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Abstract
SPL verification can be costly when all the software products of an SPL are verified independently.
It is well known that parity games can be used to verify software products. We propose a
generalization of parity games, named variability parity games (VPGs), that encode multiple
parity games in a single game graph decorated with edge labels expressing variability between
the parity games. We show that a VPG can be constructed from a modal µ-calculus formula
and an FTS that models the behaviour of the different software products of an SPL. Solving
the resulting VPG decides for which products in the SPL the formula is satisfied. We introduce
several algorithms to efficiently solve VPGs and exploit commonalities between the different
parity games encoded. We perform experiments on SPL models to demonstrate that the VPG
algorithms indeed outperform independently verifying every product in an SPL.
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1. Introduction
Model verification techniques can be used to improve the quality of software. These techniques
require the behaviour of the software to be modelled and these models can then be checked to
verify that they behave conforming to some formally specified requirement. These verification
techniques are well-studied, specifically techniques to verify a single software product.

Software product lines (SPLs) are systems that can be configured to result in different variants of
the same system [12, 32]. SPLs describe families of software products where the products origin-
ate from the same system and often times have a lot of commonalities. The difference between
the products in a family is called the variability of the family [40]. A family of products can
be verified by using traditional verification techniques to verify every single product independ-
ently. However, verifying models is expensive in term of computing power and the number of
products in an SPL can grow large, therefore having to verify every single product independently
is undesirable [11].

A common way of modelling the behaviour of software is by using labelled transition systems
(LTSs) [22]. While LTSs can model behaviour well they cannot model variability. Efforts to
also model variability include modal transition systems [14, 15, 38], I/O automata [26, 24] and
featured transition systems (FTSs) [11, 8]. Specifically the latter is well suited to model all the
different behaviours of the software products as well as the variability of the entire system in a
single model. FTSs use features to express variability; a feature is an option that can be turned
on or off for the system. In the context of FTSs, a set of features is synonymous with a software
product; an FTS describes the behaviour of a software product by enabling and disabling parts
of the system based on the which features are enabled.

There are numerous temporal logics that can be used to formally express requirements. Examples
include LTL, CTL, CTL* and modal µ-calculus [31, 1, 22]. Of the different temporal logics, the
modal µ-calculus is the most expressive one; it subsumes the other temporal logics [28].

In this thesis we aim to verify the software products of an SPL in a collective manner that
exploits commonalities between the different products. Given an FTS M , describing the set
of products P , and a modal µ-calculus formula, we explore methods to find the largest set of
products Ps ⊆ P such that all products in Ps satisfy the formula. Specifically, we aim to verify
SPLs more efficiently than verifying the products independently.

Parity games can be used to determine if an LTS behaves according to a modal µ-calculus
formula. Parity games are directed graphs that express a game played by two players [3]. Every
vertex in the graph is won by exactly one of the players and a parity game is globally solved when
it is determined for every vertex who the winner is. A parity game can be constructed from an
LTS and a modal µ-calculus formula such that solving the parity game provides the information
needed to determine if the LTS behaves according to the formula [3].

We introduce a generalization of parity games, called variability parity games (VPGs). A VPG
expresses variability similar to how an FTS expresses variability. However, instead of using
features a VPG expresses variability through configurations. Parity games have a winner for
every vertex, VPGs have a winner for every vertex configuration combination. A VPG is globally
solved when it is determined for every vertex configuration combination who the winner is. We
introduce a way of constructing a VPG from an FTS and a modal µ-calculus formula such that
solving the VPG provides the information needed to determine which products, described by the
FTS, behave according to the formula.

We introduce several algorithms to solve VPGs. We also introduce algorithms to partially solve
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VPGs, in which case we only determine the winner of the vertex configuration combinations that
are needed to determine which products, described by the FTS, behave according to the formula.
This technique is called locally solving a VPG. We can also locally solve a parity game, where we
only determine the winner of the vertex that is needed to determine if the LTS behaves according
to the formula. Besides introducing local variants of the novel VPG algorithms we also introduce
local variants of two well known parity game algorithms, namely the recursive algorithm [45, 29]
and the fixed-point iteration algorithm [43, 4].

Finally we implement the algorithms and compare their performances. We use two SPL models
to create a number of VPGs. We compare the time it takes the algorithms to solve the VPGs
with the time it takes to verify every product in the SPLs independently. For the independent
verification approach we create parity games for all the products and requirements; these parity
games are solved using existing parity game algorithms.

Through this experimental evaluation we show that we can indeed use a collective approach to
more efficiently verify SPLs. The most efficient algorithm exploits commonalities between con-
figuration by representing VPGs partially symbolic. This algorithm verifies the SPL properties
2 to 18 times quicker than an independent approach verifies them. Furthermore, we show that
locally solving a VPG might improve the performance compared to globally solving a VPG; more
so than locally solving a parity game improves the performance compared to globally solving a
parity games.

Outline. First, we explore work related to model-checking SPLs in Chapter 2. Next, in Chapter 3,
we introduce the following preliminary concepts: LTSs, µ-calculus, parity games, model-checking
using parity games, two parity game algorithms and symbolically representing sets. In Chapter
4 we formally introduce FTSs and the problem statement. We introduce VPGs in Chapter 5
and show that they can be used to model-check FTSs. We introduce VPG solving algorithms in
Chapter 6 and in Chapter 7 we present local variants. Finally, we discuss the implementation
and experimental results in Chapter 8.
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2. Related work
Prior work has been done to verify SPLs, we discuss four notable contributions.

In [11] a method is introduced to verify for which products in an FTS an LTL property holds. It
does so by constructing a Büchi automaton representing the complement of the LTL property and
checking if the synchronous product of the automaton and the transition system has an empty
language [41]. When applying this method to verify LTSs the reachability of the synchronous
product is explored. For FTSs the paper introduces a reachability definition that determines for
every product if a state is reachable. It is observed that a symbolic representation of the sets of
products is advantageous when keeping track of the reachability. The paper uses the minepump
example [25] to perform an experimental evaluation and find a substantial gain using verifying
a family of products collectively as opposed to independently.

This work is expanded upon in [8]. The performance of such an approach is further elaborated
upon and it is confirmed that a collective approach indeed outperforms an independent approach.
Furthermore an extension of LTL is presented, namely featured LTL (fLTL). fLTL parametrizes
LTL to be able to express properties in terms of features. Using this language one can distinguish
between products when expressing temporal requirements.

In [10] symbolic model-checking is used to verify SPLs. fCTL is introduced as an extension of CTL
that is able to reason about features. Verification of a CTL property can be done by expressing
the CTL property as a tree, its parse tree, and doing a bottom-up traversal of it, deciding at every
node what states satisfy the subformula. The paper proposes a way to symbolically represents
FTSs, introduces a parse tree definition for the fCTL language and introduces an algorithm to
do a bottom-up traversal of a fCTL parse tree, deciding at every node which state-product pairs
satisfy it. These concepts are put in practice using the symbolic model checking toolset NuSMV
[7] as a basis and extend the language to express variability. The paper uses the elevator example
[30], modified to have 9 features, to show that symbolically model checking an SPL collectively
using the methods proposed can significantly improve the performance compared to symbolically
model checking all products independently.

Finally, in [36] an extension of the modal µ-calculus, namely µLf , is proposed that can reason
about features. In [37] it is shown how properties expressed in µLf can be embedded in first
order µ-calculus and how the mCRL2 toolset [6] can be put to work to verify these properties.
An algorithm is proposed that recursively partitions the products based on their features. After
every partitioning the algorithm checks if the remaining set of products all satisfy the requirement
or none of them satisfy the requirement. If either is true then that recursion is done, otherwise
the algorithm continues. It is observed that the performance of this approach depends largely
on deciding how to partition the sets of products. What would be a good heuristic/approach to
splitting products is left unanswered in the paper.
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3. Preliminaries

3.1 Fixed-point theory

A fixed-point of a function is an element in the domain of that function such that the function
maps to itself for that element. Fixed-points are used in model verification as well as in some
parity game algorithms.

Fixed-point theory goes hand in hand with lattice theory which we introduce first.

3.1.1 Lattices

We introduce definitions for ordering and lattices taken from [2].

Definition 3.1 ([2]). A partial order is a binary relation x ≤ y on set S where for all x, y, z ∈ S
we have:

• x ≤ x. (Reflexive)

• If x ≤ y and y ≤ x, then x = y. (Antisymmetric)

• If x ≤ y and y ≤ z, then x ≤ z. (Transitive)

Definition 3.2 ([2]). A partially ordered set is a set S and a partial order ≤ for that set, we
denote a partially ordered set by 〈S,≤〉.

Definition 3.3 ([2]). Given partially ordered set 〈P,≤〉 and subset X ⊆ P . An upper bound to
X is an element a ∈ P such that x ≤ a for every x ∈ X. A least upper bound to X is an upper
bound a ∈ P such that every other upper bound is larger or equal to a.

The term least upper bound is synonymous with the term supremum, we write sup{S} to denote
the supremum of set S.

Definition 3.4 ([2]). Given partially ordered set 〈P,≤〉 and subset X ⊆ P . A lower bound to
X is an element a ∈ P such that a ≤ x for every x ∈ X. A greatest lower bound to X is a lower
bound a ∈ P such that every other lower bound is smaller or equal to a.

The term greatest lower bound is synonymous with the term infimum, we write inf{S} to denote
the infimum of set S.

Definition 3.5 ([2]). A lattice is a partially ordered set where any two of its elements have a
supremum and an infimum.

Definition 3.6 ([2]). A complete lattice is a partially ordered set in which every subset has a
supremum and an infimum.

Definition 3.7 ([2]). Given a lattice 〈D,≤〉, function f : D → D is monotonic if and only if
for all x ∈ D and y ∈ D it holds that if x ≤ y then f(x) ≤ f(y).

3.1.2 Fixed-points

Fixed-points are formally defined as follows:
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Definition 3.8. Given function f : D → D the value x ∈ D is a fixed-point for f if and only if
f(x) = x. Furthermore x is the least fixed-point for f if every other fixed-point for f is greater
or equal to x and dually x is the greatest fixed-point for f if every other fixed-point f is less or
equal to x.

The Knaster-Tarski theorem states that least and greatest fixed-points exist for some domain
and function given that a few conditions hold.

Theorem 3.1 (Knaster-Tarski[35]). Let

• 〈A,≤〉 be a complete lattice,

• f be a monotonic function on A to A,

• P be the set of all fixed-points of f.

Then the set P is not empty and the system 〈P,≤〉 is a complete lattice; in particular we have

supP = sup{x | f(x) ≥ x} ∈ P

and
inf P = inf{x | f(x) ≤ x} ∈ P

3.2 Model verification

It is difficult to develop correct software, one way to improve reliability of software is through
model verification; the behaviour of the software is specified in a model and formal verification
techniques are used to show that the behaviour adheres to certain requirements. In this section
we inspect how to model behaviour and how to specify requirements.

Behaviour can be modelled as a labelled transition system (LTS). An LTS consists of states
in which the system can find itself and transitions between states. Transitions represent the
possible state changes of the system. Transitions are labelled with actions that indicate what
kind of change is happening. Formally we define an LTS as follows.

Definition 3.9 ([22]). A labelled transition system (LTS) is a tuple M = (S,Act, trans, s0),
where:

• S is a finite set of states,

• Act a finite set of actions,

• trans ⊆ S ×Act× S is the transition relation with (s, a, s′) ∈ trans denoted by s
a−→ s′,

• s0 ∈ S is the initial state.

An LTS is usually depicted as a graph where the vertices represent the states, the edges represent
the transitions, edges are labelled with actions and an edge with no origin state indicates the
initial state. Such a representation is depicted in the example below.
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Example 3.1 ([37]). Consider the behaviour of a coffee machine that accepts a coin, after which
it serves a standard coffee, this can be repeated infinitely often.

The behaviour can be modelled as an LTS that has two states: in the initial state it is ready to
accept a coin and in the second state it is ready to serve a standard coffee. We introduce two
actions: ins, which represents a coin being inserted, and std, which represents a standard coffee
being served. We get the following LTS which is also depicted in Figure 3.1.

({s1, s2}, {std, ins}, {(s1, ins, s2), (s2, std, s1)}, s1)

s1 s2
ins

std

Figure 3.1: Coffee machine LTS

LTSs might be non-deterministic, meaning that from a state there might be multiple transitions
that can be taken. Moreover multiple transitions with the same action can be taken. This is
depicted in the example below.

Example 3.2. We extend the coffee machine example such that at some point the coffee machine
can be empty and needs to be filled before the system is ready to receive a coin again. This LTS
is depicted in Figure 3.2. When the std transition is taken from state s2 it is non-determined in
which states the system ends up.

s1 s2

s3

ins

std

std
fill

Figure 3.2: Coffee machine with non-deterministic behaviour

A system can be verified by checking if its behaviour adheres to certain requirements. The
behaviour can be modelled in an LTS. Requirements can be expressed in a temporal logic; with
a temporal logic we can express certain propositions with a time constraint such as always, never
or eventually. For example (relating to the coffee machine example) we can express the following
constraint: ”After a coin is inserted the machine always serves a standard coffee immediately
afterwards”. The most expressive temporal logic is the modal µ-calculus. A modal µ-calculus
formula is expressed over a set of actions and a set of variables.

We define the syntax of the modal µ-calculus below. Note that the syntax is in positive normal
form, i.e. no negations.

Definition 3.10 ([22]). A modal µ-calculus formula over the set of actions Act and a set of
variables X is defined by

ϕ = > | ⊥ | X | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | µX.ϕ | νX.ϕ
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with a ∈ Act and X ∈ X .

The modal µ-calculus contains boolean constants > and ⊥, propositional operators ∨ and ∧,
modal operators 〈 〉 and [ ] and fixed-point operators µ and ν.

A variable X ∈ X occurs free in formula φ if and only if X occurs in φ such that X is not a
sub-formula of µX.φ′ or νX.φ′ in φ. A formula is closed if and only if there are no variables that
occurs free.

A formula can be interpreted in the context of an LTS, such an interpretation results in a set of
states in which the formula holds. Given formula ϕ we define the interpretation of ϕ as JϕKη ⊆ S
where η : X → 2S maps a variable to a set of states. We can assign S′ ⊆ S to variable X in η
by writing η[X := S′], i.e. (η[X := S′])(X) = S′.

