (5.99)

[[tr(fσ,∀ x:D . ϕ)]]σ̂,σ,ρ↓S = [[∀ x:D . tr(fσ, ϕ)]]
σ̂,σ,ρ↓
S

=
∩

d∈MD

[[tr(fσ, ϕ)]]
σ̂[d/x],σ,ρ↓
S

IH
=

∩
d∈MD

[[ϕ]]
σ̂[d/x],σ,ρ
S

= [[∀ x:D . ϕ]]σ̂,σ,ρS ■ (5.100)

[[tr(fσ,∃ x:D . ϕ)]]σ̂,σ,ρ↓S = [[∃ x:D . tr(fσ, ϕ)]]
σ̂,σ,ρ↓
S

=
∪

d∈MD

[[tr(fσ, ϕ)]]
σ̂[d/x],σ,ρ↓
S

IH
=

∪
d∈MD

[[ϕ]]
σ̂[d/x],σ,ρ
S

= [[∃ x:D . ϕ]]σ̂,σ,ρS ■ (5.101)

An approachable language for formal requirements 59

CHAPTER 5. EXPLORATION

[[tr(fσ, [af] ϕ)]]
σ̂,σ,ρ↓
S =

[[∧
(κ, af ′,f ′)∈MonM (∀ κ . [fσ(af ∧ af ′)] tr(fσ ◦f ′, ϕ))

]]σ̂,σ,ρ↓
S

=
∩

(κ, af ′,f ′)∈MonM

[[∀ κ . [fσ(af ∧ af ′)] tr(fσ ◦f ′, ϕ)]]σ̂,σ,ρ↓S

=
∩

(κ, af ′,f ′)∈MonM, d∈MDκ

[[[fσ(af ∧ af ′)] tr(fσ ◦f ′, ϕ)]]σ̂[d/xκ],σ,ρ↓S

=
∩

(κ, af ′,f ′)∈MonM, d∈MDκ

{
s

∣∣∣∣ ∀((s′, σ′) ∈ S × Σ,

α ∈ [[fσ(af ∧ af ′)]]σ̂[d/xκ],σ
)
.

(
(s, σ)

α−→ (s′, σ′)⇒
s′ ∈ [[tr(fσ ◦f ′, ϕ)]]σ̂[d/xκ],σ

′,ρ↓

)}
2
=

∩
(κ, af ′,f ′)∈MonM, d∈MDκ

{
s

∣∣∣∣ ∀((s′, σ′) ∈ S × Σ,

α ∈ [[af ∧ af ′]]σ̂[d/xκ],σ
)
.

(
(s, σ)

α−→ (s′, σ′)⇒
s′ ∈ [[tr(fσ ◦f ′, ϕ)]]σ̂[d/xκ],σ

′,ρ↓

)}
3
=

∩
(κ, af ′,f ′)∈MonM, d∈MDκ

{
s

∣∣∣∣ ∀((s′, σ′) ∈ S × Σ,

α ∈ [[af ∧ af ′]]σ̂[d/xκ],σ
)
.

(
(s, σ)

α−→ (s′, σ′)⇒
s′ ∈ [[tr(fσ′ , ϕ)]]σ̂,σ

′,ρ↓

)}

=

{
s

∣∣∣∣ ∀((s′, σ′) ∈ S × Σ,

α ∈ [[af]]σ̂,σ

)
.

(
(s, σ)

α−→ (s′, σ′)⇒
s′ ∈ [[tr(fσ′ , ϕ)]]σ̂,σ

′,ρ↓

)}
IH
=

{
s

∣∣∣∣ ∀((s′, σ′) ∈ S × Σ,

α ∈ [[af]]σ̂,σ

)
.

(
(s, σ)

α−→ (s′, σ′)⇒
s′ ∈ [[ϕ]]σ̂,σ

′,ρ

)}
= [[[af] ϕ]]σ̂,σ,ρS ■ (5.102)

[[tr(fσ, ⟨af⟩ϕ)]]σ̂,σ,ρ↓S =
[[∨

(κ, af ′,f ′)∈MonM (∃ κ . ⟨fσ(af ∧ af ′)⟩ tr(fσ ◦f ′, ϕ))
]]σ̂,σ,ρ↓

S

=
∪

(κ, af ′,f ′)∈MonM

[[∃ κ . ⟨fσ(af ∧ af ′)⟩ tr(fσ ◦f ′, ϕ)]]σ̂,σ,ρ↓S

=
∪

(κ, af ′,f ′)∈MonM, d∈MDκ

[[⟨fσ(af ∧ af ′)⟩ tr(fσ ◦f ′, ϕ)]]σ̂[d/xκ],σ,ρ↓S

=
∪

(κ, af ′,f ′)∈MonM, d∈MDκ

{
s

∣∣∣∣ ∃((s′, σ′) ∈ S × Σ,

α ∈ [[fσ(af ∧ af ′)]]σ̂[d/xκ],σ
)
.

(
(s, σ)

α−→ (s′, σ′) ∧
s′ ∈ [[tr(fσ ◦f ′, ϕ)]]σ̂[d/xκ],σ

′,ρ↓

)}
2
=

∪
(κ, af ′,f ′)∈MonM, d∈MDκ

{
s

∣∣∣∣ ∃((s′, σ′) ∈ S × Σ,

α ∈ [[af ∧ af ′]]σ̂[d/xκ],σ
)
.

(
(s, σ)

α−→ (s′, σ′) ∧
s′ ∈ [[tr(fσ ◦f ′, ϕ)]]σ̂[d/xκ],σ

′,ρ↓

)}
3
=

∪
(κ, af ′,f ′)∈MonM, d∈MDκ

{
s

∣∣∣∣ ∃((s′, σ′) ∈ S × Σ,

α ∈ [[af ∧ af ′]]σ̂[d/xκ],σ
)
.

(
(s, σ)

α−→ (s′, σ′) ∧
s′ ∈ [[tr(fσ′ , ϕ)]]σ̂,σ

′,ρ↓

)}

=

{
s

∣∣∣∣ ∃((s′, σ′) ∈ S × Σ,

α ∈ [[af]]σ̂,σ

)
.

(
(s, σ)

α−→ (s′, σ′) ∧
s′ ∈ [[tr(fσ′ , ϕ)]]σ̂,σ

′,ρ↓

)}
IH
=

{
s

∣∣∣∣ ∃((s′, σ′) ∈ S × Σ,

α ∈ [[af]]σ̂,σ

)
.