Definition 3.11 ([22]). For LTS (S,Act, trans, s0) we inductively define the interpretation of a
modal µ-calculus formula ϕ, notation JϕKη, where η : X → 2S is a variable valuation, as a set of
states where ϕ is valid, by:

J>Kη = S

J⊥Kη = ∅
Jϕ1 ∧ ϕ2Kη = Jϕ1Kη ∩ Jϕ2Kη

Jϕ1 ∨ ϕ2Kη = Jϕ1Kη ∪ Jϕ2Kη

J〈a〉ϕKη = {s ∈ S|∃s′∈S s
a−→ s′ ∧ s′ ∈ JϕKη}

J[a]ϕKη = {s ∈ S|∀s′∈S s
a−→ s′ =⇒ s′ ∈ JϕKη}

JµX.ϕKη =
⋂
{f ⊆ S|f ⊇ JϕKη[X:=f ]}

JνX.ϕKη =
⋃
{f ⊆ S|f ⊆ JϕKη[X:=f ]}

JXKη = η(X)

Since there are no negations in the syntax we find that every modal µ-calculus formula is mono-
tone, i.e. if we have for U ⊆ S and U ′ ⊆ S that U ⊆ U ′ holds then JϕKη[X:=U ] ⊆ JϕKη[X:=U ′]

holds for any variable X ∈ X . Using the Knaster-Tarski theorem (Theorem 3.1) we find that
the least and greatest fixed-points always exist.

Given closed formula ϕ, LTS M = (S,Act, trans, s0) and s ∈ S we say that M satisfies formula
ϕ in state s, and write (M, s) |= ϕ, if and only if s ∈ JϕKη. If and only if M satisfies ϕ in the
initial state do we say that M satisfies formula ϕ and write M |= ϕ.

Example 3.3 ([37]). Consider the coffee machine example from Figure 3.1, which we call C,
and formula ϕ = νX.µY ([ins]Y ∧ [std]X) which states that action std must occur infinitely often
over all infinite runs. Obviously this holds for the coffee machine, therefore we have C |= ϕ.

3.3 Parity games

A parity game is a game played by two players: player 0 (also called player even) and player 1
(also called player odd). We write α ∈ {0, 1} to denote an arbitrary player and α to denote α’s
opponent, i.e. 0 = 1 and 1 = 0. A parity game is played on a playing field which is a directed
graph where every vertex is owned by either player 0 or player 1. Furthermore every vertex has
a natural number, called its priority, associated with it.
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Definition 3.12 ([3]). A parity game is a tuple (V, V0, V1, E,Ω), where:

• V is a finite set of vertices partitioned in sets V0 and V1, containing vertices owned by
player 0 and player 1 respectively,

• E ⊆ V × V is the edge relation,

• Ω : V → N is the priority assignment function.

Parity games are usually represented as a graph where vertices owned by player 0 are shown as
diamonds and vertices owned by player 1 are shown as boxes. Furthermore the priorities are
depicted as numbers inside the vertices. Such a representation is shown in the example below.

Example 3.4. Figure 3.3 shows the parity game:

V0 = {v1, v4, v5}, V1 = {v2, v3}, V = V0 ∪ V1

E = {(v1, v2), (v2, v1), (v1, v3), (v2, v4), (v3, v4), (v3, v5), (v4, v4)}

Ω = {v1 7→ 2, v2 7→ 3, v3 7→ 0, v4 7→ 0, v5 7→ 1}

2v1 3 v2

0v3 0 v4

1v5

Figure 3.3: Parity game example

A parity game can be played for a vertex v ∈ V , we start by placing a token on vertex v. The
player that owns vertex v can choose to move the token along an edge to a vertex w ∈ V such
that (v, w) ∈ E. Again the player that owns vertex w can choose where to move the token next.
This is repeated either infinitely often or until a player cannot make a move, i.e. the token is
on a vertex with no outgoing edges. Playing in this manner gives a sequence of vertices, called
a path, starting from vertex v. For path π we write πi to denote ith vertex in path π. Every
path is associated with a winner (either player 0 or 1). If a player α cannot move at some point
we get a finite path and player α wins the path. If we get an infinite path π then the winner is
determined by the parity of the highest priority that occurs infinitely often in the path. Formally
we determine the highest priority occurring infinitely often by the following formula.

max{p | ∀j∃ij < i ∧ p = Ω(πi)}

If the highest priority occurring infinitely often is odd then player 1 wins the path, if it is even
player 0 wins the path.

A path is valid if and only if for every i > 0 such that πi exists we have (πi−1, πi) ∈ E.
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Example 3.5. Again consider the example in Figure 3.3. If we play the game for vertex v1

we start by placing a token on v1. Consider the following exemplary paths where (w1. . .wm)ω

indicates an infinite repetition of vertices w1. . .wm.

• π = v1v3v5 is won by player 1 since player 0 cannot move at v5.

• π = (v1v2)ω is won by player 1 since the highest priority occurring infinitely often is 3.

• π = v1v3(v4)ω is won by player 0 since the highest priority occurring infinitely often is 0.

The moves that the players make are determined by their strategies. A strategy σα determines
for a vertex in Vα where the token goes next. We can define a strategy for player α as a partial
function σα : V ∗Vα → V that maps a series of vertices ending with a vertex owned by player α to
the next vertex such that for any σα(w0 . . . wm) = w we have (wm, w) ∈ E. A path π conforms to
strategy σα if for every i > 0 such that πi exists and πi−1 ∈ Vα we have πi = σα(π0π1 . . . πi−1).

A strategy is winning for player α from vertex v if and only if α is the winner of every valid path
starting in v that conforms to σα. If such a strategy exists for player α from vertex v we say
that vertex v is winning for player α.

Example 3.6. In the parity game seen in Figure 3.3 vertex v1 is winning for player 1. Player 1
has a strategy that plays every vertex sequence ending in v2 to v1 and plays every vertex sequence
ending in v3 to v5. Regardless of the strategy for player 0 the path will either end up in v5 or
will pass v2 infinitely often. In the former case player 1 wins the path because player 0 can not
move at v5. In the latter case the highest priority occurring infinitely often is 3.

Parity games are known to be positionally determined [3]. Meaning that every vertex in a parity
game is winning for exactly one of the two players. Also every player has a positional strategy
that is winning starting from each of his/her winning vertices. A positional strategy is a strategy
that only takes the current vertex into account to determine the next vertex, it does not look
at previously visited vertices. Therefore we can consider a strategy for player α as a function
σα : Vα → V . Finally, it is decidable for each of the vertices in a parity game who the winner is
[3].

A parity game is solved if the vertices are partitioned in two sets, namely W0 and W1, such that
every vertex in W0 is winning for player 0 and every vertex in W1 is winning for player 1. We
call these sets the winning sets of a parity game. Solving parity games is in complexity class
UP ∩ co-UP and NP ∩ co-NP [23]. No polynomial algorithms are known, however finding a
polynomial algorithm does not prove P=NP.

Finally, parity games are considered total if and only if every vertex has at least one outgoing
edge. Playing a total parity game always results in an infinite path. We can make a non-total
parity game total by adding two sink vertices: l0 and l1. Each sink vertex has only one outgoing
edge, namely to itself. Vertex l0 has priority 1 and vertex l1 has priority 0. Clearly if the token
ends up in lα then player α looses the game because with only one outgoing edge we only get
a single priority that occurs infinitely often, namely priority α. For every vertex v ∈ Vα that
does not have an outgoing edge we create an edge from v to lα. In the original game player α
lost when the token was in vertex v because he/she could not move any more. In the total game
player α can only play to lα from v where he/she still looses. So using this method vertices in
the total game have the same winner as they had in the original game (except for l0 and l1 which
did not exist in the original game). In general we try to only work with total games because
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no distinction is required between finite paths and infinite paths when reasoning about them,
however we will encounter some scenario’s where non-total games are still considered.

3.3.1 Relation between parity games and model checking

Verifying LTSs against a modal µ-calculus formula can be done by solving a parity game. This
is done by translating an LTS in combination with a formula to a parity game, the solution of
the parity game provides the information needed to conclude if the model satisfies the formula.
This relation is depicted in Figure 3.4.

LTS M Modal µ-calculus formula ϕ

PG

M
?

|= ϕ

Figure 3.4: LTS verification using parity games

We consider a method of creating parity games from an LTS and a modal µ-calculus formula
such that there is a special vertex w in the parity game that indicates if the LTS satisfies the
formula; if and only if w is won by player 0 is the formula satisfied.

First we introduce the notion of unfolding. A fixed-point formula µX.ϕ can be unfolded, resulting
in formula ϕ where every occurrence of X is replaced by µX.ϕ, denoted by ϕ[X := µX.ϕ].
Interpreting a fixed-point formula results in the same set as interpreting its unfolding as shown
in [3]; i.e. [[µX.ϕ]]η = [[ϕ[X := µX.ϕ]]]η. The same holds for the fixed-point operator ν.

Next we define the Fischer-Ladner closure for a closed µ-calculus formula [34, 16]. The Fischer-
Ladner closure of ϕ is the set FL(ϕ) of closed formulas containing at least ϕ. Furthermore for
every formula ψ in FL(ϕ) it holds that for every direct subformula ψ′ of ψ there is a formula in
FL(ϕ) that is equivalent to ψ′.

Definition 3.13. The Fischer-Ladner closure of closed µ-calculus formula ϕ is the smallest set
FL(ϕ) satisfying the following constraints:

• ϕ ∈ FL(ϕ),

• if ϕ1 ∨ ϕ2 ∈ FL(ϕ) then ϕ1, ϕ2 ∈ FL(ϕ),

• if ϕ1 ∧ ϕ2 ∈ FL(ϕ) then ϕ1, ϕ2 ∈ FL(ϕ),

• if 〈a〉ϕ′ ∈ FL(ϕ) then ϕ′ ∈ FL(ϕ),
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• if [a]ϕ′ ∈ FL(ϕ) then ϕ′ ∈ FL(ϕ),

• if µX.ϕ′ ∈ FL(ϕ) then ϕ′[X := µX.ϕ′] ∈ FL(ϕ) and

• if νX.ϕ′ ∈ FL(ϕ) then ϕ′[X := νX.ϕ′] ∈ FL(ϕ).

We also define the alternation depth of a formula.

Definition 3.14 ([3]). The dependency order on bound variables of ϕ is the smallest partial order
such that X ≤ϕ Y if X occurs free in σY.ψ . The alternation depth of a µ-variable X in formula
ϕ is the maximal length of a chain X1 ≤ϕ · · · ≤ϕ Xn where X = X1, variables X1, X3, . . . are
µ-variables and variables X2, X4, . . . are ν-variables. The alternation depth of a ν-variable is
defined similarly. The alternation depth of formula ϕ, denoted adepth(ϕ), is the maximum of
the alternation depths of the variables bound in ϕ, or zero if there are no fixed-points.

Example 3.7. Consider the formula ϕ = νX.µY.([ins]Y ∧ [std]X) which states that for an LTS
with Act = {ins, std} the action std must occur infinitely often over all infinite runs. Since X
occurs free in µY.([ins]Y ∧ [std]X) we have adepth(Y ) = 1 and adepth(X) = 2.

As shown in [3], it holds that formula µX.ψ has the same alternation depth as its unfolding
ψ[X := µX.ψ]. Similarly for the greatest fixed-point.

Next we define the transformation from an LTS and a formula to a parity game.

Definition 3.15 ([3]). LTS2PG(M,ϕ) converts LTS M = (S,Act, trans, s0) and closed formula
ϕ to a parity game (V, V0, V1, E,Ω).

Vertices in the parity game are represented as pairs of states and sub-formulas. A vertex is
created for every state with every formula in the Fischer-Ladner closure of ϕ. We define the set
of vertices:

V = S × FL(ϕ)

Vertices have the following owners, successors and priorities:

Vertex Owner Successor(s) Priority
(s,⊥) 0 0
(s,>) 1 0
(s, ψ1 ∨ ψ2) 0 (s, ψ1) and (s, ψ2) 0
(s, ψ1 ∧ ψ2) 1 (s, ψ1) and (s, ψ2) 0

(s, 〈a〉ψ) 0 (s′, ψ) for every s
a−→ s′ 0

(s, [a]ψ) 1 (s′, ψ) for every s
a−→ s′ 0

(s, µX.ψ) 1 (s, ψ[X := µX.ψ]) 2badepth(X)/2c+ 1
(s, νX.ψ) 1 (s, ψ[X := νX.ψ]) 2badepth(X)/2c

Since the Fischer-Ladner formulas are closed we never get a vertex (s,X).

Example 3.8. Consider LTS M in Figure 3.5 and formula ϕ = µX.([a]X ∨ 〈b〉>) expressing
that on any path reached by a’s we can eventually do a b action.

The resulting parity game is depicted in Figure 3.6. Let V denote the set of vertices of this parity
game. There are two vertices with more than one outgoing edge. From vertex (s1, [a](µX.φ) ∨
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s1 s2
a

a

b

Figure 3.5: LTS M

〈b〉>) player 0 does not want to play to (s1, 〈b〉>) because he/she will not be able to make another
move and will lose the path. From vertex (s2, [a](µX.φ) ∨ 〈b〉>) player 0 can play to (s2, 〈b〉>)
to bring the play in (s2,>) to win the path. We get the following winning sets:

W1 = {(s1, 〈b〉>)}
W0 = V \W1

With the strategies σ0 for player 0 and σ1 for player 1 being (vertices with one outgoing edge are
omitted):

σ0 = {(s1, [a](µX.φ) ∨ 〈b〉>) 7→ (s1, [a](µX.φ)),

(s2, [a](µX.φ) ∨ 〈b〉>) 7→ (s2, 〈b〉>)}
σ1 = {}

Note that the choice where to go from (s2, [a](µX.φ)∨〈b〉>) does not matter for the winning sets.

0(s1, 〈b〉>)

0(s1,>)

1(s1, µX.φ)

0(s1, [a](µX.φ) ∨ 〈b〉>)

0(s1, [a](µX.φ))

1 (s2, µX.φ)

0 (s2, [a](µX.φ) ∨ 〈b〉>)

0 (s2, [a](µX.φ))

0 (s2, 〈b〉>)

0 (s2,>)

Figure 3.6: Parity game LTS2PG(M,ϕ) with φ = [a]X ∨ 〈b〉>

Parity games created in this manner relate back to the model verification question; state s in LTS
M satisfies ϕ if and only if player 0 wins vertex (s, ϕ). This is formally stated in the following
theorem and proven in [3].

Theorem 3.2 ([3]). Given LTS M = (S,Act, trans, s0), modal µ-calculus formula ϕ and state
s ∈ S it holds that (M, s) |= ϕ if and only if (s, ϕ) ∈W0 for the game LTS2PG(M,ϕ).