(
(s, σ)

α−→ (s′, σ′) ∧
s′ ∈ [[ϕ]]σ̂,σ

′,ρ

)}
= [[⟨af⟩ϕ]]σ̂,σ,ρS ■ (5.103)

60 An approachable language for formal requirements

CHAPTER 5. EXPLORATION

[[tr(fσ, X(t))]]σ̂,σ,ρ↓S = [[X(fσ(vm), fσ(t))]]
σ̂,σ,ρ↓
S

= ρ↓(X)(σ, [[fσ(vm)]]
σ̂,σ, [[fσ(t)]]

σ̂,σ)
2
= ρ↓(X)(σ, [[vm]]

σ̂,σ, [[t]]σ̂,σ)
ρ↓
= ρ(X)(σ, [[t]]σ̂,σ)

= [[X(t)]]σ̂,σ,ρS ■ (5.104)

An approachable language for formal requirements 61

CHAPTER 5. EXPLORATION

[[tr(f
σ ,ν

X
(x
:D
←

t)
.ϕ

)]] σ̂
,σ
,ρ↓

S
=

[[ν
X
(v
′m
:D

m
←

f
σ (v

m
),x

:D
←

f
σ (t))

.tr(h
,ϕ

)]] σ̂
,σ
,ρ↓

S

= ∪
p∈

(Σ
,M

D
)→

2
S

p↓(σ

,[[f
σ (v

m
)]] σ̂

,σ,[[f
σ (t)]] σ̂

,σ) ∣∣∣∣∣∣ ∀
σ
′∈

Σ
,

d
σ
′′∈
M

D
m

d
∈
M

D
. (
p↓(σ

′,d
σ
′′,d

)
=

[[tr(h
,ϕ

)]] σ̂
[d

σ
′′ /

v
′m
,d
/
x
],σ

′,ρ↓
[X
←

p↓
])

2= ∪
p∈

(Σ
,M

D
)→

2
S

p↓(σ

,[[v
m
]] σ̂

,σ,[[t]] σ̂
,σ) ∣∣∣∣∣∣ ∀

σ
′∈

Σ
,

d
σ
′′∈
M

D
m

d
∈
M

D
. (
p↓(σ

′,d
σ
′′,d

)
=

[[tr(h
,ϕ

)]] σ̂
[d

σ
′′ /

v
′m
,d
/
x
],σ

′,ρ↓
[X
←

p↓
])

h= ∪
p∈

(Σ
,M

D
)→

2
S

p↓(σ

,[[v
m
]] σ̂

,σ,[[t]] σ̂
,σ) ∣∣∣∣∣∣ ∀

σ
′∈

Σ
,

d
σ
′′∈
M

D
m

d
∈
M

D
. (
p↓(σ

′,d
σ
′′,d

)
=

[[tr(id
,ϕ

)]] σ̂
[d
/
x
],σ

′[d
σ
′′ /

v
m
],ρ↓

[X
←

p↓
])

d
σ
= ∪

p∈
(Σ

,M
D
)→

2
S

p↓(σ

,[[v
m
]] σ̂

,σ,[[t]] σ̂
,σ) ∣∣∣∣∣∣ ∀

σ
′∈

Σ
,

d
σ
′′∈
M

D
m

d
∈
M

D
. (
p↓(σ

′,d
σ
′′,d

)
=

[[tr(id
,ϕ

)]] σ̂
[d
/
x
],σ

′′,ρ↓
[X
←

p↓
])

2= ∪
p∈

(Σ
,M

D
)→

2
S

p↓(σ

,[[v
m
]] σ̂

,σ,[[t]] σ̂
,σ) ∣∣∣∣∣∣ ∀

σ
′∈

Σ
,

d
σ
′′∈
M

D
m

d
∈
M

D
. (
p↓(σ

′,d
σ
′′,d

)
=

[[tr(f
σ
′′,ϕ

)]] σ̂
[d
/
x
],σ

′′,ρ↓
[X
←

p↓
])

p↓= ∪
p∈

(Σ
,M

D
)→

2
S

{
p(σ

,[[t]] σ̂
,σ) ∣∣∣∣ ∀ (

σ
′′∈

Σ
,

d
∈
M

D)
. (
p(σ

′′,d
)
=

[[tr(f
σ
′′,ϕ

)]] σ̂
[d
/
x
],σ

′′,ρ↓
[X
←

p↓
]) }

IH= ∪
p∈

(Σ
,M

D
)→

2
S

{
p(σ

,[[t]] σ̂
,σ) ∣∣∣∣ ∀ (

σ
′′∈

Σ
,

d
∈
M

D)
. (
p(σ

′′,d
)
=

[[ϕ
]] σ̂

[d
/
x
],σ

′′,ρ
[X
←

p
]) }

=
[[ν
X
(x
:D
←

t)
.ϕ

]] σ̂
,σ
,ρ

S
■
(5.105)

62 An approachable language for formal requirements

CHAPTER 5. EXPLORATION

[[tr(f
σ ,µ

X
(x
:D
←

t)
.ϕ

)]] σ̂
,σ
,ρ↓

S
=

[[µ
X
(v
′m
:D

m
←

f
σ (v

m
),x

:D
←

f
σ (t))

.tr(h
,ϕ

)]] σ̂
,σ
,ρ↓

S

= ∩
p∈

(Σ
,M

D
)→

2
S

p↓(σ

,[[f
σ (v

m
)]] σ̂

,σ,[[f
σ (t)]] σ̂

,σ) ∣∣∣∣∣∣ ∀
σ
′∈

Σ
,

d
σ
′′∈
M

D
m

d
∈
M

D
. (
p↓(σ

′,d
σ
′′,d

)
=

[[tr(h
,ϕ

)]] σ̂
[d

σ
′′ /

v
′m
,d
/
x
],σ

′,ρ↓
[X
←

p↓
])

2= ∩
p∈

(Σ
,M

D
)→

2
S

p↓(σ

,[[v
m
]] σ̂

,σ,[[t]] σ̂
,σ) ∣∣∣∣∣∣ ∀

σ
′∈

Σ
,

d
σ
′′∈
M

D
m

d
∈
M

D
. (
p↓(σ

′,d
σ
′′,d

)
=

[[tr(h
,ϕ

)]] σ̂
[d

σ
′′ /

v
′m
,d
/
x
],σ

′,ρ↓
[X
←

p↓
])

h= ∩
p∈

(Σ
,M

D
)→

2
S

p↓(σ

,[[v
m
]] σ̂

,σ,[[t]] σ̂
,σ) ∣∣∣∣∣∣ ∀

σ
′∈

Σ
,

d
σ
′′∈
M

D
m

d
∈
M

D
. (
p↓(σ

′,d
σ
′′,d

)
=

[[tr(id
,ϕ

)]] σ̂
[d
/
x
],σ

′[d
σ
′′ /

v
m
],ρ↓

[X
←

p↓
])

d
σ
= ∩

p∈
(Σ

,M
D
)→

2
S

p↓(σ

,[[v
m
]] σ̂

,σ,[[t]] σ̂
,σ) ∣∣∣∣∣∣ ∀

σ
′∈

Σ
,

d
σ
′′∈
M

D
m

d
∈
M

D
. (
p↓(σ

′,d
σ
′′,d

)
=

[[tr(id
,ϕ

)]] σ̂
[d
/
x
],σ

′′,ρ↓
[X
←

p↓
])