3.3.2 Globally and locally solving parity games

Parity games can be solved globally or locally ; globally solving a parity game means that for every
vertex in the game it is determined who the winner is. Locally solving a parity game means that
for a specific vertex in the game it is determined who the winner is. For some applications of
parity games, including model checking, there is a specific vertex that needs to be solved to solve
the original problem. Locally solving the parity game is sufficient in such cases to solve the
original problem.
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Most parity game algorithms (including the two considered next) are concerned with globally
solving. When talking about solving a parity game we talk about globally solving it unless stated
otherwise.

3.3.3 Parity game algorithms

Various algorithms for solving parity games are known, we introduce two of them. First Zielonka’s
recursive algorithm which is well studied and generally considered to be one of the best performing
parity game algorithms in practice [39, 18]. We also inspect the fixed-point iteration algorithm
which tends to perform well for model-checking problems with a low number of distinct priorities
[33].

Zielonka’s recursive algorithm

First we consider Zielonka’s recursive algorithm [45, 29], which solves total parity games. Pseudo
code is presented in Algorithm 1. Zielonka’s recursive algorithm has a worst-case time complexity
of O(e∗nd) where e is the number of edges, n the number of vertices and d the number of distinct
priorities [17].

Algorithm 1 RecursivePG(parity game G = (V, V0, V1, E,Ω))

1: if V = ∅ then
2: return (∅, ∅)
3: end if
4: h← max{Ω(v) | v ∈ V }
5: α← 0 if h is even and 1 otherwise
6: U ← {v ∈ V | Ω(v) = h}
7: A← α-Attr(G,U)
8: (W ′0,W

′
1)← RecursivePG(G\A)

9: if W ′α = ∅ then
10: Wα ← A ∪W ′α
11: Wα ← ∅
12: else
13: B ← α-Attr(G,W ′α)
14: (W ′′0 ,W

′′
1 )← RecursivePG(G\B)

15: Wα ←W ′′α
16: Wα ←W ′′α ∪B
17: end if
18: return (W0,W1)

The algorithm solves G by taking the set of vertices with the highest priority and choosing α
such that α has the same parity as the highest priority. Next the algorithm finds set A such
that player α can force the play to one of these high priority vertices. Next this set of vertices is
removed from G and the resulting subgame G′ is solved recursively.

If G′ is entirely won by player α then we distinguish three cases for any path played in G. Either
the path eventually stays in G′, A is infinitely often visited or the path eventually stays in A.
In the first case player α wins because game G′ was entirely won by player α. In the second
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and third case player α can play to the highest priority from A. The highest priority, which has
parity α, is visited infinitely often and player α wins.

If G′ is not entirely won by player α we consider winning sets (W ′0,W
′
1) of subgame G′. Vertices

in set W ′α are won by player α in G′ but are also won by player α in G. The algorithm tries to
find all the vertices in G such that player α can force the play to a vertex in W ′α and therefore
winning the game. We now have a set of vertices that are definitely won by player α in game G.
In the remainder of the game player α can keep the play from W ′α so the algorithm solves the
remainder of the game recursively to find the complete winning sets for game G.

A complete explanation of the algorithm can be found in [45], we do introduce definitions for
the attractor set and for subgames.

An attractor set is a set of vertices A ⊆ V calculated for player α given set U ⊆ V where player
α has a strategy to force the play starting in any vertex in A\U to a vertex in U . Such a set
is calculated by adding vertices owned by player α that have an edge to the attractor set and
adding vertices owned by player α that only have edges to the attractor set.

Definition 3.16 ([45]). Given parity game G = (V, V0, V1, E,Ω) and a non-empty set U ⊆ V
we inductively define α-Attr(G,U) such that

U0 = U

For i ≥ 0:

Ui+1 = Ui∪{v ∈ Vα | ∃v′ ∈ V : v′ ∈ Ui ∧ (v, v′) ∈ E}
∪{v ∈ Vα | ∀v′ ∈ V : (v, v′) ∈ E =⇒ v′ ∈ Ui}

Finally:

α-Attr(G,U) =
⋃
i≥0

Ui

Example 3.9. Figure 3.7 shows an example parity game in which an attractor set is calculated
for player 0. For set U2 no more vertices can be attracted so we found the complete attractor set.

The algorithm also creates subgames, where a set of vertices is removed from a parity game to
create a new parity game.

Definition 3.17 ([45]). Given a parity game G = (V, V0, V1, E,Ω) and U ⊆ V we define the
subgame G\U to be the game (V ′, V ′0 , V

′
1 , E

′,Ω) with:

• V ′ = V \U ,

• V ′0 = V0 ∩ V ′,

• V ′1 = V1 ∩ V ′ and

• E′ = E ∩ (V ′ × V ′).

Note that a subgame is not necessarily total, however the recursive algorithm always creates
subgames that are total [45].
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1 3 3 2 2

1 0 0

(a) Set U = U0 highlighted

1 3 3 2 2

1 0 0

(b) Set U1 highlighted

1 3 3 2 2

1 0 0

(c) Set U2 = 0-Attr(G,U) highlighted

Figure 3.7: Game G showing the attractor calculation for 0-Attr(G,U)

Fixed-point iteration algorithm

Parity games can be solved by solving an alternating fixed-point formula [43]. Consider parity
game G = (V, V0, V1, E,Ω) with d distinct priorities. We can apply priority compression to make
sure every priority in G maps to a value in {0, . . . , d−1} or {1, . . . , d} [19, 4]. We assume without
loss of generality that the priorities map to {0, . . . , d− 1} and that d− 1 is even.

Consider the following formula

S(G) = νZd−1.µZd−2. . . . .νZ0.F0(G,Zd−1, . . . , Z0)

with

F0(G = (V, V0, V1, E,Ω), Zd−1, . . . , Z0) ={v ∈ V0 | ∃w∈V (v, w) ∈ E ∧ w ∈ ZΩ(w)}
∪{v ∈ V1 | ∀w∈V (v, w) ∈ E =⇒ w ∈ ZΩ(w)}

where Zi ⊆ V . The formula νX.f(X) solves the greatest fixed-point of X in f , similarly µX.f(X)
solves the least fixed-point of X in f . As shown in [43] formula S(G) calculates the set of vertices
winning for player 0 in parity game G.

To understand the formula we consider sub-formula νZ0.F0(Zd−1, . . . , Z0). This formula holds
for vertices from which player 0 can either force the play into a node with priority i > 0 for
which Zi holds or the player can stay in vertices with priority 0 indefinitely. The formula
µZ0.F0(Zd−1, . . . , Z0) holds for vertices from which player 0 can force the play into a node with
priority i > 0, for which Zi holds, in finitely many steps. By alternating fixed-points the formula
allows infinitely many consecutive stays in even vertices and finitely many consecutive stays in
odd vertices. For an extensive treatment we refer to [43].
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We further inspect formula S. Given game G, consider the following sub-formulas:

Sd−1(Zd−1) = µZd−2.S
d−2(Zd−2)

Sd−2(Zd−2) = νZd−3.S
d−3(Zd−3)

. . .

S0(Z0) = F0(G,Zd−1, . . . , Z0)

The fixed-point variables are all elements of 2V , therefore we have for every sub-formula the
following type:

Si(Zi) : 2V → 2V

Furthermore, since V is finite, the partially ordered set 〈2V ,⊆〉 is a complete lattice; for every
subset X ⊆ 2V we have infimum

⋂
x∈X x and supremum

⋃
x∈X x. Finally every sub-formula

Si(Zi) is monotonic, i.e. if Si(Zi) ≥ Si(Z ′i) then Zi ≥ Z ′i.

Fixed-point formulas can be solved by fixed-point iteration. As shown in [13] we can calculate
µX.f(X), where f is monotonic in X and X ∈ 2V , by iterating X:

µX.f(X) =
⋃
i≥0

Xi

where Xi = f(Xi−1) for i > 0 and X0 ⊆ µX.f(X). So picking the smallest value possible for
X0 will always correctly calculate µX.f(X).

Similarly we can calculate fixed-point νX.f(X) when f is monotonic in X by iterating X:

νX.f(X) =
⋂
i≥0

Xi

where Xi = f(Xi−1) for i > 0 and X0 ⊇ νX.f(X). So picking the largest value possible for X0

will always correctly calculate νX.f(X).

Since every subformula is monotonic and maps from a value in 2V to another value in 2V we can
apply fixed-point iteration to solve the subformulas, we choose initial values ∅ for least fixed-point
variables and V for greatest fixed-point variables.

An algorithm to perform the iteration is presented in [4] and shown in Algorithm 2. This
algorithm has a worst-case time complexity of O(e ∗ nd) where e is the number of edges, n the
number of vertices and d the number of distinct priorities.
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Algorithm 2 Fixed-point iteration

1: function FPIter(G = (V, V0, V1, E,Ω))
2: for i← d− 1, . . . , 0 do
3: Init(i)
4: end for
5: repeat
6: Z ′0 ← Z0

7: Z0 ← Diamond() ∪Box()
8: i← 0
9: while Zi = Z ′i ∧ i < d− 1 do

10: i← i+ 1
11: Z ′i ← Zi
12: Zi ← Zi−1

13: Init(i− 1)
14: end while
15: until i = d− 1 ∧ Zd−1 = Z ′d−1

16: return (Zd−1, V \Zd−1)
17: end function

1: function Init(i)
2: Zi ← ∅ if i is odd, V otherwise
3: end function

1: function Diamond
2: return {v ∈ V0 | ∃w∈V (v, w) ∈ E ∧w ∈
ZΩ(w)}

3: end function

1: function Box
2: return {v ∈ V1 | ∀w∈V (v, w) ∈ E =⇒
w ∈ ZΩ(w)}

3: end function

3.4 Symbolically representing sets

A set can straightforwardly be represented by a collection containing all the elements that are in
the set. We call this an explicit representation of a set. We can also represent sets symbolically in
which case the set of elements is represented by some sort of formula. A typical way to represent
a set symbolically is through a boolean formula encoded in a binary decision diagram [44, 5].

Example 3.10. The set S = {2, 4, 6, 7} can be expressed by boolean formula:

F (x2, x1, x0) = (¬x2 ∧ x1 ∧ ¬x0) ∨ (x2 ∧ (x1 ∨ ¬x0))

where x0, x1 and x2 are boolean variables. The formula gives the following truth table:

x2x1x0 F(x2,x1,x0)
000 0
001 0
010 1
011 0
100 1
101 0
110 1
111 1

The function F defines set S′ in the following way: S′ = {x2x1x0 | F (x2, x1, x0) = 1}. As we
can see set S′ contains the same numbers as S, represented in binary format.

We can perform set operations on sets represented as boolean functions by performing logical
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operations on the functions. For example, given boolean formulas f and g representing sets V
and W the formula f ∧ g represents set V ∩W .

Given a set S with arbitrary elements we can represent subsets S′ ⊆ S as boolean formulas by
assigning a number to every element in S and creating a boolean formula that maps boolean
variables to true if and only if they represent a number such that the element associated with
this number in S is also in S′.

3.4.1 Binary decision diagrams

A boolean function can efficiently be represented as a binary decision diagram (BDD). For a
comprehensive treatment of BDDs we refer to [44, 5].

BDDs represent boolean formulas as a directed graph where every vertex represents a boolean
variable and has two outgoing edges labelled 0 and 1. Furthermore the graph contains special
vertices 0 and 1 that have no outgoing edges. We decide if a boolean variable assignment satisfies
the formula by starting in the initial vertex of the graph and following a path until we get to
either vertex 0 or 1. Since every vertex represents a boolean formula, we can create a path from
the initial vertex by choosing edge 0 at a vertex if the boolean variable represented by that vertex
is false in the variable assignment and choosing edge 1 if it is true. Eventually we end up in
either vertex 0 or 1. In the former case the boolean variable assignment does not satisfy the
formula, in the latter it does.

Example 3.11. Consider the boolean formula in Example 3.10. This formula can be represented
as the BDD shown in Figure 3.8. The vertices representing boolean variables are shown as
circles and the boolean variables they represent are indicated inside them. The special vertices
are represented as squares and the initial vertex is represented by an edge that has no origin
vertex.

x2

x1 x1

x0

1 0

0 1

1
0

0

1

0

1

Figure 3.8: BDD highlighting boolean variable assignment x2x1x0 = 011 in blue and x2x1 = 11
in red

The path created from variable assignment x2x1x0 = 011 is highlighted in blue in the diagram
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and shows that this assignment is indeed not satisfied by the boolean formula. The red path shows
the variable assignments 110 and 111. Determining the path and the outcome for every variable
assignment results in the same truth table as seen in Example 3.10.

Given n boolean variables and two boolean functions encoded as BDDs we can perform binary
operations ∨,∧ on the BDDs in O(Na ∗Nb), where Na and Nb are the number of nodes in the
decision diagrams of the two functions. A decision diagram is a tree with n levels, so Na = O(2n)
and Nb = O(2n). Therefore with n boolean variables we can perform binary operations ∨ and ∧
on them in O(22n) = O(m2) where m = 2n is the maximum set size that can be represented using
n variables [44, 5]. The running time specifically depends on the size of the decision diagrams;
in general if the boolean functions are simple then the size of the decision diagram is also small
and operations can be performed quickly.
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4. Problem statement
If we have an SPL with certain requirements that must hold for every product then we want to
apply verification techniques to formally verify that indeed every product satisfies the require-
ments. We could verify every product individually, however verification is expensive in terms of
computing time and the number of different products can grow large. Differences in behaviour
between products might be very small; large parts of the different products might behave similar.
In this thesis we aim to exploit commonalities between products to find a method that verifies
an SPL in a more efficient way than verifying every product independently.

First we take a look at a method of modelling the behaviour of the different products in an
SPL, namely featured transition systems (FTSs). An FTS extends an LTS to express variability,
it does so by introducing features and products. Features are options that can be enabled or
disabled for the system. A product is a feature assignments, i.e. a set of features that is enabled
for that product. Not all products are valid; some features might be mutually exclusive for
example. To express the relation between features one can use feature diagrams as explained in
[9]. Feature diagrams offer a nice way of expressing which feature assignments are valid, however
for simplicity we represent the collection of valid products simply as a set of feature assignments.

An FTS models the behaviour of multiple products by guarding transitions with boolean ex-
pressions over the features such that the transition is only enabled for products that satisfy the
guard.

Let B(A) denote the set of all boolean expressions over the set of boolean variables A; a boolean
expression is a function that maps a boolean assignment to either true of false. A boolean
expression over a set of features is called a feature expression, it maps a feature assignment, i.e.
a product, to either true or false. Given boolean expression f and boolean variable assignment
p we write p |= f if and only if f is true for p and write p 6|= f otherwise. Boolean expression >
denotes the boolean expression that is satisfied by all boolean assignments.