2= ∩
p∈

(Σ
,M

D
)→

2
S

p↓(σ

,[[v
m
]] σ̂

,σ,[[t]] σ̂
,σ) ∣∣∣∣∣∣ ∀

σ
′∈

Σ
,

d
σ
′′∈
M

D
m

d
∈
M

D
. (
p↓(σ

′,d
σ
′′,d

)
=

[[tr(f
σ
′′,ϕ

)]] σ̂
[d
/
x
],σ

′′,ρ↓
[X
←

p↓
])

p↓= ∩
p∈

(Σ
,M

D
)→

2
S

{
p(σ

,[[t]] σ̂
,σ) ∣∣∣∣ ∀ (

σ
′′∈

Σ
,

d
∈
M

D)
. (
p(σ

′′,d
)
=

[[tr(f
σ
′′,ϕ

)]] σ̂
[d
/
x
],σ

′′,ρ↓
[X
←

p↓
]) }

IH= ∩
p∈

(Σ
,M

D
)→

2
S

{
p(σ

,[[t]] σ̂
,σ) ∣∣∣∣ ∀ (

σ
′′∈

Σ
,

d
∈
M

D)
. (
p(σ

′′,d
)
=

[[ϕ
]] σ̂

[d
/
x
],σ

′′,ρ
[X
←

p
]) }

=
[[µ
X
(x
:D
←

t)
.ϕ

]] σ̂
,σ
,ρ

S
■
(5.106)

An approachable language for formal requirements 63

CHAPTER 5. EXPLORATION

5.3.8 A short example

Assumewehave a simple train crossing systemwherewe can detect emergencies and trains passing.
We can model such a system as follows

1 act
2 detected_emergency,
3 train_passes_crossing;
4
5 proc
6 normal =
7 (train_passes_crossing . normal) +
8 (detected_emergency . emergency) ;
9 emergency =
10 delta ;
11
12 init
13 normal;

Wemight require of this system that a trainmay not pass the crossing when an emergency has been
detected previously

1 monitor crossing(Bool emergency = false):
2 on detected_emergency: crossing(emergency = true)
3
4 require:
5 after train_passes_crossing:
6 assert !crossing.emergency

Translating the requirement would give us

νX(init:Bool← true) . (
[true]X(false) ∧
[train] ¬crossing.emergency

) (5.107)

Translating the monitor would give us

σ∗ = crossing.emergency 7→ false (5.108)

MonM =

{
(�v:0, emergency, crossing.emergency 7→ true),
(�v:0, emergency, id)

}
(5.109)

With LTSesM, P and S as follows

64 An approachable language for formal requirements

CHAPTER 5. EXPLORATION

S : n,⊥

n,⊤

e,⊥

e,⊤

train

train

emergency

emergency

M : ⊥ ⊤train
emergency

⊤

P : n etrain
emergency

The resulting requirement would be (where we shorten crossing.emergency to c.e for readability)

tr(c.e 7→ false, νX(init:Bool← true) . (
[true]X(false) ∧
[train] ¬c.e)) (5.110)

= νX(c.e′:Bool← (c.e 7→ false)(c.e), init:Bool← true) . tr(h, (
[true]X(false) ∧
[train] ¬c.e)) (5.111)

= νX(c.e′:Bool← false, init:Bool← true) . tr(h, (
[true]X(false) ∧
[train] ¬c.e)) (5.112)

= νX(c.e′:Bool← false, init:Bool← true) . (
tr(h, [true]X(false)) ∧
tr(h, [train] ¬c.e)) (5.113)

= νX(c.e′:Bool← false, init:Bool← true) . (
[(c.e 7→ true)(emergency ∧ true)] tr(h ◦ (c.e 7→ true), X(false)) ∧
[id(emergency ∧ true)] tr(h ◦ id,X(false)) ∧
[(c.e 7→ true)(emergency ∧ train)] tr(h ◦ (c.e 7→ true),¬c.e)
[id(emergency ∧train)] tr(h ◦ id,¬c.e)) (5.114)

= νX(c.e′:Bool← false, init:Bool← true) . (
[emergency ∧ true] tr(h ◦ (c.e 7→ true), X(false)) ∧
[emergency ∧ true] tr(h,X(false)) ∧
[emergency ∧ train] tr(h ◦ (c.e 7→ true),¬c.e)
[emergency ∧train] tr(h,¬c.e)) (5.115)

An approachable language for formal requirements 65

CHAPTER 5. EXPLORATION

= νX(c.e′:Bool← false, init:Bool← true) . (
[emergency] tr(h ◦ (c.e 7→ true), X(false)) ∧
[emergency] tr(h,X(false)) ∧
[train] tr(h,¬c.e)) (5.116)

= νX(c.e′:Bool← false, init:Bool← true) . (
[emergency]X((h ◦ (c.e 7→ true))(c.e), (h ◦ (c.e 7→ true))(false)) ∧
[emergency]X(h(c.e), h(false)) ∧
[train] ¬tr(h, c.e)) (5.117)

= νX(c.e′:Bool← false, init:Bool← true) . (
[emergency]X(h((c.e 7→ true)(c.e)), h((c.e 7→ true)(false))) ∧
[emergency]X(c.e′, false) ∧
[train] ¬h(c.e)) (5.118)

= νX(c.e′:Bool← false, init:Bool← true) . (
[emergency]X(h(true), h(false)) ∧
[emergency]X(c.e′, false) ∧
[train] ¬c.e′) (5.119)

= νX(c.e′:Bool← false, init:Bool← true) . (
[emergency]X(true, false) ∧
[emergency]X(c.e′, false) ∧
[train] ¬c.e′) (5.120)

we can check whether [[ϕ]]σ̂,σ
∗,ρ

S = [[tr(fσ∗ , ϕ)]]σ̂,ρ↓P holds for this example. That is,

νX(init:Bool← true) . (
[true]X(false) ∧
[train] ¬c.e)

σ̂,σ∗,ρ

S

?
=

νX(c.e′:Bool← false, init:Bool← true) . (
[emergency]X(true, false) ∧
[emergency]X(c.e′, false) ∧
[train] ¬c.e′)

σ̂,ρ↓

P

(5.121)

= {n, e} (5.122)

And indeed, when we solve for the fixed point using {n, e}, also the maximal set of P, we see

{n, e} = [[[true]X(false) ∧ [train] ¬c.e]]σ̂[true/init],c.e7→false,ρ[X←{n,e}]
S (5.123)

= {n, e} ∩ [[[train] ¬c.e]]σ̂,c.e7→false,ρ
S (5.124)

= {n, e} ∩ {n, e} (5.125)
= {n, e} ■ (5.126)

66 An approachable language for formal requirements

Chapter 6

Evaluation

6.1 Methodology

In this user experience evaluation, we observed four participants using our language and provided
them with a short questionnaire before and afterwards. The participants were selected to have at
least a Masters degree in Computer Science or Software Science. Two of the participants are engin-
eers at ASML, the other two participants are PhD students at the Eindhoven University of Techno-
logy. At the start of each evaluation, we asked participants to rate their prior familiarity to a couple
expertises on a four-point Likert scale. Figure 6.1 shows the obtained distribution of familiarities of
the participants.

writing software
debugging software

documenting software
analysing software traces
reverse engineering code

working in large teams
reading other peoples’ code

writing requirements
modeling software

mathematics
formal proofs

formal modeling
formal verification

mCRL2
mu-calculus

0 (none) 1 (little) 2 (average) 3 (much)

Figure 6.1: Participant expertise familiarity distribution

After the initial questionnaire, we provided the participants with a short (12 minute) presentation in

An approachable language for formal requirements 67

CHAPTER 6. EVALUATION

which the features of the language were highlighted and explained briefly. Next, they were presen-
ted with a laptop with all the necessary tools preinstalled and configured. This configuration in-
cluded Atom (a code editor), a µ++ parser and syntax highlighter, various quality-of-life tool support
specifically for µ++, and 10 written natural language requirements.

Every requirement presented a property that the system must adhere to, a short reasoning for the
requirements’ existence, and suggestions of relevant action names.

During the observation, we monitored the participants use of the syntax. While we purposefully did
not comment on the correctness of their use of syntax, we did answer any questions related to the
meaning, use, or existence of certain features. This decision is motivated by the necessarily short
introduction to our language: we cannot expect the participants to be immediately familiar with
our language, we do not have the time for them to get familiar with our language, and this sort of
information would usually be provided by a good documentation/manual.

Finally, we asked the participants to rate their experience with the language using the User Exper-
ience Questionnaire [19] and give a few comments as to their impression of the language. In this
questionnaire, user experience is rated via 26 items on a seven-stage scale, each represented by two
terms with opposite meanings. These items are weighted and combined to rate the user experience
on six scales:

Attractiveness Overall impression of the language. Do users like or dislike it?

Perspicuity Is it easy to get familiar with the language and to learn how to use it?

Efficiency Can users solve their tasks without unnecessary effort?

Dependability Does the user feel in control of the interaction? Is it predictable?

Stimulation Is it exciting and motivating to use the language? Is it fun to use?

Novelty Is the design of the language creative? Does it catch the interest of users?

To evaluate the overall user experience, we use the benchmark from [20], comparing our tool on
the six scales mentioned above against a dataset of 18483 participants across 401 studies concern-
ing different products (business software, web pages, web shops, social networks). While these
products are not directly comparable, the overall performance across these scales should give an
indication of whether the language’s user experience is comparable to common user experience
ratings. This metric gives us a better picture on the quality of our tool and offers a first indicator for
what is perceived as good and what types of improvements can be made.

68 An approachable language for formal requirements

CHAPTER 6. EVALUATION

6.2 Evaluation, observations and feedback

Figure 6.2 shows the User Experience Questionnaire results for the language user study. The com-
parison of the results for the tool with the data in the benchmark allows us to derive conclusions
about the relative quality of the language compared to other tools [20].

Figure 6.2 shows along each of the axes the following data: the benchmark results are divided into
five groups and encoded in the coloredbackgroundof each axis aswell as the Tukey box-and-whisker
plot, and the evaluations given by the participants is displayed as a mean with 95% confidence in-
terval. The evaluations are split into two groups, with a third group displaying the true mean. This
is done because there is a big distinction between the answers given by those experienced with the
modal mu-calculus, and those unexperienced with the modal mu-calculus.

Overall, we got very positive feedback from our participants. The UEQ results mostly reflect this. A
clear outlier is the participant who professed a weak familiarity with modal mu-calculus, who men-
tioned that the low grades are most likely due to a severe lack of experience and the very high pace
with which the presentation was done.

The rate of writing requirementswas proportional to the professed level of familiarity with themodal
µ-calculus. The participant with no modal µ-calculus experience was able to write three require-
ments in the allotted 1 hour and 40 minutes. The other three participants were able to write at least
10 requirements (one wrote some requirements in multiple ways).

Each of the following listings contains, as comments, the description that was given for that require-
ment to the participant, and additionally includes the unique (type of) solutions per requirement.

Note, the feedback of this evaluation has already been considered in writing this document. The
after keyword used to be named on during testing, but this was deemed to be confusing due to
the slight difference in behavior of the on keyword in a monitor. Finally, monitors and requirements
used to specify exactly which monitors they would use internally with a using keyword, but this
would amount to needless bookkeeping by the user as this information could trivially be found using
a parse tree as well.

1 −− Alternating actions
2 :: A railroad crossing gate is set up with a very simple design;
3 :: It functions through telling the driving motor to rotate clockwise or
4 :: counterclockwise by 90 degrees. It is therefore imperative that the
5 :: openings and closings of said gate are strictly alternating.
6 :: Assume the gate starts in the closed position.
7
8 % actions:
9 ~~ opening_gate
10 ~~ closing_gate
11
12 % unique solution 1
13 monitor gate_position((struct closed | open) position = closed):
14 on opening_gate: gate_position(position = open)

An approachable language for formal requirements 69

CHAPTER 6. EVALUATION

At
tr
ac
tiv
en

es
s

Pe
rs
pi
cu
ity

Effi
ci
en

cy

D
ep

en
da

bi
lit
y

St
im

ul
at
io
n

N
ov
el
ty

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er
ag

e
ra
tin

g

(90-100) Excellent
(75-90) Good
(50-75) Above Average
(25-50) Below Average
(0-25) Bad

Only mcf-experienced
True mean
Only mcf-inexperienced

Figure 6.2: Experience benchmark
70 An approachable language for formal requirements

CHAPTER 6. EVALUATION

15 on closing_gate: gate_position(position = closed)
16
17 require using gate_position:
18 if gate_position.position == open:
19 on opening_gate:
20 assert false
21 if gate_position.position == closed:
22 on closing_gate:
23 assert false
24
25 % unique solution 2
26 require:
27 on opening_gate:
28 assert response∗(closing_gate before opening_gate)
29
30 on closing_gate:
31 assert response∗(opening_gate before closing_gate)

1 −− Advance warning
2 :: It is important that a railroad crossing’s gate only starts closing after
3 :: advance warning has been given to motorists and other traffic that want
4 :: to pass the crossing.
5
6 % actions:
7 ~~ request_close_gate
8 ~~ enable_warning_lights
9 ~~ train_reserves_crossing
10
11 % unique solution 1
12 require:
13 on train_reserves_crossing:
14 assert response(inevitably request_close_gate)
15 assert response(enable_warning_lights before request_close_gate)
16
17 % unique solution 2
18 require:
19 on train_reserves_crossing:
20 assert sequentially [
21 enable_warning_lights,
22 request_close_gate
23]

The unique solutions presented above are not equivalent. However, because the requirement tech-
nically does not require that either action must happen (only that they must happen in order), both
specifications are at least as strong as the requirement.