Definition 4.1 ([9]). A featured transition system (FTS) is a tuple M = (S,Act, trans, s0, N, P, γ),
where:

• S,Act, trans, s0 are defined as in an LTS,

• N is a non-empty set of features,

• P ⊆ 2N is a non-empty set of products, i.e. feature assignments, that are valid,

• γ : trans→ B(N) is a total function, labelling each transition with a feature expression.

A transition s
a−→ s′ with γ(s, a, s′) = f is denoted by s

a | f−−−→ s′. FTSs are presented similarly
as LTSs, the labels of the transition are expanded to represent both the action and the feature
expression associated with it.

Example 4.1 ([37]). Consider a coffee machine that has two variants: in the first variant it
takes a single coin and serves a standard coffee, in the second variant the machine either serves
a standard coffee after a coin is inserted or it takes another coin after which it serves an xxl
coffee. Note that there is no variant that only serves xxl coffees. We introduce two features: $
which, if enabled, allows the coffee machine to serve xxl coffees and e which, if enabled, allows
the coffee machine to serve standard coffees. The valid products are: {{e}, {e, $}}. This FTS
is depicted in Figure 4.1.
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s1 s2 s3

ins | >

std | e

ins | $

xxl | >

Figure 4.1: Coffee machine FTS C

An FTS expresses the behaviour of multiple products. The behaviour of a single product can
be derived by simply removing all the transitions from the FTS for which the product does not
satisfy the feature expression guarding the transition. We call this a projection.

Definition 4.2 ([9]). The projection of FTS M = (S,Act, trans, s0, N, P, γ) onto product p ∈ P ,
denoted by M|p, is the LTS (S,Act, trans′, s0), where trans′ = {t ∈ trans | p |= γ(t)}.

Example 4.2 ([37]). The coffee machine example can be projected to its two products, which
results in the LTSs in Figure 4.2.

s1 s2 s3
ins

std

xxl

(a) C projected to the euro product: C|{e}

s1 s2 s3
ins

std

ins

xxl

(b) C projected to the euro and dollar product:
C|{e,$}

Figure 4.2: Projections of the coffee machine FTS

Problem statement Given an FTS M , that models the behaviour of an SPL, with products
P and modal µ-calculus formula ϕ we want to find the products in P that satisfy ϕ. Formally
we want to find set Ps such that:

• for every p ∈ Ps we have M|p |= ϕ and

• for every p ∈ P\Ps we have M|p 6|= ϕ.

We aim to find Ps in a way that utilizes the commonalities in behaviour between the different
products.
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5. Variability parity games
In the preliminaries we have seen how parity games can be used to check if a modal µ-calculus
formula is satisfied by an LTS. A parity game can be constructed such that it contains the
information needed to determine if an LTS satisfies a modal µ-calculus formula. We have also
seen how an LTS can be extended with transition guards to model the behaviour of multiple
LTSs. In this section we introduce variability parity games (VPGs); a VPG extends the definition
of a parity game much like an FTS extends the definition of an LTS. Similar as to how an FTS
expresses multiple LTSs does a VPG express multiple parity games. Moreover we introduce a
way of creating VPGs such that every parity game it expresses contains the information needed
to determine if a product in an FTS satisfies a modal µ-calculus formula.

We extend parity games such that edges in the game are guarded. Instead of using features,
feature expressions and products we choose a syntactically simpler representation and introduce
configurations. A VPG has a set of configurations and is played for a single configuration. Edges
are guarded by sets of configurations; if the VPG is played for a configuration that is in the
guard set then the edge is enabled, otherwise it is disabled.

Definition 5.1. A variability parity game (VPG) is a tuple (V, V0, V1, E,Ω,C, θ), where:

• V ,V0,V1, E and Ω are defined as in a parity game,

• C is a non-empty finite set of configurations,

• θ : E → 2C \ ∅ is a total function mapping every edge to a set of configurations guarding
that edge.

VPGs are considered total when for every configuration c ∈ C every vertex has at least one
outgoing edge that admits configuration c. Formally, a VPG is total if and only if for all v ∈ V :⋃

{θ(v, w) | (v, w) ∈ E} = C

VPGs are depicted as parity games with labelled edges that represent the sets of configurations
guarding them.

Example 5.1. Figure 5.1 shows an example of a total VPG with configuration C = {c1, c2, c3}.

A VPG can be played for a vertex-configuration pair. When playing a VPG for v ∈ V and
c ∈ C we start by placing a token on vertex v. We proceed with the game similar as with a
parity game, however player α can only move the token from v ∈ Vα to w ∈ V if (v, w) ∈ E and
c ∈ θ(v, w). Similar as in a parity game this results in a path. Again the winner is determined by
the highest priority occurring infinitely often in the path or, in case of a finite path, the winner
is the opponent of the player that cannot make a move any more. Paths might be valid for some
configurations but not valid for others, we call a path valid for configuration c if and only if for
every i > 0 such that πi exists we have (πi−1, πi) ∈ E and c ∈ θ(πi−1, πi).

Moves made by the players are again determined by strategies, however for different configura-
tions for which the game is played different strategies might be needed. So we define a strategy
not only for a player but also for a configuration. We define a strategy for player α and config-
uration c ∈ C as a partial function σcα : V ∗Vα → V that maps a series of vertices ending with
a vertex owned by player α to the next vertex such that for any σcα(w0 . . . wm) = w we have
(wm, w) ∈ E and c ∈ θ(wm, w). A path π conforms to strategy σcα if for every i > 0 such that πi
exists and πi−1 ∈ Vα we have πi = σcα(π0π1 . . . πi−1).
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{c1, c3}

C

{c1, c2}

{c1, c3} {c1, c3}

C

{c1, c3} {c1, c2}

{c1, c2}

Figure 5.1: VPG with configurations C = {c1, c2, c3}

A strategy σcα is winning in configuration c for player α from vertex v if and only if α is the
winner of every path valid for c starting in v that conforms to σcα. If such a strategy exists for
player α and configuration c starting from vertex v then vertex v is winning for player α and
configuration c.

A VPG is solved if for every configuration c the vertices are partitioned in two sets, namely W c
0

and W c
1 , such that every vertex in W c

α is winning for player α in configuration c. We call these
sets the winning sets of a VPG.

We can create a parity game from a VPG by simply choosing configuration c and removing all
the edges that do not have c in their guard set. We call this a projection.

Definition 5.2. The projection of VPG G = (V, V0, V1, E,Ω,C, θ) onto configuration c ∈ C,
denoted by G|c, is the parity game (V, V0, V1, E

′,Ω) where E′ = {e ∈ E | c ∈ θ(e)}.

If a VPG is total then there is at least one outging edge for every vertex that admits configuration
c ∈ C. This edge will be in the projection G|c so clearly when the VPG is total then its projections
are also total.

A VPG contains multiple parity games, in fact playing a VPG G for configuration c is the same
as playing the parity game G|c which we show in the following lemma’s and theorem.

Lemma 5.1. Path π is valid in G = (V, V0, V1, E,Ω,C, θ) for configuration c if and only if path
π is valid in G|c = (V, V0, V1, E

′,Ω).

Proof. Consider path π that is valid in G for configuration c. For every i > 0 we have (πi−1, πi) ∈
E and c ∈ θ(πi−1, πi). Using the projection definition (Definition 5.2) we can conclude that
(πi−1, π1) ∈ E′ making the path valid in G|c.

Consider path π that is valid in G|c. For every i > 0 we have (πi−1, πi) ∈ E′. Given the projection
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definition we find that because (πi−1, πi) ∈ E′ we must have (πi−1, πi) ∈ E and c ∈ θ(πi−1, πi).
This makes the path valid in G for configuration c.

Lemma 5.2. Any strategy σcα for player α and configuration c ∈ C in VPG G = (V, V0, V1, E,Ω,C, θ)
is also a strategy in G|c for player α and any strategy σα for player α in G|c is also a strategy
in G for player α and configuration c.

Proof. The same reasoning as in Lemma 5.1 can be applied to prove this lemma.

Theorem 5.3. Winning sets (W c
0 ,W

c
1 ) of VPG G = (V, V0, V1, E,Ω,C, θ) played for configura-

tion c ∈ C are equal to winning sets (Q0, Q1) of parity game G|c.

Proof. Let v ∈ W c
α for some α ∈ {0, 1}. There exists a strategy σcα in VPG G for player α and

configuration c such that any valid path starting in v and conforming to σcα is winning for player
α. As shown in Lemma 5.2, σcα is also a strategy for player α in G|c. Any valid path starting in v
in game G played for configuration c is also valid in game G as shown in Lemma 5.1, additionally
any path valid in G|c is also valid in G played for c. Assume there is a valid path in G|c that
conforms to σcα starting from v that is not won by player α. This path is also valid in G played
for configuration c and conforming to σcα which contradicts v ∈W c

α, therefore no such path exists
and strategy σcα is winning for player α from v in parity game G|c, hence v ∈ Qα.

Let v ∈ Qα for some α ∈ {0, 1}. There exists a strategy σα in parity game G|c for player α such
that any valid path starting in v and conforming to σα is winning for player α. Using Lemma
5.2 we find that σα is a strategy in game G for player α and configuration c. Assume there is a
valid path in G for c that conforms to σα starting from v that is not won by player α. This path
is also valid in G|c and conforming to σα which contradicts v ∈ Qα, therefore no such path exists
and strategy σα is winning for player α and configuration c from v in VPG G, hence v ∈W c

α.

Parity games have a unique winner for every vertex, from Theorem 5.3 we can conclude that a
VPG played for a configuration also has a unique winner for every vertex. Moreover since it is
decidable who wins a vertex in a parity game it is also decidable who wins a vertex in a VPG
for configuration c. Finally, in a parity game there exists a positional strategy for player α that
is winning for all the vertices won by player α in the game. In Theorem 5.3 we argued that
a strategy that is winning for player α starting in vertex v in a projection of G onto c is also
winning in G for player α and configuration c starting in vertex v. So we can conclude that VPGs
are also positionally determined and we can consider a strategy for player α and configuration c
as a function σcα : Vα → V .

Example 5.2. Consider the VPG in Figure 5.1. When playing the game for vertex v5 and
configuration c1 we can define strategy

σc11 = {v5 7→ v7, v7 7→ v6, v6 7→ v7, . . . }

This always results in the path v5(v7v6)ω where the highest priority occurring infinitely often is
3, so player 1 wins. Since this is the only valid path vertex v5 is won by player 1 in configuration
c1.

If the game is played for vertex v5 and configuration c2 the strategy σc11 is not valid because the
edge (v5, v7) is not enabled. For player 0 we can define strategy

σc20 = {v2 7→ v4, v4 7→ v1, . . . }
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Player 1 can only play from v5 to v2 so the only path that conforms to σc20 is v5(v2v4v1)ω, which
is winning for player 0. So vertex v5 is won by player 0 in configuration c2.

If the game is played for vertex v5 and configuration c3 then player 0 can win v5 using the strategy

σc30 = {v2 7→ v6, v3 7→ v2, v4 7→ v5}

Player 1 can play to v2 or v7. If the play goes to v2 then player 0 plays to v6 from where play
can only go to v3 and v2 next. We get path v5(v2v6v3)ω, which is won by player 0. If player 1
plays to v7 then play can only go to v4 where player 0 plays to v5. If play stays in this loop then
player 0 wins because the highest priority occurring infinitely often is 2. If play eventually goes
to v2 then player 0 wins as well.

5.1 Verifying featured transition systems

Given an LTS and a modal µ-calculus formula we can construct a parity game such that solving
this parity game tells us if the LTS satisfies the formula. Similarly we can construct a VPG
from an FTS and a modal µ-calculus in such a way that solving the VPG tells us what products
satisfy the formula.

We create a VPG from an FTS by choosing the set of configurations to be equal to the set of
products in the FTS. The game graph is created similar as to how a parity game is created from
an LTS. Finally transition guards from the FTS are translated into guard sets for the VPG.

Definition 5.3. FTS2VPG(M,ϕ) converts FTS M = (S,Act, trans, s0, N, P, γ) and closed for-
mula ϕ to VPG (V, V0, V1, E,Ω,C, θ).

The set of configurations is equal to the set of products, i.e. C = P .

Vertices are created for every state with every formula in the Fischer-Ladner closure of ϕ. We
define the set of vertices:

V = S × FL(ϕ)

The following table shows the owners, successors with edge guards and priorities of vertices. We
write w | C as a successor of v to denote that there is an edge (v, w) ∈ E such that the edge is
guarded by set C ⊆ C, i.e. θ(v, w) = C.

Vertex Owner Successor | guard set Priority
(s,⊥) 0 0
(s,>) 1 0
(s, ψ1 ∨ ψ2) 0 (s, ψ1) | C and (s, ψ2) | C 0
(s, ψ1 ∧ ψ2) 1 (s, ψ1) | C and (s, ψ2) | C 0

(s, 〈a〉ψ) 0 (s′, ψ) | {c ∈ C | c |= g} for every s
a | g−−−→ s′ 0

(s, [a]ψ) 1 (s′, ψ) | {c ∈ C | c |= g} for every s
a | g−−−→ s′ 0

(s, µX.ψ) 1 (s, ψ[X := µX.ψ]) | C 2badepth(X)/2c+ 1
(s, νX.ψ) 1 (s, ψ[X := νX.ψ]) | C 2badepth(X)/2c

Since the Fischer-Ladner formulas are closed we never get a vertex (s,X).
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Similar to a parity game, a VPG can be made total by creating sink vertices l0 and l1 with
priority 1 and 0 respectively and each having an edge to itself with guard set C. When the VPG
is played for configuration c and the token ends up in lα then clearly player α looses. We make
a VPG total by adding vertices l0 and l1 and adding an edge from every vertex v ∈ Vα that has⋃
{θ(v, w) | (v, w) ∈ E} 6= C to lα with guard set C\

⋃
{θ(v, w) | (v, w) ∈ E}. Any vertex vα

where player α could not have made a move in the original game played for configuration c now
has an edge admitting c to lα where player α still looses. An edge admitting c is only added
if there was no outgoing edge admitting c so the winner of vertex v for configuration c in the
original game is the same as in the total game.

Example 5.3. Consider FTS M , as shown in Figure 5.2, that has features f and g and products
{∅, {f}, {f, g}}. Modal µ-calculus formula ϕ = µX.([a]X ∨ 〈b〉>) expresses that on any path
reached by a’s we can eventually do a b action. This holds true for product {∅} because s1 can
only go to s2 where b can always be done. For product {f} this does not hold because once in
s1 it is possible to stay in s1 indefinitely through an a transition. For product {f, g} the formula
does hold because we can indeed stay in s1 indefinitely, however from s1 we can always do a b
step.