1 −− Immediate response to warning lights
2 :: Enabling the warning lights must be immediately followed by a
3 :: request to close the gate, such that the inconvenienced motorists

An approachable language for formal requirements 71

CHAPTER 6. EVALUATION

4 :: are not conditioned to attempt a quick dash across the intersection
5 :: when the warning lights turn on.
6
7 % actions:
8 ~~ request_close_gate
9 ~~ enable_warning_lights
10
11 % unique solution 1
12 require:
13 on enable_warning_lights:
14 assert response(request_close_gate before !request_close_gate)

1 −− Ensure safe conditions on gate closing
2 :: When the railroad crossing gate fails to close, for example when it is
3 :: obstructed by a motorist illegally trying to evade the queue, the system
4 :: must first ensure that the crossing is free of obstructions and the gate
5 :: is back in the safe (fully open) position before reattempting closing the
6 :: gate.
7
8 % actions:
9 ~~ request_close_gate
10 ~~ closing_gate_failed
11 ~~ crossing_is_empty
12 ~~ gate_is_fully_open
13
14 % unique solution 1
15 require:
16 on closing_gate_failed:
17 assert response(crossing_is_empty before request_close_gate)
18 assert response(gate_is_fully_open before request_close_gate)
19 assert response(inevitably request_close_gate)

1 −− Open request before action
2 :: It is important that the railroad crossing gates only open when a request
3 :: for them to do so has been issued. (The other way around is inconvenient
4 :: but not unsafe)
5
6 % actions:
7 ~~ request_open_gate
8 ~~ opening_gate
9
10 % unique solution 1
11 monitor x(Bool y <− false):
12 on request_open_gate:
13 x(y=true)
14
15 on opening_gate:
16 x(y=false)
17

72 An approachable language for formal requirements

CHAPTER 6. EVALUATION

18 require using x:
19 if !x.y:
20 on opening_gate:
21 assert false
22
23 % unique solution 2
24 monitor request_state(Bool requested = false, Bool prev_requested = false):
25 on request_open_gate: request_state(requested = true, prev_requested = false)
26 on opening_gate: request_state(requested = false, prev_requested = requested)
27 otherwise: request_state(prev_requested = false)
28
29 require using request_state:
30 on opening_gate:
31 assert request_state.prev_requested == true
32
33 % unique solution 3
34 require:
35 initially:
36 assert response∗(request_open_gate before opening_gate)
37
38 on opening_gate:
39 assert response∗(request_open_gate before opening_gate)

1 −− Passage of trains is safe
2 :: A train may only pass the intersection before the gates are opened or the
3 :: warning lights are disabled.
4 :: Assume that the gates are closed appropriately/safely.
5
6 % actions:
7 ~~ request_open_gate
8 ~~ gate_is_fully_closed
9 ~~ train_passes_crossing
10 ~~ disable_warning_lights
11
12 % unique solution 1
13 require:
14 on disable_warning_lights:
15 assert response∗(gate_is_fully_closed before train_passes_crossing)
16 on request_open_gate:
17 assert response∗(gate_is_fully_closed before train_passes_crossing)
18
19 % unique solution 2
20 require:
21 initially:
22 assert response∗(train_passes_crossing before request_open_gate)
23 assert response∗(train_passes_crossing before disable_warning_lights)
24 on gate_is_fully_closed:
25 assert response∗(train_passes_crossing before request_open_gate)
26 assert response∗(train_passes_crossing before disable_warning_lights)

An approachable language for formal requirements 73

CHAPTER 6. EVALUATION

1 −− Trains only pass closed gates
2 :: Trains may only pass the intersection when the gates are closed.
3 :: Assume the gate starts in the open position.
4
5 % actions:
6 ~~ opening_gate
7 ~~ closing_gate
8 ~~ request_open_gate
9 ~~ request_close_gate
10 ~~ gate_is_fully_open
11 ~~ gate_is_fully_closed
12 ~~ train_passes_crossing
13
14 % unique solution 1
15 require:
16 on opening_gate:
17 assert response∗(gate_is_fully_closed before train_passes_crossing)
18 initially:
19 assert response∗(gate_is_fully_closed before train_passes_crossing)
20
21 % unique solution 2
22 monitor x(Int y <− 1):
23 on gate_is_fully_closed:
24 x(y=2)
25
26 on opening_gate:
27 x(y=1)
28
29 require using x:
30 on train_passes_crossing:
31 assert x.y==2

1 −− Minimal inconvenience
2 :: The railroad crossing gates and warning lights should only attempt to
3 :: close and disable respectively after a train requests safe passage
4 :: through the crossing.
5
6 % actions:
7 ~~ request_close_gate
8 ~~ train_passes_crossing
9 ~~ disable_warning_lights
10 ~~ train_reserves_crossing
11
12 % unique solution 1
13 require:
14 on request_close_gate:
15 assert response∗(train_reserves_crossing before request_close_gate)
16 on enable_warning_lights:
17 assert response∗(train_reserves_crossing before enable_warning_lights)

74 An approachable language for formal requirements

CHAPTER 6. EVALUATION

18 initially:
19 assert response∗(train_reserves_crossing before request_close_gate)
20 assert response∗(train_reserves_crossing before enable_warning_lights)
21 on train_reserves_crossing:
22 assert response(inevitably request_close_gate)
23 assert response(inevitably enable_warning_lights)
24
25 % unique solution 2
26 require:
27 initially:
28 assert response∗(
29 train_reserves_crossing
30 before request_close_gate || disable_warning_lights
31)
32
33 on train_passes_crossing:
34 assert response∗(
35 train_reserves_crossing
36 before request_close_gate || disable_warning_lights
37)

1 −− Eventually satisfies request
2 :: Whenever a request to close the railroad crossing gates is made, it is
3 :: eventually responded to by actually closing the gates.
4
5 % actions:
6 ~~ request_close_gate
7 ~~ closing_gate
8
9 % unique solution 1
10 require:
11 on request_close_gate:
12 assert response(inevitably closing_gate)

1 −− Emergency halt
2 :: An emergency can be called, in which case it is imperative that no more
3 :: train crosses the intersection. The system should be completely reset by
4 :: an on−location engineer (that is, the model may deadlock in pursuit of
5 :: safety).
6
7 % actions:
8 ~~ detected_emergency
9 ~~ train_passes_crossing
10
11 % unique solution 1
12 monitor emergency(Bool b = false):
13 on detected_emergency: emergency(b = true)
14
15 require using emergency:

An approachable language for formal requirements 75

CHAPTER 6. EVALUATION

16 on train_passes_crossing:
17 assert !emergency.b

76 An approachable language for formal requirements

Chapter 7

Discussion

7.1 Implications and limitations

From the user experience evaluation, we see that for the participants with any familiarity with the
modalµ-calculus, theµ++ language is quite a pleasant experience. Theparticipantwith no familiarity
with the modal µ-calculus was less impressed, but admitted that this was mainly due to not being
familiar with the type of reasoning that underpins the language aswell as the very short introductory
period. However, he was rather intrigued and thought that with a little more time he could learn the
language quite well.

This seems to be the most positive result we could have hoped for. The language seems to give
engineers who are familiar with similar methods a good overlap with the mental models they have
built up. It does not scare away those who are new to the concept of formalizing requirements with
its complexity.

Additionally, the speed with which the participants could write the requirements became noticeably
faster as time progressed and they became more familiar with the syntax. However, it was already
fast for those with modal µ-calculus familiarity to begin with. The earliest that any participant had
written their first requirement was approximately 9 minutes after the introduction to the language
was finished.