Figure 5.3 shows the VPG resulting from FTS2VPG(M,ϕ) made total using sink vertices l0 and
l1. Products {∅}, {f}, {f, g} are depicted as configurations c1, c2, c3 respectively.

s1 s2

a | >

a | >

b | f ∧ g

a | f

b | >

Figure 5.2: FTS M

0

(s1, 〈b〉>)

1

l0

0

(s1,>)

1(s1, µX.φ)

0(s1, [a](µX.φ) ∨ 〈b〉>)

0

(s1, [a](µX.φ))

1 (s2, µX.φ)

0 (s2, [a](µX.φ) ∨ 〈b〉>)

0

(s2, [a](µX.φ))
0

(s2, 〈b〉>)

0

(s2,>)

0

l1

C

C

C

{c1, c2}

C

{c3}

C

C

C

C

C

C

{c2, c3}

C

C

C

Figure 5.3: Total VPG created by FTS2VPG with φ = [a]X ∨ 〈b〉>

In order to prove that solving a VPG created by FTS2VPG can be used to model check an FTS
we inspect the relations we have seen between FTSs, LTSs, parity games and VPGs. Given FTS
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M and formula ϕ we can project M onto a product to create an LTS and create a parity game
from the resulting LTS and ϕ using LTS2PG. Alternatively we can create a VPG from M and
ϕ using FTS2VPG which can be projected onto a configuration to get a parity game. These
different transformations are shown in the following diagram, where Πp depicts a projection onto
product p or configuration p:

FTS M VPG Ĝ

LTS M|p PG G PG Ĝ|p

FTS2VPG(M,ϕ)

LTS2PG(M|p, ϕ)

Πp Πp

In the following lemma we prove that in fact parity game G and Ĝ|p are identical.

Lemma 5.4. Given FTS M = (S,Act, trans, s0, N, P, γ), closed modal µ-calculus formula ϕ and
product p ∈ P it holds that parity games LTS2PG(M|p, ϕ) and FTS2VPG(M,ϕ)|p are identical.

Proof. Let Ĝ = (V̂ , V̂0, V̂1, Ê, Ω̂,C, θ) be the VPG created from FTS2VPG(M,ϕ) and let G =
(V, V0, V1, E,Ω) be the parity game created from LTS2PG(M|p, ϕ). Let the projection of Ĝ onto

p (using Definition 5.2) be the parity game Ĝ|p = (V̂ , V̂0, V̂1, Ê
′, Ω̂). We prove that Ĝ|p = G.

First observe that when an FTS is projected onto a product (using Definition 4.2) the FTS has
the same states as the projection, we find that M has the same states as M|p. The vertices
created by LTS2PG and FTS2VPG rely only on the formula and the states in the LTS and FTS
respectively. Similarly the owner and priority of these vertices is only determined by the states
and the formula. Given that M and M|p have the same states we find that V̂ = V , V̂0 = V0,

V̂1 = V1 and Ω̂ = Ω.

We are left with showing Ê′ = E in order to conclude Ĝ|p = G. Consider vertex v, we distinguish
two cases.

Let v = (s, 〈a〉ψ) or v = (s, [a]ψ). If v has a successor to (s′, ψ) in G then we have s
a−→ s′ in M|p

and therefore s
a | f−−−→ s′ with p |= f in M . Using the FTS2VPG definition we find that vertex v

in Ĝ has successor (s′, ψ) with a guard containing p. Since p is in the guard set we also find this
successor in the projection Ĝ|p.

If v has a successor to (s′, ψ) in Ĝ|p then in Ĝ the edge from v to (s′, ψ) also exists and the set

guarding it contains p. In M we find s
a | g−−−→ s′ with p |= g, therefore we find s

a−→ s′ in M|p.
Using the LTS2PG definition we find that vertex v in G has successor (s′, ψ).

Let v 6= (s, 〈a〉ψ) and v 6= (s, [a]ψ). Any successor of v created by LTS2PG does not depend on
the LTS but only on the formula. Similarly any successor of v created by FTS2VPG does not
depend on the FTS and has guard set C. The two definitions create the same successors for v,
so the successors in games G and Ĝ are the same. Since the guard sets of these successors are
always C the successors are also the same in Ĝ|p.

We have proven Ê′ = E and therefore Ĝ|p = G.

Using this lemma we get the following diagram showing the relation between FTSs, LTSs, parity
games and VPGs.
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FTS M VPG Ĝ

LTS M|p PG Ĝ|p

FTS2VPG(M,ϕ)

LTS2PG(M|p, ϕ)

Πp Πp

We know from existing theory that solving a parity game constructed using LTS2PG can be
used to model check an LTS, furthermore we have seen that the winning sets of a VPG for
configuration c are equal to the winning sets of that VPG projected onto c. Given these facts
and the lemma above we can prove that VPGs can be used to model check FTSs.

Theorem 5.5. Given:

• FTS M = (S,Act, trans, s0, N, P, γ),

• closed modal µ-calculus formula ϕ,

• product p ∈ P and

• state s ∈ S

it holds that (M|p, s) |= ϕ if and only if (s, ϕ) ∈W p
0 in FTS2VPG(M,ϕ).

Proof. Assume (M|p, s) |= ϕ, using the relation between LTSs and parity games (Theorem 3.2)
we find that vertex (s, ϕ) in parity game LTS2PG(M|p, ϕ) is won by player 0. Using Lemma 5.4
we find that vertex (s, ϕ) is also in game FTS2VPG(M,ϕ)|p and is also won by player 0. Using
Theorem 5.3 we find that the winning sets of a VPG for configuration c are the same as the
winning sets of the projection of the VPG onto c. We find that vertex (s, ϕ) is winning in game
FTS2VPG(M,ϕ) for configuration p, hence (s, ϕ) ∈W p

0 .

Similarly if (M|p, s) 6|= ϕ vertex (s, ϕ) is won by player 1 in parity game LTS2PG(M|p, ϕ) and
we get (s, ϕ) /∈W p

0 .

Example 5.4. Again consider Example 5.3. We argued that M satisfies ϕ for products {∅} and
{f, g}. We see, in the VPG in Figure 5.3, that (s1, µX.([a]X ∨ 〈b〉>)) is indeed winning for
player 0 when played for {∅} = c1 using the strategy

σc10 = {(s1, [a](µX.φ) ∨ 〈b〉>) 7→ (s1, [a](µX.φ)), (s2, [a](µX.φ) ∨ 〈b〉>) 7→ (s2, 〈b〉>), . . . }

Using this strategy play always ends up in l1, which is winning for player 0.

For product {f} = c2 player 1 wins using strategy

σc21 = {(s1, [a](µX.φ)) 7→ (s1, µX.φ), . . . }

Using this strategy we either infinitely often visit (s1, µX.ψ) in which case player 1 wins or player
0 can decide to play to (s1, 〈b〉>) in which case play ends in l0 and player 1 wins.

For product {f, g} = c3 player 0 wins using strategy

σc30 = {(s1, [a](µX.φ) ∨ 〈b〉>) 7→ (s1, 〈b〉>), (s1, 〈b〉>) 7→ (s1,>), . . . }

Using this strategy player 0 can prevent the path from infinitely often visiting (s1, µX.ψ) by
playing to (s1, 〈b〉>) and to (s1,>) next, which brings the play in l1 winning it for player 0.
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We conclude by visualizing the verification of an FTS in Figure 5.4.

FTS M Modal µ-calculus formula ϕ

VPG

M|p
?

|= ϕ

for every valid product p in M

Figure 5.4: FTS verification using VPG
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6. Solving variability parity games
In this section we inspect methods so solve VPGs, for convenience we only consider total VPGs.
We distinguish two general approaches for solving VPGs. The first approach is to simply project
the VPG to the different configurations and solve all the resulting parity games independently;
we call this independently solving a VPG. Existing parity game algorithms can be used in this
approach. Alternatively, we solve the VPG collectively where a VPG is solved in its entirety and
similarities between the configurations are used to improve performance.

As shown in Chapter 5 the projections of VPGs originating from an FTS and a modal µ-calculus
formula are identical to the parity games constructed from an projections of the FTS and a model
µ-calculus formula. Therefore, independently solving a VPG is the same as model checking all
the different products in an FTS independently

We aim to solve VPGs originating from model verification problems, such VPGs generally have
certain properties that a random VPG might not have. In general (V)PGs originating from
model verification problems have a relatively low number of distinct priorities compared to the
number of vertices, this is because new priorities are only introduced when fixed points are nested
in the µ-calculus formula. Furthermore the transition guards of FTSs are boolean formulas over
features. In general these formulas will be quite simple, specifically excluding or including a
small number of features.

6.1 Recursive algorithm for variability parity games

We can use the original Zielonka’s recursive algorithm to solve VPGs by creating one big parity
game of a VPG through a process we introduce called unification. This parity game can be
solved using the original recursive algorithm. However, we introduce a way of representing this
parity game that potentially increases performance and exploits commonalities between different
configurations in the VPG.

6.1.1 Unified parity games

We can create a parity game from a VPG by taking all the projections of the VPG, which are
parity games, and combining them into one parity games by taking the union of them. We call
the resulting parity games the unification of the VPG. A parity game that is the result of a
unification is called a unified parity game. Also any subgame of it will be called a unified parity
games. A unified parity game always has a VPG from which it originated.

Definition 6.1. Given VPG Ĝ = (V̂ , V̂0, V̂1, Ê, Ω̂,C, θ) we define the unification of Ĝ, denoted
by Ĝ↓, as

Ĝ↓ =
⊎
c∈C

Ĝ|c

where the disjoint union of two parity games is defined as

(V, V0, V1, E,Ω) ] (V ′, V ′0 , V
′
1 , E

′,Ω′) = (V ] V ′, V0 ] V ′0 , V1 ] V ′1 , E ] E′,Ω ] Ω′)

and the disjoint union of functions Ω : V → N and Ω′ : V ′ → N is defined as

(Ω ] Ω′)(v) =

{
Ω(v) if v ∈ V
Ω′(v) if v ∈ V ′
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In this section we use the hat decoration (Ĝ, V̂ , Ê, Ω̂, Ŵ ) when referring to a VPG and use no
hat decoration when referring to a (unified) parity game.

Every vertex in unified parity game Ĝ↓ originates from a configuration and an original vertex.
Therefore we can consider every vertex in a unification as a vertex-configuration pair, i.e. V =
C × V̂ . We can consider edges in a unification similarly, so E ⊆ (C × V̂ ) × (C × V̂ ). Note that
edges do not cross configurations, so for every ((c, v̂), (c′, v̂′)) ∈ E we have c = c′. We call set V̂
the origin vertices of a unified parity game.

Example 6.1. Figure 6.1 shows a VPG and its the unification.

2v̂1

1v̂2 0

v̂3

{c1}

{c1, c2} {c1, c2}

{c1, c2}

{c2}

{c1}

{c1}

(a) VPG with 2 configurations

2(c1, v̂1)

1(c1, v̂2) 0

(c1, v̂3)

2 (c2, v̂1)

1

(c2, v̂2)

0

(c2, v̂3)

(b) Unified parity game, created by unifying the two projections

Figure 6.1: A VPG with its corresponding unified parity game

Clearly solving unified parity game Ĝ↓ solves all the projections of VPG Ĝ = (V̂ , V̂0, V̂1, Ê, Ê,C, θ).
Theorem 5.3 shows that if we solve all the projections of a VPG we have solved the VPG. So
solving Ĝ↓ also solves Ĝ. Consider winning sets (W c

0 ,W
c
1 ) for Ĝ played for configuration c and

winning sets (Q0, Q1) for Ĝ↓. Using Theorem 5.3 we find the following relation:

W c
α = {v̂ | (c, v̂) ∈ Qα}

Projections and totality

A unified parity game can be projected onto a configuration to get one of the parity games from
which it is the union. This is very similar to the projection of a VPG onto a configuration.
Specifically we have for VPG Ĝ and configuration c that Ĝ|c = (Ĝ↓)|c. Eventhough these
definitions are so similar we do need to introduce the projection of unified parity games to be
able to reason about projections of subgames of unified parity games.
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Definition 6.2. The projection of unified parity game G = (V, V0, V1, E,Ω) to configuration c,
denoted as G|c, is the parity game (V ′, V ′0 , V

′
1 , E

′,Ω) such that:

• V ′ = {v̂ | (c, v̂) ∈ V },

• V ′0 = {v̂ | (c, v̂) ∈ V0},

• V ′1 = {v̂ | (c, v̂) ∈ V1} and

• E′ = {(v̂, ŵ) | ((c, v̂), (c, ŵ)) ∈ E}

One of the properties of a parity game is its totality; a game is total if every vertex has at least
one outgoing vertex. The VPGs we consider are also total, meaning that every vertex has, for
every configuration c ∈ C, at least one outgoing edge admitting c. Because VPGs are total their
unifications are also total. Since edges in a unified parity game do not cross configurations the
projection of a total unified parity game is also total.

6.1.2 Solving unified parity games

Since unified parity games are total they can be solved using Zielonka’s recursive algorithm. The
recursive algorithm revolves around the attractor operation. Consider the example presented in
Figure 6.1. Vertices with the highest priority are

{(c1, v̂1), (c2, v̂1)}

attracting these for player 0 gives the set

{(c1, v̂1),(c2, v̂1),

(c1, v̂2),(c2, v̂2),

(c2, v̂3)}

The algorithm tries to attract vertices (c1, v̂2) and (c2, v̂2) because they have edges to {(c1, v̂1), (c2, v̂1)}.
So the algorithm, in this case, asks the questions: ”Can vertices (c1, v̂2) and (c2, v̂2) be attrac-
ted?” We could also ask the question: ”For which configurations can we attract origin vertex
v̂2?” Since the vertices in unified parity games are pairs of configurations and origin vertices we
can, instead of considering vertices individually, consider origin vertices and try to attract as
many configurations as possible for each origin vertex. This is the idea of the collective recursive
algorithm for VPGs we present next. We introduce a way of efficiently representing unified parity
games and an algorithm that behaves the same as the original recursive algorithm but uses the
modified representation. Using this representation we can create an attractor set algorithm that
tries to attract as many configurations per origin vertex as possible instead of trying to attract
each vertex individually.

In VPGs originating from FTSs a large number of edges admit all configurations (as is evident
from Definition 5.3). Furthermore the sets that do not admit all configurations originate from the
boolean formulas guarding transitions in the FTS. As argued before, these sets will most likely
admit many configurations, because in many cases the boolean function will simply include
or exclude a small number of features. Because of these two facts we hypothesise that VPGs
originating from FTSs have edge guard sets that are relatively large (i.e. admit many of the
configurations) and therefore we can attract many configurations at the same time per origin
vertex.
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6.1.3 Representing unified parity games

Unified parity games have a specific structure because they are the union of parity games that
have the same vertices with the same owner and priority. Because they have the same priority
we do not actually need to create a new function that is the unification of all the projections, we
can simply use the original priority assignment function because the following relation holds:

Ω(c, v̂) = Ω̂(v̂)

Similarly we can use the original partition sets V̂0 and V̂1 instead of having the new partition V0

and V1 because the following relations hold:

(c, v̂) ∈ V0 ⇐⇒ v̂ ∈ V̂0

(c, v̂) ∈ V1 ⇐⇒ v̂ ∈ V̂1

So instead of considering unified parity game (V, V0, V1, E,Ω) we consider (V, V̂0, V̂1, E, Ω̂).

Next we consider how we represent vertices and edges in a unified parity game. A set X ⊆ (C×V̂ )
can be represented as a total function Xλ : V̂ → 2C. The set X and function Xλ are equivalent,

denoted by the operator =λ: 2C×V̂ × (V̂ → 2C)→ B, such that

X =λ X
λ if and only if (c, v̂) ∈ X ⇐⇒ c ∈ Xλ(v̂) for all c ∈ C and v̂ ∈ V̂

We can also represent edges as a total function Eλ : Ê → 2C. The set E and function Eλ are

equivalent, denoted by the operator =λ 2(C×V̂ )×(C×V̂ ) × (Ê → 2C)→ B, such that:

E =λ E
λ if and only if ((c, v̂), (c, v̂′)) ∈ E ⇐⇒ c ∈ Eλ(v̂, v̂′) for all c ∈ C and v̂, v̂′ ∈ V̂

We use the =λ operator to indicate that a set and a function represent the same vertices or
edges. For convenience of notation we denote equality for edges and vertices both using the =λ

operator. We define λ∅ to be the function that maps every element to ∅, clearly λ∅ =λ ∅.

We call using a set of pairs to represent vertices and edges a set-wise representation and using
functions a function-wise representation.

Example 6.2. We consider a few examples of (sub)games and show their set-wise and function-
wise representation. First reconsider the following unified parity game.

2(c1, v̂1)

1(c1, v̂2) 0

(c1, v̂3)

2 (c2, v̂1)

1

(c2, v̂2)

0 (c2, v̂3)

This game can be represented set-wise:

V = {(c1, v̂1), (c2, v̂1), (c1, v̂2), (c2, v̂2), (c1, v̂3), (c2, v̂3)}
E = {((c1, v̂1), (c1, v̂1)), ((c1, v̂1), (c1, v̂2)), ((c1, v̂2), (c1, v̂1)),

((c1, v̂2), (c1, v̂3)), ((c1, v̂3), (c1, v̂1)), ((c1, v̂3), (c1, v̂3)),

((c2, v̂1), (c2, v̂2)), ((c2, v̂2), (c2, v̂1)), ((c2, v̂2), (c2, v̂3)), ((c2, v̂3), (c2, v̂2))}
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and function-wise:

V λ = {v̂1 7→ {c1, c2}, v̂2 7→ {c1, c2}, v̂3 7→ {c1, c2}}
Eλ = {(v̂1, v̂2) 7→ {c1, c2}, (v̂2, v̂1) 7→ {c1, c2}, (v̂2, v̂3) 7→ {c1, c2},

(v̂1, v̂1) 7→ {c1},
(v̂3, v̂1) 7→ {c1},
(v̂3, v̂2) 7→ {c2},
(v̂3, v̂3) 7→ {c1}}

Consider the following subgame:

2(c1, v̂1) 2 (c2, v̂1)

1

(c2, v̂2)

This subgame can be represented set-wise:

V = {(c1, v̂1), (c2, v̂1), (c2, v̂2)}
E = {((c1, v̂1), (c1, v̂1)),

((c2, v̂1), (c2, v̂2)), ((c2, v̂2), (c2, v̂1))}

and function-wise:

V λ = {v̂1 7→ {c1, c2}, v̂2 7→ {c2}, v̂3 7→ ∅}
Eλ = {(v̂1, v̂2) 7→ {c2}, (v̂2, v̂1) 7→ {c2}, (v̂2, v̂3) 7→ ∅,

(v̂1, v̂1) 7→ {c1},
(v̂3, v̂1) 7→ ∅,
(v̂3, v̂2) 7→ ∅}

Finally consider an empty subgame which we can represent set-wise:

V = ∅, E = ∅

and function-wise:
V λ = λ∅, Eλ = λ∅

We define the union of two functions Xλ : V̂ → 2C and Y λ : V̂ → 2C point-wise:

(Xλ ∪ Y λ)(v̂) = Xλ(v̂) ∪ Y λ(v̂)

We also define the subset or equal relation point-wise:

Xλ ⊆ Y λ if and only if Xλ(v̂) ⊆ Y λ(v̂) for all v̂ ∈ V̂

Given Xλ =λ X and Y λ =λ Y , then clearly Xλ ⊆ Y λ ⇐⇒ X ⊆ Y and Xλ ∪ Y λ =λ X ∪ Y .
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6.1.4 Algorithms

Using the recursive algorithm as a basis we can solve a VPG in numerous ways. First of all we
can solve the projections, i.e. solve the VPG independently. Alternatively we can solve it col-
lectively using a set-wise representation or a function-wise representation. For the function-wise
representation we are working with functions mapping vertices and edges to sets of configur-
ations. These sets of configurations can either be represented explicitly or symbolically. The
following diagram shows the different algorithms:

Recursive algorithm

Independent Collective

Set-wise Function-wise

Explicit Symbolic

The independent approach uses the original algorithm repeatedly; once for every projection. The
collective set-wise approach also uses the original algorithm, applied to a unified parity game.
The function-wise representation requires modifications to the algorithm, as we try to attract
multiple configurations at the same time. As we will discuss later, this modified algorithm relies
heavily on set operations over sets of configurations.

Symbolically representing sets of configurations

For VPGs originating from an FTS, the configuration sets guarding the edges either admit all
configurations or originate from boolean functions over the features. These boolean functions
will most likely be relatively simple and are therefore specifically appropriate to represent as
BDDs.

Set operations ∩,∪, \ over two explicit sets can be performed in O(m) where m is the maximum
size of the sets. This is better than the time complexity of a set operation using BDDs, which
is O(m2) (as explained in preliminary section 3.4.1). However if the BDDs are small then the
set size can still be large but the set operations are performed very quickly. This is a trade-off
between worst-case time complexity and actual running time; using a symbolic representation
might yield better results if the sets are structured in such a way that the BDDs are small,
however if the sets are not structured in a way that the BDDs are small then the running time
is worse than with an explicit representation.

We hypothesize that since the collective function-wise symbolic recursive algorithm relies heavily
on set operations over sets of configurations this algorithm will perform well when solving VPGs
originating from FTSs.

A note on symbolically solving games

The function-wise algorithm has two variants: an explicit and a symbolic variant. In the explicit
variant both the game graph and the sets of configurations are represented explicitly. In the

Verifying SPLs using parity games expressing variability 35



symbolic variant the sets of configurations are represented symbolically, however the graph is still
represented explicitly, so the algorithm is partially symbolic and partially explicit. Alternatively
an algorithm could completely work symbolically by representing both the graph and the sets of
configurations symbolically.

Solving parity games symbolically has been studied in [33]. The obstacle is that representing
graphs with a large number of nodes can make the corresponding BDDs very complex if no
underlying structure is known for the graph. In such a case performance decreases rapidly. For
model verification problems a game graph can conceivably be represented as a BDD by using the
structure of the original model to build the BDD. However this is not trivial as argued in [33].
As to not repeat work done in [33] we only consider algorithms where we represent the graph
explicitly.

6.1.5 Recursive algorithm using a function-wise representation

The recursive algorithm can be modified to work with the function-wise representation of ver-
tices and edges. The algorithm behaves the same as the original; operations are modified to
work with the different representation. Pseudo code for the modified algorithm is presented
in Algorithm 3. Note that for this pseudo code no distinction is needed between explicit and
symbolic representations of sets of configurations.

Algorithm 3 RecursiveUPG(unified parity game G = (
V λ : V̂ → 2C,
V̂0 ⊆ V̂ ,
V̂1 ⊆ V̂ ,
Eλ : Ê → 2C,
Ω̂ : V̂ → N))

1: if V λ = λ∅ then
2: return (λ∅, (λ∅)
3: end if
4: h← max{Ω̂(v̂) | V λ(v̂) 6= ∅}
5: α← 0 if h is even and 1 otherwise
6: Uλ ← λ∅, Uλ(v̂)← V λ(v̂) for all v̂ with Ω̂(v̂) = h
7: Aλ ← α-FAttr(G,Uλ)

8: (Wλ
0
′
,Wλ

1
′
)← RecursiveUPG(G\Aλ)

9: if Wλ
α
′

= λ∅ then

10: Wλ
α ← Aλ ∪Wλ

α
′

11: Wλ
α ← λ∅

12: else
13: Bλ ← α-FAttr(G,Wλ

α
′
)

14: (Wλ
0
′′
,Wλ

1
′′
)← RecursiveUPG(G\Bλ)

15: Wλ
α ←Wλ

α
′′

16: Wλ
α ←Wλ

α
′′ ∪Bλ

17: end if
18: return (Wλ

0 ,W
λ
1 )

We introduce a modified attractor definition to work with the function-wise representation.
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Definition 6.3. Given unified parity game G = (V λ, V̂0, V̂1, E
λ, Ω̂), represented function-wise,

and a function Uλ ⊆ V λ, with Uλ 6= λ∅, we inductively define α-FAttr(Gλ, Uλ) such that

Uλ0 (v̂) = Uλ(v̂)

For i ≥ 0:

Uλi+1(v̂) = Uλi (v̂) ∪

{
V λ(v̂) ∩

⋃
v̂′(E

λ(v̂, v̂′) ∩ Uλi (v̂′)) if v̂ ∈ V̂α
V λ(v̂) ∩

⋂
v̂′((C\Eλ(v̂, v̂′)) ∪ Uλi (v̂′)) if v̂ ∈ V̂α

Finally:

α-FAttr(Gλ, Uλ)(v̂) =
⋃
i≥0

Uλi (v̂)

This attractor definition relies heavily on performing set operations on sets of configurations.
We will show later that this definition is equal to the original attractor set definition (Definition
3.16).

We also introduce a modified subgame definition to work with the function-wise representation.

Definition 6.4. For unified parity game G = (V λ, V̂0, V̂1, E
λ, Ω̂), represented function-wise, and

function Xλ ⊆ V λ we define the subgame G\Xλ = (V λ
′
, V̂0, V̂1, E

λ′, Ω̂) such that:

• V λ′(v̂) = V λ(v̂)\Xλ(v̂)

• Eλ′(v̂, v̂′) = Eλ(v̂, v̂′) ∩ V λ′(v̂) ∩ V λ′(v̂′)

Note that we can omit the modification to the partition (V0 and V1) because, as we have seen,
we can use the partitioning from the VPG in the representation of unified parity games. As we
will show later, this definition is equal to the original subgame definition (Definition 3.17).

Example 6.3. Consider unified parity game G = (V λ, V̂0, V̂1, E
λ, Ω̂), originating from a VPG

with configurations C = {c1, c2, c3}, represented function-wise in Figure 6.2. We annotated every
edge (v, w) with the set Eλ(v, w). All the origin vertices are depicted and for every origin vertex
v̂ we annotate the square or diamond with a label v̂ | C where C = V λ(v̂). We calculate the
function-wise attractor set for player 0 from origin vertex v̂2 with all configuration, we have

Uλ0 = Uλ = {v̂1 7→ ∅, v̂2 7→ C, v̂3 7→ ∅, v̂4 7→ ∅, v̂5 7→ ∅, v̂6 7→ ∅, v̂7 7→ ∅}

After the first iteration we find

Uλ1 = {v̂1 7→ C, v̂2 7→ C, v̂3 7→ C, v̂4 7→ ∅, v̂5 7→ {c2}, v̂6 7→ ∅, v̂7 7→ ∅}

Note that v̂5 can be attracted for configuration {c2} because C\Eλ(v̂5, v̂7) = {c2}, Uλ0 (v̂3) = C
and for any other origin vertex v̂ we have C\Eλ(v̂5, v̂) = C.

In the next iteration we find

Uλ2 = {v̂1 7→ C, v̂2 7→ C, v̂3 7→ C, v̂4 7→ {c1, c2}, v̂5 7→ {c2}, v̂6 7→ {c3}, v̂7 7→ ∅}

Next iterations result in the same function, so 0-FAttr(G,Uλ) = Uλ2 . We create subgame G\Uλ2
depicted in Figure 6.3.
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5

v̂1 | C

6

v̂2 | C

4

v̂3 | C

1v̂4 | C 2

v̂5 | C

3 v̂6 | C

2

v̂7 | C

C C

{c1, c2} {c1, c2}

{c1, c3}

C

{c1, c2}

{c1, c3} {c1, c3}

C

{c1, c3} {c1, c2}

{c1, c2}

Figure 6.2: Unified parity game originating from a VPG with configurations C = {c1, c2, c3}

In the next two lemma’s we show that the function-wise attractor and subgame operators give
results that are equal to the original attractor and subgame operators.

Lemma 6.1. Given:

• unified parity game G = (V, V̂0, V̂1, E, Ω̂),

• set U ⊆ V , and

• function Uλ such that U =λ U
λ

it holds that the function-wise attractor α-FAttr(G,Uλ) is equivalent to the set-wise attractor
α-Attr(G,U) for any α ∈ {0, 1}.

Proof. Let V and E be the set-wise representation of the vertices and edges for game G. Let V λ

and Eλ be the function-wise representation of the vertices and edges for game G.

The following properties hold by definition:

(c, v̂) ∈ V ⇐⇒ c ∈ V λ(v̂)

(c, v̂) ∈ U ⇐⇒ c ∈ Uλ(v̂)

((c, v̂), (c, v̂′)) ∈ E ⇐⇒ c ∈ Eλ(v̂, v̂′)

Since the attractors are inductively defined and U0 =λ U
λ
0 (because U =λ U

λ) we have to prove
that for some i ≥ 0, with Ui =λ U

λ
i , we have Ui+1 =λ U

λ
i+1, which holds iff:

(c, v̂) ∈ Ui+1 ⇐⇒ c ∈ Uλi+1(v̂)

Let (c, v̂) ∈ V (and therefore c ∈ V λ(v̂)), we consider 4 cases.
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5

v̂1 | ∅

6

v̂2 | ∅

4

v̂3 | ∅

1v̂4 | {c3} 2

v̂5|{c1, c3}

3 v̂6 | {c1, c2}

2

v̂7 | C

∅ ∅

∅ ∅ ∅ ∅ ∅

{c3}

{c3}
{c1, c3} {c1, c2}

{c1c2}

{c1}

Figure 6.3: Unified parity game G\Uλ2

• Case: v̂ ∈ V̂α and (c, v̂) ∈ Ui+1:
To prove: c ∈ Uλi+1(v̂).