Most notably, each of the participants who is familiar with the modal µ-calculus has noted that it is
a lot easier to work with this language than it is with the modal µ-calculus. This includes comments
that µ++ is easier to read, more straightforward to find the relevant operators, and simpler to keep
track of what is going on. This is quite impressive, considering that for all except the last requirement
a unique solution was created that did not use a monitor. Recall that if we do not use a monitor,
µ++ can be translated to modal µ-calculus quite straightforwardly.

An approachable language for formal requirements 77

CHAPTER 7. DISCUSSION

7.2 Threats to validity

The pre-study in section 4 aimed to provide a solid overview of the kinds of requirements that are
being written in the field, but the only sources are from students that are relatively new to writing
requirements, and completely new to automated verification of systems. As such, we can make no
claims that the requirements in the source material are at all reflective of those being written by
verification experts, or even engineers with any verification experience. Additionally, the students
are intrinsically rewarded by providing simpler and easier-to-check requirements, as the assignment
provides plenty of opportunity for gaming the difficulty.

Where possible, the professor responsible for the course has guided the students through making
concise and clear requirements, but from the amount of feedback given on (a small subset of) the
source material it is difficult to imagine that these works represent that of the industry as a whole; it
seems to indicate that the two groups make distinctly different kinds of mistakes, and use different
language and concepts when attempting to describe the same system. As such, we have no basis
upon which to account for mistakes due solely or in part to the language with which the to-be-
translated requirements are written.

We claim that the resulting language, µ++, is easier to use than the modal µ-calculus, but this is only
based on the remarks of people involved in the project, those who have attended presentations, and
the four participants in the user experience evaluation who actually got to work with the language.
As such, the sample size is fairly small. Additionally, most of these endorsements come from people
who have an hour or two of experience with the language at best. While this is a promising result,
none of these people will have had the time to encounter any issues or complexity in the language,
nor will they know about the peculiarities and what it is like to really work with this language. As
such, the potential is great and further research is very interesting.

78 An approachable language for formal requirements

Chapter 8

Conclusions

8.1 Master thesis objectives

To determine whether there is a need for a more approachable language to facilitate specifying and
verifying formal requirements, we found alternatives in the modal µ-calculus, PSP, and Remenska.
PSP and Remenska were not perfectly suited because they could not be applied broadly enough:
many requirements could not be translated. To evaluate the usefulness of the modal µ-calculus, we
used students’ assignments inwhich they have to translate their ownnatural language requirements
to themodalµ-calculus, and found that the studentsmistranslate around 42% of their requirements.

The majority of mistakes that were made are due to issues that the course material teaches how
to overcome. Specifically, how to handle the case of inevitability and how this is different from, say,
always possible. The cause is likely more complicated than just a poor understanding of the material.
Indeed, evenwithin the same report studentsmay alternatinglymake andnotmake similarmistakes
for similar translations. This would suggest that, even though students may know how to address
such issues when consciously aware of them, they lack a level of familiarity necessary to see these
issues occurring naturally. That is; students do notmake themistake because they do not know how
to do it better, but rather because they cannot spot the mistake in the first place. As such, we would
expect that if we can somehow make the formulae more explicit and verbose in their notation—
drawing attention to precisely such properties as eventuality, or the absence thereof, that we might
see that students (and users of the µ-calculus formulae in general) are more easily aware of their
own mistakes.

Therefore, these results seem to illustrate the need for a ‘better’ language; µ-calculus formulae are
not friendly enough for practical use, and a more accessible language—one that easier to read and
interpret—is necessary in order to make formal system verification via mCRL2 more approachable.

To guide the user of our new language µ++, we have attempted to create a syntax that is more
verbose, which illustrates the intent of the requirement more transparently. This should help guide
the user into writing better requirements as well. Furthermore, we have constrained the syntax of

An approachable language for formal requirements 79

CHAPTER 8. CONCLUSIONS

the modal µ-calculus so that it is a lot harder to write meaningless (that is, trivially true or false)
syntax.

To prove that µ++ is indeedmore accessible, we invited four participants with varying levels of famili-
arity with the modal µ-calculus to evaluate the experience of working with µ++. In two hours, each
of the participants was able to learn the language and write at least three requirements. With active
help to figure out the exact meaning of the syntax (which would usually come from a documenta-
tion), the written requirements were correctly translated. The participants with any familiarity with
the µ-calculus admitted that µ++ is easier to work with.

80 An approachable language for formal requirements

CHAPTER 8. CONCLUSIONS

8.2 Future Directions

A couple of things are still missing before µ++ can be used as a property specification language.
First of all, the documentation that is provided in this document is not geared towards the target
audience of the language itself. A more tailored user manual is needed for people who do not care
about the implementation of the language but do want to work with it. We are of the opinion that
µ++ is sufficiently user friendly such that users can indeed use the language without knowing the
exact semantics.

Secondly, a more extensive user experience evaluation must be done. We could use the additional
data points to consider where we can improve the syntax or add syntactic sugar. Additionally, we
could more definitively determine whether µ++ is a good candidate to replace (or rather; interface
with) the modal µ-calculus.

Thirdly, while we created a lexer and parser as part of the syntax highlighter used during the user
experience evaluations, and the translation algorithm is described in this document, there does not
currently exist a tool which actually performs the translation from µ++ to the modal µ-calculus.

Finally, it might be worth seeing whether µ++ can interface with modeling tools that translate their
internalmodels tomCRL2. Most noticeably, these tools will likely use some sort of renaming scheme
to translate their behavior into mCRL2 actions. µ++ might be able to borrow these schemes such
that we can also use µ++ to write requirements for these higher level languages, rather than only
mCRL2.

An approachable language for formal requirements 81

Bibliography

[1] Anders Sandberg and Nick Bostrom. Whole Brain Emulation: A Roadmap. Technical report,
Future of Humanity Institute, Oxford University, 2008. Appendix B.

[2] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt Keutzer, John Kubiatowicz,
Nelson Morgan, David Patterson, Koushik Sen, John Wawrzynek, David Wessel, and Katherine
Yelick. A View of the Parallel Computing Landscape. Commun. ACM, 52(10):56–67, October 2009.

[3] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software Unit Test Coverage and Adequacy.
ACM Comput. Surv., 29(4):366–427, December 1997.

[4] William R. Elmendorf. Evaluation of the Functional Testing of Control Programs. Technical
report, IBM Corporation Systems Development Division, 1967.

[5] E. M. Maximilien and L. Williams. Assessing test-driven development at IBM. In 25th Interna-
tional Conference on Software Engineering, 2003. Proceedings., pages 564–569, May 2003.

[6] Edmund M. Clarke and Jeannette M. Wing. Formal Methods: State of the Art and Future Direc-
tions. ACM Comput. Surv., 28(4):626–643, December 1996.

[7] A. Hall. Seven myths of formal methods. IEEE Software, 7(5):11–19, Sep. 1990.

[8] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in Property Specifica-
tions for Finite-state Verification. In Proceedings of the 21st International Conference on Software
Engineering, ICSE ’99, pages 411–420, New York, NY, USA, 1999. ACM.