If (c, v̂) ∈ Ui then c ∈ Uλi (v̂) and therefore c ∈ Uλi+1(v̂). If (c, v̂) /∈ Ui then we have
c /∈ Uλi (v̂).

Because v̂ ∈ V̂α and c ∈ V λ(v̂) we get

Uλi+1 =
⋃
v̂′

(Eλ(v̂, v̂′) ∩ Uλi (v̂′))

There exists an (c′, v̂′) ∈ V such that (c′, v̂′) ∈ Ui and ((c, v̂), (c′, v̂′)) ∈ E. Because edges
do not cross configurations we can conclude that c′ = c. Due to equivalence we have
c ∈ Uλi (v̂′) and c ∈ Eλ(v̂, v̂′). If we fill this in in the above formula we can conclude that
c ∈ Uλi+1(v̂).

• Case: v̂ ∈ V̂α and (c, v̂) /∈ Ui+1:
To prove: c /∈ Uλi+1(v̂).

First we observe that since (c, v̂) /∈ Ui+1 we get (c, v̂) /∈ Ui and therefore c /∈ Uλi (v̂).

Because v̂ ∈ V̂α and c ∈ V λ(v̂) we get

Uλi+1 =
⋃
v̂′

(Eλ(v̂, v̂′) ∩ Uλi (v̂′))

Assume c ∈ Uλi+1(v̂). There must exist a v̂′ such that c ∈ Eλ(v̂, v̂′) and c ∈ Uλi (v̂′). Due
to equivalence we have a vertex ((c, v̂), (c, v̂′)) ∈ E and (c, v̂′) ∈ Ui. In which case (c, v̂)
would be attracted and would be in Ui+1 which is a contradiction.
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• Case: v̂ ∈ V̂α and (c, v̂) ∈ Ui+1:
To prove: c ∈ Uλi+1(v̂).

If (c, v̂) ∈ Ui then c ∈ Uλi (v̂) and therefore c ∈ Uλi+1(v̂). If (c, v̂) /∈ Ui then we have
c /∈ Uλi (v̂).

Because v̂ ∈ V̂α we get

Uλi+1 = V λ(v̂) ∩
⋂
v̂′

((C\Eλ(v̂, v̂′)) ∪ Uλi (v̂′)

Assume c /∈ Uλi+1(v̂). Because c ∈ V λ(v̂) there must exist an v̂′ such that

c /∈ ((C\Eλ(v̂, v̂′)) and c /∈ Uλi (v̂′)

which is equal to
c ∈ Eλ(v̂, v̂′) and c /∈ Uλi (v̂′)

By equivalence we have ((c, v̂), (c, v̂′)) ∈ E and (c, v̂′) /∈ Ui. Which means that (c, v̂) will
not be attracted and (c, v̂) /∈ Ui+1 which is a contradiction.

• Case: v̂ ∈ V̂α and (c, v̂) /∈ Ui+1:
To prove: c /∈ Uλi+1(v̂).

First we observe that since (c, v̂) /∈ Ui+1 we get (c, v̂) /∈ Ui and therefore c /∈ Uλi (v̂).

Because v̂ ∈ V̂α we get

Uλi+1 = V λ(v̂) ∩
⋂
v̂′

((C\Eλ(v̂, v̂′)) ∪ Uλi (v̂′)

Since (c, v̂) is not attracted there must exist a (c, v̂′) ∈ V such that

((c, v̂), (c, v̂′)) ∈ E and (c, v̂′) /∈ Ui

By equivalence we have
c ∈ Eλ(v̂, v̂′) and c /∈ Uλi (v̂′)

Which is equal to
c /∈ (C\Eλ(v̂, v̂′)) and c /∈ Uλi (v̂′)

From which we conclude
c /∈ ((C\Eλ(v̂, v̂′)) ∪ Uλi (v̂′)))

Therefore we have c /∈ Uλi+1(v̂).

Lemma 6.2. Given:

• unified parity game G = (V, V̂0, V̂1, E, Ω̂),

• set U ⊆ V and

• function Uλ such that U =λ U
λ
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it holds that the subgame G\U = (V ′, V̂0, V̂1, E
′, Ω̂) represented set-wise is equal to the subgame

G\Uλ represented function-wise.

Proof. Let V λ and Eλ denote the function-wise representations of V and E respectively. Let
G\Uλ = (V λ

′
, V̂0, V̂1, E

λ′, Ω̂). We know V =λ V
λ, E =λ E

λ and U =λ U
λ. To prove: V ′ =λ V

λ′

and E′ =λ E
λ′.

1. Let (c, v̂) ∈ V .

If (c, v̂) ∈ U then c ∈ Uλ(v̂), also (c, v̂) /∈ V ′ (by Definition 3.17) and c /∈ V λ
′
(v̂) (by

Definition 6.4).

If (c, v̂) /∈ U then c /∈ Uλ(v̂), also (c, v̂) ∈ V ′ (by Definition 3.17) and c ∈ V λ
′
(v̂) (by

Definition 6.4).

We conclude that V ′ =λ V
λ′.

2. Let ((c, v̂), (c, ŵ)) ∈ E.

If (c, v̂) ∈ U then (c, v̂) /∈ V ′ and c /∈ V λ′(v̂) (as shown above). We get ((c, v̂), (c, ŵ)) /∈
V ′ × V ′ so ((c, v̂), (c, ŵ)) /∈ E′ (by Definition 3.17). Also c /∈ Eλ′(v̂, ŵ) (by Definition 6.4).

If (c, ŵ) ∈ U then we apply the same logic.

If neither is in U then both are in V ′ and in V ′ × V ′ and therefore the ((c, v̂), (c, ŵ)) ∈ E′.
Also we get c ∈ V λ′(v̂) and c ∈ V λ′(ŵ) so we get c ∈ Eλ′(v̂, ŵ) (by Definition 6.4).

We conclude that E′ =λ E
λ′.

Next we prove the correctness of the algorithm by showing that the winning sets of the function-
wise algorithm are equal to the winning sets of the set-wise algorithm.

Theorem 6.3. Given unified parity game G = (V, V̂0, V̂1, E, Ω̂) and Gλ = (V λ, V̂0, V̂1, E
λ, Ω̂)

which is the functional representation of G. It holds that the winning sets resulting from RecursiveUPG(Gλ)
are equal to the winning sets resulting from RecursivePG(G).

Proof. Proof by induction on G.

Base: When there are no vertices then RecursiveUPG(Gλ) returns (λ∅, λ∅) and RecursivePG(G)
returns (∅, ∅), these two results are equal therefore the theorem holds in this case.

Step: Player α gets the same value in both algorithms since the highest priority is equal for
both algorithms.

Let U = {(c, v̂) ∈ V | Ω̂(v̂) = h} (as calculated by RecursivePG) and Uλ(v̂) = V λ(v̂) for all v̂
with Ω̂(v̂) = h (as calculated by RecursiveUPG). We will show that U =λ U

λ.

Let (c, v̂) ∈ U . Then Ω̂(v̂) = h and therefore Uλ(v̂) = V λ(v̂). Since U ⊆ V we have (c, v̂) ∈ V
and because the equality between V and V λ we get c ∈ V λ(v̂) and c ∈ Uλ(v̂).

Let c ∈ Uλ(v̂), since Uλ(v̂) is not empty we have Ω̂(v̂) = h, furthermore c ∈ V λ(v̂) and therefore
(c, v̂) ∈ V . We can conclude that (c, v̂) ∈ U and U =λ U

λ.
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For the rest of the algorithm it is sufficient to see that attractor sets are equal if the game and
input set are equal (as shown in Lemma 6.1) and that the created subgames are equal (as shown
in Lemma 6.2). Since the subgames are equal we can apply the theorem on it by induction and
conclude that the winning sets are also equal.

Theorem 5.3 shows that solving a unified parity game solves the VPG, furthermore the algorithm
RecursiveUPG correctly solves a unified parity game. Therefore, we can conclude that for VPG
Ĝ vertex v̂ is won by player α for configuration c if and only if c ∈ Wλ

α (v̂) with (Wλ
0 ,W

λ
1 ) =

RecursiveUPG(G↓).

Function-wise attractor set

Next we present an algorithm to calculate the function-wise attractor, the pseudo code is presen-
ted in Algorithm 4. The algorithm considers vertices that are in the attractor set for some
configuration. For every such vertex the algorithm tries to attract vertices that are connected
by an incoming edge. If a vertex is attracted for some configuration then the incoming edges of
that vertex will also be considered.

Algorithm 4 α-FAttractor(G,Uλ : V̂ → 2C)

1: Aλ ← Uλ

2: Queue Q← {v̂ ∈ V̂ | Uλ(v̂) 6= ∅}
3: while Q is not empty do
4: v̂′ ← Q.pop()
5: for every v̂ such that Eλ(v̂, v̂′) 6= ∅ do
6: if v̂ ∈ V̂α then
7: a← V λ(v̂) ∩ Eλ(v̂, v̂′) ∩Aλ(v̂′)
8: else
9: a← V λ(v̂)

10: for every v̂′′ such that Eλ(v̂, v̂′′) 6= ∅ do
11: a← a ∩ ((C\Eλ(v̂, v̂′′)) ∪Aλ(v̂′′))
12: end for
13: end if
14: if a\Aλ(v̂) 6= ∅ then
15: Aλ(v̂)← Aλ(v̂) ∪ a
16: Q.push(v̂)
17: end if
18: end for
19: end while
20: return Aλ

We prove that the result calculated by α-Fattractor is equal to the definition of α-FAttr
(Definition 6.3).

Theorem 6.4. Given unified parity game G = (V λ, V̂0, V̂1, E
λ, Ω̂), represented function-wise,

and Uλ ⊆ V λ, the algorithm α-FAttractor(G,Uλ) correctly calculates α-FAttr(G,Uλ).

Proof.
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Termination. First note that the algorithm terminates. This follows from the fact that only
vertices are added to Q (line 16) when something is added to Aλ (lines 14 - 15). Consider

dec(Aλ) = |V̂ | ∗ |C| −
∑
v̂

|Aλ(v̂)|

At every iteration either dec(Aλ) decreases or stays the same. In the latter case the size of Q
decreases. After finitely many iterations dec(Aλ) can not decrease any more so Q decreases until
Q is empty and the algorithm terminates.

Soundness. To prove the soundness of the algorithm we must show that at the end of the
algorithm we have for every c ∈ Aλ(ŵ) that c ∈ α-FAttractor(G,Uλ)(ŵ). This property
actually holds throughout the entire algorithm. Before the while loop (line 3) we have Aλ = Uλ

and the property holds trivially. Consider the beginning of a while loop iteration (the algorithm
is on line 4) and assume that the property holds. The algorithm considers a number of vertices in
the first for loop (line 5), let v̂ be such a vertex. The algorithm calculates a ⊆ C, which is added
to Aλ(v̂) on line 15. Note that this is the only place in the while loop where Aλ is modified.
The value calculated for a on lines 6-13 exactly reflects the definition of α-FAttr (Definition 6.3).
Because we assumed that the property holds at the beginning of the while loop iteration we can
conclude that a ⊆ α-FAttr(G,Uλ)(v̂). We conclude that the property is maintained during the
while loop and that it holds at the end of the algorithm.

Completeness. Consider the values for Uλi for α-FAttr(G,Uλ) as defined in Definition 6.3.

For attractor set α-FAttr(G,Uλ) we fix strategy σcα such that for every i > 0 and v̂ ∈ V̂α with
c ∈ Uλi (v̂) and c /∈ Uλi−1(v̂) we have σcα(v̂) = ŵ with c ∈ Uλi−1(ŵ). It follows from Definition
6.3 that this strategy exists and is valid for c. Furthermore, if the token is on v̂ with c ∈
(α-Fattr(G,Uλ)(v̂)\Uλ(v̂)) then the token ends up in a vertex ŵ with c ∈ Uλ(ŵ) for all paths
that conform to σcα and are valid for configuration c.

We introduce the following predicate to help with the proof of completeness. Predicate ψ(c, v̂, q̂)
holds if and only if we have the following conditions:

• q̂ ∈ Q,

• c ∈ Aλ(q̂) and

• there exists a path π from v̂ to q̂ valid for c and conforming to σcα such that every vertex
ŵ between v̂ and q̂ in π has c /∈ Aλ(ŵ)

We prove the following loop invariant over the while loop: For all c ∈ α-FAttr(G,Uλ)(v̂) we have
either c ∈ Aλ(v̂) or ∃q̂ : ψ(c, v̂, q̂).

When the while loop terminates Q is empty so ψ(c, v̂, q̂) never holds and therefore we have
c ∈ Aλ(v̂) which shows completeness.

Initialization: Consider the values for Uλi for α-FAttr(G,Uλ) as defined in Definition 6.3.
We show by induction on i that the loop invariant holds for all c ∈ α-FAttr(G,Uλ)(v̂) before
the while loop starts.

Base i = 0: Before the while loop we get Aλ = Uλ. So the loop invariant holds for all
c ∈ Uλ0 (v̂), furthermore v̂ is placed in Q.
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Step i > 0: Consider c ∈ Uλi (v̂). If c ∈ Uλi−1(v̂) then we apply induction on i − 1 to find
that the loop invariant is satisfied.

If c /∈ Uλi−1 then we distinguish two cases:

∗ If v̂ ∈ V̂α then we choose ŵ = σcα(v̂). By the way we constructed σcα we find c ∈ Uλi−1(ŵ).
We apply induction on i− 1 to find that either c ∈ Aλ(ŵ) or ψ(c, ŵ, q̂) with path π. In
the former case we also find ŵ ∈ Q and the path v̂ŵ satisfies ψ(c, v̂, ŵ). In the latter
case we construct path v̂π, which satisfies ψ(c, v̂, q̂). In both cases the loop invariant
is satisfied.

∗ If v̂ ∈ V̂α then we pick ŵ such that c ∈ Eλ(v̂, ŵ). Using Definition 6.3 we find that
c ∈ Uλi−1(ŵ). We apply induction on i− 1 to find that either c ∈ Aλ(ŵ) or ψ(c, ŵ, q̂)
with path π. In the former case we also find ŵ ∈ Q and the path v̂ŵ satisfies ψ(c, v̂, ŵ).
In the latter case we construct path v̂π, which satisfies ψ(c, v̂, q̂). In both cases the
loop invariant is satisfied.