[9] Daniela Remenska, Tim A. C. Willemse, Jeff Templon, Kees Verstoep, and Henri Bal. Property
Specification Made Easy: Harnessing the Power of Model Checking in UML Designs. In Erika
Ábrahám and Catuscia Palamidessi, editors, Formal Techniques for Distributed Objects, Compon-
ents, and Systems, pages 17–32, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[10] Daniela Remenska. Bringing Model Checking Closer To Practical Software Engineering. Mas-
ter’s thesis, Vrije Universiteit Amsterdam, 2016.

[11] Yi Ling Hwong, Jeroen J.A. Keiren, Vincent J.J. Kusters, Sander Leemans, and Tim A.C. Willemse.
Formalising and analysing the control software of the Compact Muon Solenoid Experiment at
the Large Hadron Collider. Science of Computer Programming, 78(12):2435 – 2452, 2013. Special

An approachable language for formal requirements 83

BIBLIOGRAPHY

Section on International Software Product Line Conference 2010 and Fundamentals of Software
Engineering (selected papers of FSEN 2011).

[12] T. C. Willemse, W. Fokkink, J. Templon, K. Verstoep, H. Bal, and D. Remenska. Using Model
Checking to Analyze the System Behavior of the LHC Production Grid. In Cluster Computing
and the Grid, IEEE International Symposium on, pages 335–343, Los Alamitos, CA, USA, may 2012.
IEEE Computer Society.

[13] N.J.M. Nieuwelaar, van den. Supervisory machine control by predictive-reactive scheduling. PhD
thesis, Department of Mechanical Engineering, 2004.

[14] R.J.W. Jonk. The semantics of ALIAS defined in mCRL2. PhD thesis, Department of Mathematics
and Computer Science, 2016.

[15] L. L. F. Merkx, P. J. L. Cuijpers, and H. M. Duringhof. Algebraic Software Analysis and Embedded
Simulation of a Driving Robot. In Proceedings of the 2007 Summer Computer Simulation Con-
ference, SCSC ’07, pages 473–480, San Diego, CA, USA, 2007. Society for Computer Simulation
International.

[16] RaduMateescu. Property PatternMappings for Regular Alternation-Freeµ-Calculus. URLhttp:
//www.inrialpes.fr/vasy/cadp/resources/evaluator/rafmc.html, 2019. [Online;
accessed 17-January-2019].

[17] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. The Patterns. URL http:
//patterns.projects.cs.ksu.edu/documentation/patterns.shtml, 1970. [Online;
accessed 23-January-2019].

[18] Daniela Remenska. PASS/PatternMuCalculusFormat.java at master · remenska/PASS · Git-
Hub. URL https://github.com/remenska/PASS/blob/master/src/info.remenska.
PASS/src/info/remenska/PASS/wizards/PatternMuCalculusFormat.java, 2013.
[Online; accessed 23-January-2019].

[19] Bettina Laugwitz, Theo Held, and Martin Schrepp. Construction and evaluation of a user exper-
ience questionnaire. volume 5298, pages 63–76, 11 2008.

[20] Martin Schrepp, Andreas Hinderks, and Jörg Thomaschewski. Construction of a Benchmark
for the User Experience Questionnaire (UEQ). International Journal of Interactive Multimedia and
Artificial Intelligence, 4:40–44, 06 2017.

84 An approachable language for formal requirements

http://www.inrialpes.fr/vasy/cadp/resources/evaluator/rafmc.html
http://www.inrialpes.fr/vasy/cadp/resources/evaluator/rafmc.html
http://patterns.projects.cs.ksu.edu/documentation/patterns.shtml
http://patterns.projects.cs.ksu.edu/documentation/patterns.shtml
https://github.com/remenska/PASS/blob/master/src/info.remenska.PASS/src/info/remenska/PASS/wizards/PatternMuCalculusFormat.java
https://github.com/remenska/PASS/blob/master/src/info.remenska.PASS/src/info/remenska/PASS/wizards/PatternMuCalculusFormat.java

Appendix A

Modal µ-calculus formulae

A.1 Syntax of modal µ-calculus formulae

The modal µ-calculus formulae that we describe in this document are a propositional modal logic
extended with fixed point operators. The official implementation as used in the mCRL2 framework
uses a notion of time as well, but we will forego that in this document for brevity. This logic is based
on actions α; these actions are either an unnamed action τ , a named action a, or a multiaction
α|α. Colloquially, multiactions are understood to be actions that happen simultaneously. Named
actions can have data assigned to them—such data will further distinguish these actions from those
similarly named, but with different data. Actions with data use notation a(t, . . . , t). These actions
thus have the following syntax;

α ::= τ | a(t, . . . , t) | α|α

Where t has the following syntax (with x a variable name and f a function name);

t ::= x | f | [] | {} | {:}[t, . . . , t] | {t, . . . , t} | {t : t, . . . , t : t} | {t:D | t} |
λx1:D1, . . . , xn:Dn . t | t(t, . . . , t) | ∀x:D . (t) | ∃x:D . (t) |
t whr x1 = t, . . . , xn = t end

We can also have expressions based on these data. These expressions should resolve to a boolean
value; passing badly typed expressions results in undefined behavior (themCRL2 toolkit will liberally
attempt to find a reasonable typing). The following is only a partial syntax;

b ::= t | true | false | ¬b | b ∧ b | b ∨ b | b→ b | b = b | b ̸= b | t < t | t ≤ t |
t ≥ t | t > t | t+ t | t− t | t× t | t÷ t | t div t | t mod t | −t | t ∈ t |
∀d:D . (b) | ∃d:D . (b) | . . .

Actions can be collected into sets, so-called action formulae, to simplify the notation of many µ-

An approachable language for formal requirements 85

APPENDIX A. MODAL µ-CALCULUS FORMULAE

formulae. More specifically, sets allow for quantification over data. Additionally, we canuse concepts
like true to denote the set of all actions. The syntax of such action formulae is;

af ::= b | true | false | α | af | af ∩ af | af ∪ af | ∀d:D . (af) | ∃d:D . (af)

We would also like to describe sequences of actions. For this, regular expressions are used;

R ::= ε | af | R .R | R +R | R⋆ | R+

And finally, the logic to provide the propositions to reason about;

ϕ ::= b | true | false | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ∀d:D . (ϕ) | ∃d:D . (ϕ) |
⟨R⟩ϕ | [R] ϕ | µX(d1 : D1 ← t1, . . .) . (ϕ) | νX(d1 : D1 ← t1, . . .) . (ϕ) |
X(t1, . . .)

86 An approachable language for formal requirements

APPENDIX A. MODAL µ-CALCULUS FORMULAE

A.2 Semantics of modal µ-calculus formulae

Definition 8 (Semantics of action formulae). Let D = (Σ, E) be a data specification with Σ =
(S, CS ,MS) a signature,A = {MD | D ∈ S} aD-structure, [[·]] aD-model, andA = (S,Act,−→
,⇝, s0, T) a timed transition system whereAct consists of all semantical multi-actions a.

Let af be an action expression. We define the interpretation of af , notation [[af]]σ where σ is a
valuation, as a set of semantical multi-actions, inductively by;

[[true]]σ = Act (A.1)
[[false]]σ = ∅ (A.2)

[[b]]σ =

{
Act if [[σ(b)]] = true
∅ if [[σ(b)]] = false (A.3)

[[α]]σ = [[σ(α)]] (A.4)[[
af
]]σ

= Act \ [[af]]σ (A.5)
[[af1 ∩ af2]]σ = [[af1]]

σ ∩ [[af2]]
σ (A.6)

[[af1 ∪ af2]]σ = [[af1]]
σ ∪ [[af2]]

σ (A.7)

[[∀d:D . (af)]]σ =
∩

d∈MD

[[af]]σ[d/x] (A.8)

[[∃d:D . (af)]]σ =
∪

d∈MD

[[af]]σ[d/x] (A.9)

Definition 9 (Semantics of modal formulae). Let D = (Σ, E) be a data specification with Σ =
(S, CS ,MS) a signature,A = {MD | D ∈ S} aD-structure, [[·]] aD-model, andA = (S,Act,−→
,⇝, s0, T) a timed transition system whereAct consists of all semantical multi-actions a.

Let ϕ be a modal formula. We inductively define the interpretation of ϕ, notation [[ϕ]]σ,ρ where σ is
a valuation and ρ is a logical variable valuation, as a set of states where ϕ is valid, by;

[[true]]σ,ρ = S (A.10)
[[false]]σ,ρ = ∅ (A.11)

[[b]]σ,ρ =

{
S if [[σ(b)]] = true
∅ if [[σ(b)]] = false (A.12)

[[¬ϕ]]σ,ρ = S \ [[ϕ]]σ,ρ (A.13)
[[ϕ1 ∧ ϕ2]]

σ,ρ = [[ϕ1]]
σ,ρ ∩ [[ϕ2]]

σ,ρ (A.14)
[[ϕ1 ∨ ϕ2]]

σ,ρ = [[ϕ1]]
σ,ρ ∪ [[ϕ2]]

σ,ρ (A.15)
[[⟨af⟩ϕ]]σ,ρ = { s ∈ S | ∃ s′ ∈ S, α ∈ [[af]]σ :

s
α−→ s′ ∧ s′ ∈ [[ϕ]]σ,ρ } (A.16)

[[[af] ϕ]]σ,ρ = { s ∈ S | ∀ s′ ∈ S, α ∈ [[af]]σ :

s
α−→ s′ ⇒ s′ ∈ [[ϕ]]σ,ρ } (A.17)

An approachable language for formal requirements 87

APPENDIX A. MODAL µ-CALCULUS FORMULAE

[[∀x:D . (ϕ)]]σ,ρ =
∩

d∈MD
[[ϕ]]σ[d/x],ρ (A.18)

[[∃x:D . (ϕ)]]σ,ρ =
∪

d∈MD
[[ϕ]]σ[d/x],ρ (A.19)

[[µX(x:D ← t) . (ϕ)]]σ,ρ =
∩

f∈MD→2S{ f([[t]]σ) | ∀ d ∈MD :

f(d) = [[ϕ]]σ[d/x],ρ[X←f]}) (A.20)

[[νX(x:D ← t) . (ϕ)]]σ,ρ =
∪

f∈MD→2S{ f([[t]]σ) | ∀ d ∈MD :

f(d) = [[ϕ]]σ[d/x],ρ[X←f]}) (A.21)

[[X(t)]]σ,ρ = ρ(X)([[t]]σ) (A.22)

We say that ϕ holds in A iff s0 ∈ [[ϕ]]σ,ρ for any σ, ρ, and [[·]].

Definition 10 (Equivalence ofmodal formulae). LetPS = (D, AD, PE, p,X) be a process specific-
ation and let ϕ be a modal formula. We say that ϕ is valid in PS iff for anyD-structureA,D-model
[[·]], and timed transition systemA (that is; the semantics of PS givenA and σ), ϕ holds inA.

We say that two modal formulae ϕ and ψ are equivalent iff for all process specifications, ϕ is valid
iff ψ is valid.

88 An approachable language for formal requirements

APPENDIX A. MODAL µ-CALCULUS FORMULAE

A.3 Relation between symbols

In section A.2, where the semantics of modal µ-formulae is described, we do not describe much
of the syntax we have listed in section A.1. That is because there is plenty of overlap in the defini-
tions of the syntax, even when we do not consider dualities. Most notably, we do not need regular
expressions at all (and do not semantically define them). In the syntax, we are allowed to place reg-
ular expressions in the box and diamond modalities. We can rewrite all possible regular expression
structures as follows;

[ε] ϕ ⊢ [false⋆] ϕ ⟨ε⟩ϕ ⊢ ⟨false⋆⟩ϕ
[R1

. R2] ϕ ⊢ [R1] [R2] ϕ ⟨R1
. R2⟩ϕ ⊢ ⟨R1⟩⟨R2⟩ϕ

[R1 +R2] ϕ ⊢ [R1] ϕ ∧ [R2] ϕ ⟨R1 +R2⟩ϕ ⊢ ⟨R1⟩ϕ ∨ ⟨R2⟩ϕ
[R⋆] ϕ ⊢ νX . (ϕ ∧ [R]X) ⟨R⋆⟩ϕ ⊢ µX . (ϕ ∨ ⟨R⟩X)

[R+] ϕ ⊢ [R .R⋆] ϕ
⟨
R+

⟩
ϕ ⊢ ⟨R .R⋆⟩ϕ

Finally, we miss the conditional structure ϕ1 → ϕ2, but we know by material implication that we
may rewrite such structures to¬ϕ1∨ϕ2. Therefore, we can mechanically rewrite every syntactically
valid statement (given that Boolean expressions are indeed Boolean) to a semantically interpretable
statement.

An approachable language for formal requirements 89

	Abstract
	Executive Summary
	Preface
	Table of Contents
	Introduction
	Research Objectives
	Main Contributions
	Thesis outline

	Context
	Background
	mCRL2
	modal mu-calculus formulae
	Property Specification Patterns (PSP)
	Remenska

	Issues
	Common English requirement structures
	Common mistakes
	Alternatives

	Exploration
	Motivation
	Keeping track of state
	Composable monitors
	Specifying a requirement

	Syntax of mu++
	Semantics of mu++
	Formalizing requirements
	Normalizing monitors
	Formalizing monitors
	Synchronizing monitors to a process LTS
	Adapting the modal mu-calculus
	Translating to mCRL2
	Proof of equivalence
	A short example

	Evaluation
	Methodology
	Evaluation, observations and feedback

	Discussion
	Implications and limitations
	Threats to validity

	Conclusions
	Master thesis objectives
	Future Directions

	Bibliography
	Appendix
	Modal mu-calculus formulae
	Syntax of modal mu-calculus formulae
	Semantics of modal mu-calculus formulae
	Relation between symbols