Maintenance: Assume the invariant holds at the beginning of the while loop iteration (line
4), we prove that the invariant also holds at the end of the while loop iteration (line 18).

Consider c ∈ α-FAttr(G,Uλ)(v̂). If c ∈ Aλ(v̂) by the end of the iteration then the loop
invariant is maintained. Assume c /∈ Aλ(v̂) by the end of the iteration.

We find ψ(c, v̂, q̂) with path π. If q̂ is not popped during this iteration then we can only get
¬∃q̂′ : ψ(c, v̂, q̂′) if we find a vertex ŵ between v̂ and q̂ in π such that c ∈ Aλ(ŵ). Let ŵ be
the vertex closest to v̂ in π such that c ∈ Aλ(ŵ). By the beginning of the iteration we had
c /∈ Aλ(ŵ). So c is added to Aλ(ŵ) during this iteration on line 15. In this case we find ŵ ∈ Q
because line 16 and ψ(c, v̂, ŵ). So if q̂ is not popped during the iteration the loop invariant
holds. Assume q̂ is popped during the iteration.

If by the beginning of the iteration we had ψ(c, v̂, q̂) and ψ(c, v̂, q̂′) with path π′ such that
q̂ 6= q̂′ then by the end of the iteration we either have ψ(c, v̂, q̂′) or ψ(c, v̂, ŵ) where ŵ is a
vertex between v̂ and q̂′ in π′. In either case the loop invariants holds. Assume that by the
beginning of the iteration there is a single q̂ for which ψ(c, v̂, q̂).

Consider path π from v̂ to q̂ valid for c and conforming to σcα. If by the end of the iteration
there is a vertex ŵ between v̂ and q̂ such that c ∈ Aλ(ŵ) then we have ψ(c, v̂, ŵ) and the loop
invariant holds. Assume for any path from v̂ to q̂ valid for c and conforming to σcα that there
is no ŵ between v̂ and q̂ such that c ∈ Aλ(ŵ) by the end of the iteration.

Let π be the path satisfying ψ(c, v̂, q̂) by the beginning of the iteration. Let π = . . . x̂q̂ (note
that it is possible that x̂ = v̂). If x̂ ∈ V̂α then we find c ∈ Aλ(x̂) by the end of the iteration
which is a contradiction. We find x̂ ∈ V̂α.

If we get ¬∃q̂′ : ψ(c, x̂, q̂′) by the end of the iteration then player α must be able to move the
token from x̂ to a vertex ŵ such that ¬∃q̂′ : ψ(c, ŵ, q̂′).

We have shown that the only way the loop invariant does not hold for the pair (c, v̂) is when
there exists an x̂ owned by player α such that the token can go from x̂ to q̂ for configuration c
but also from x̂ to some v̂′ for which the loop invariant also not holds. Similarly to v̂ we find
that the invariant does not hold for v̂′ when there exists a x̂′ owned by player α such that the
token can go from x̂′ to q̂ for configuration c but also from x̂′ to some v̂′′ for which the loop
invariant also not holds. For v̂′′ we find the same property.

This induces a set of vertices X̂ such that every x̂ ∈ X̂ is owned by player α and there is a
path from x̂ to x̂′ ∈ X̂ valid for c and conforming to σcα. We also find that for no x̂ ∈ X̂ do we
have c ∈ Uλ(x̂) and finally that for all x̂ ∈ X̂ we have c ∈ α-FAttr(G,Uλ)(x̂). From this we
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conclude that player α has a strategy to keep the play in X̂, this contradicts the properties of
an attractor set. Therefore we find that the loop invariant holds for pair (c, v̂) by the end of
the iteration.

6.1.6 Running time

We consider the running time for solving VPG Ĝ = (V̂ , V̂0, V̂1, Ê, Ω̂,C, θ) independently and col-
lectively using the different types of representations. We use n to denote the number of vertices,
e the number of edges, d the number of distinct priorities and c the number of configurations.

The original algorithm runs in O(e ∗ nd) [17], if we run c parity games independently we get
O(c ∗ e ∗ nd). We can also apply the original algorithm to a unified parity game (represented
set-wise) for a collective approach, in this case we get a parity game with c ∗ n vertices and
c ∗ e edges, which gives a time complexity of O(c ∗ e ∗ (c ∗ n)d). However, as we show next, this
upper bound can be improved by using the property that a unified parity game consists of c
disconnected graphs.

We have introduced three types of collective algorithms: set-wise, function-wise with explicit
configuration sets and function-wise with symbolic configuration sets. In all three algorithms the
running time of the attractor set dominates the other operations performed, so we need three
things: analyse the running time of the base cases, analyse the running time of the attractor set
and analyse the recursion.

Base cases

In the base cases the algorithm needs to check if there are no more vertices in the game. For the
set-wise variant this is done in O(1). For the function wise algorithms this is done in O(n) since
we have to check V (v̂) = ∅ for every v̂. Note that in a symbolic representation using BDDs we
can check if a set is empty in O(1) because the decision diagram contains a single node when
representing an empty set.

Attractor sets

For the set-wise collective approach we can use the attractor calculation from the original al-
gorithm which has a time complexity of O(e) [42]. So for a unified parity game having c∗e edges
we have O(c ∗ e).

The function-wise variants use a different attractor algorithm. First we consider the variant
where sets of configurations are represented explicitly.

Consider Algorithm 4. A vertex will be added to the queue when this vertex is attracted for some
configuration, this can only happen c ∗n times, once for every vertex-configuration combination.

During an iteration of the while loop, the first for loop considers all vertices with an edge to the
vertex under consideration by the while loop. We note that during one iteration of the while
loop the first for loop never considers a vertex twice. Because of this we can also conclude that
during one iteration of the while loop the second for loop considers no edge twice. Since the
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while loop runs at most c ∗ n times and in every iteration the second for loop considers at most
e edges, we conclude that the second for loop runs at most c ∗ n ∗ e times.

The second for loop performs set operations on the set of configurations which can be done in
O(c) using an explicit representation. This gives a total time complexity for the attractor set of
O(n ∗ c2 ∗ e).

Symbolic set operations can be done in O(c2) so we get a time complexity of O(n ∗ c3 ∗ e).

This gives the following time complexities

Base Attractor set
Set-wise O(1) O(c ∗ e)

Function-wise explicit O(n) O(n ∗ c2 ∗ e)
Function-wise symbolic O(n) O(n ∗ c3 ∗ e)

Recursion

The three algorithms behave the same way with regards to their recursion, so we analyse the
recursion for all three algorithms at the same time. Let OB denote the time complexity of the
base case for the algorithm and let OA denote the time complexity of the attractor set. For all
variants of the algorithm we have OB ≤ OA and OA +OB = OA.

The algorithm has two recursions. The first recursion lowers the number of distinct priorities by
1. The second recursion removes at least one vertex. However the game is comprised of disjoint
projections. We can use this fact in the analyses. Consider unified parity game G and set A as
specified by the algorithm. Now consider the projection of G to an arbitrary configuration q, G|q.
If (G\A)|q contains a vertex that is won by player α then this vertex is removed in the second
recursion step. If there is no vertex won by player α then the game is won in its entirety and
the only vertices won by player α are in different projections. We can conclude that for every
configuration q the second recursion either removes a vertex or (G\A)|q is entirely won by player
α. Let w̄ denote the maximum number of vertices that are won by player α in game (G\A)|q.
Since every projection has at most n vertices the value for w̄ can be at most n. Furthermore
since w̄ depends on A, which depends on the maximum priority, the value w̄ gets reset when
the top priority is removed in the first recursion. We can now write down the recursion of the
algorithm:

T (d, w̄) ≤ T (d− 1, n) + T (d, w̄ − 1) +OA

When w̄ = 0 we will get Wα = ∅ as a result of the first recursion. In such a case there will be
only 1 recursion.

T (d, 0) ≤ T (d− 1, n) +OA

Finally we have the base cases. If d = 0 then there are no vertices and we have the base time
complexity.

T (0, w) ≤ OB
If d = 1 then all the vertices have the same priority, therefore the first subgame created is empty
and entirely won by player α. So we never go in the second recursion.

T (1, w) ≤ T (0, n) +OA ≤ OB +OA = OA
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Expanding the second recursion gives

T (d) ≤ (n+ 1)T (d− 1) + (n+ 1)OA

T (1) ≤ OA

We prove that T (d) ≤ (n+ d)dOA by induction on d.

Base d = 1: T (1) ≤ OA ≤ (n+ 1)1OA

Step d > 1:

T (d) ≤ (n+ 1)T (d− 1) + (n+ 1)OA

≤ (n+ 1)(n+ d− 1)d−1OA + (n+ 1)OA

Since n+ 1 ≤ n+ d− 1 we get:

T (d) ≤ (n+ d− 1)(n+ d− 1)d−1OA + (n+ 1)OA

≤ ((n+ d− 1)(n+ d− 1)d−1 + n+ 1)OA

≤ (n(n+ d− 1)d−1 + d(n+ d− 1)d−1 − (n+ d− 1)d−1 + n+ 1)OA

≤ (n(n+ d)d−1 + d(n+ d)d−1 − (n+ d− 1)d−1 + n+ 1)OA

Because (n+ d− 1)d−1 ≥ n+ 1 we have −(n+ d− 1)d−1 + n+ 1 ≤ 0, therefore:

T (d) ≤ (n(n+ d)d−1 + d(n+ d)d−1)OA

≤ (n+ d)(n+ d)d−1OA

≤ (n+ d)dOA

This gives a time complexity of O(OA ∗ (n+ d)d) = O(OA ∗ nd) because n ≥ d. Filling in values
for OA gives the following time complexities:

Recursive algorithm

Independent
O(c ∗ e ∗ nd)

Collective

Set-wise
O(c ∗ e ∗ nd)

Function-wise

Explicit
O(n ∗ c2 ∗ e ∗ nd)

Symbolic
O(n ∗ c3 ∗ e ∗ nd)

Running time in practice

Earlier we hypothesized that the symbolic function-wise algorithm could have the best perform-
ance of the 4 algorithms, however it has the worst time complexity. Our hypothesis is based on
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the notion that VPGs most likely have a lot of commonalities and that sets of configurations
in the VPG can be represented efficiently symbolically. Next we argue why the worst-case time
complexity might not represent the running time in practice.

We dissect the running time of the function-wise algorithms. The running time complexities of
the collective algorithms consist of two parts: the time complexity of the attractor set times nd.
The function-wise attractor set time complexity consists of three parts: the number of edges
times the maximum number of vertices in the queue (c ∗ n) times the time complexity for set
operations (O(c) for the explicit variant, O(c2) for the symbolic variant).

The number of vertices in the queue during attracting is at most c ∗n, however this number will
only be large if we attract a very small number of configurations per time we evaluate an edge.
As argued earlier we can most likely attract multiple configurations at the same time. This will
decrease the number of vertices in the queue.

The time complexity of set operations is O(c) when using an explicit representation and O(c2)
when using a symbolic one. However, as shown in [44], we can implement BDDs to keep a table
of already computed results. This allows us to get already calculated results in sublinear time.
In total there are 2c possible sets and therefore 22c possible set combinations and O(2c) possible
set operations that can be computed. However when solving a VPG originating from an FTS
there will most likely be a relatively small number of different edge guards, in which case the
number of unique sets considered in the algorithm will be small and we can often retrieve a set
calculation from the computed table.

We can see that even though the running time of the collective symbolic algorithm is the worse,
its practical running time might be good when we are able to attract multiple configurations at
the same time and have a small number of different edge guards.

6.2 Incremental pre-solve algorithm

Next we explore a collective algorithm that tries to solve the VPG for all configurations as much as
possible, then split the configurations in two sets, create subgames using those two configuration
sets and recursively repeat the process. Specifically, we try to find vertices that are won by the
same player for all configurations in C. If we find a vertex that is won by the same player for all
configurations we call such a vertex pre-solved. The algorithm tries to recursively increase the
set of pre-solved vertices until all vertices are either pre-solved or a single configuration remains.
Pseudo code is presented in Algorithm 5. The algorithm is based around finding sets P0 and P1.
We want to find these sets in an efficient manner such that the algorithm does not spent time
finding vertices that are already pre-solved. Finally, when there is only a single configuration
left we want an algorithm that solves the parity game G|c in an efficient manner by using the
vertices that are pre-solved.

The subgames created are based on a set of configurations. We define the subgame operator as
follows:

Definition 6.5. Given VPG G = (V, V0, V1, E,Ω,C, θ) and non-empty set X ⊆ C we define the
subgame G ∩ X = (V, V0, V1, E

′,Ω,C′, θ′) such that

• C′ = C ∩ X,

• θ′(e) = θ(e) ∩ C′ and
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Algorithm 5 IncPreSolve(VPG G = (V, V0, V1, E,Ω,C, θ), P0, P1)

1: if |C| = 1 then
2: Let {c} = C
3: (W ′0,W

′
1)← solve G|c using P0 and P1

4: return (C×W ′0,C×W ′1)
5: end if
6: P ′0 ← find vertices won by player 0 for all configurations in C
7: P ′1 ← find vertices won by player 1 for all configurations in C
8: if P ′0 ∪ P ′1 = V then
9: return (C× P ′0,C× P ′1)

10: end if
11: Ca,Cb ← partition C in non-empty parts
12: (W a

0 ,W
a
1 )← IncPreSolve(G ∩ Ca, P ′0, P

′
1)

13: (W b
0 ,W

b
1 )← IncPreSolve(G ∩ Cb, P ′0, P

′
1)

14: W0 ←W a
0 ∪W b

0

15: W1 ←W a
1 ∪W b

1

16: return (W0,W1)

• E′ = {e ∈ E | θ′(e) 6= ∅}.

VPGs we consider are total, meaning that for every configuration and every vertex there is an
outgoing edge from that vertex admitting that configuration. In subgames the set of config-
urations is restricted and only edge guards and edges are removed for configurations that fall
outside the restricted set, therefore we still have totality. Furthermore it is trivial to see that
every projection G|c is equal to (G ∩ X)|c for any c ∈ C ∩ X.

Finally a subsubgame of two configuration sets is the same as the subgame of the intersection of
these configuration sets, i.e. (G ∩ X) ∩ X′ = G ∩ (X ∩ X′) = G ∩ X ∩ X′.

6.2.1 Finding P0 and P1

We can find P0 and P1 using pessimistic parity games; a pessimistic parity game is a parity game
created from a VPG for a player α ∈ {0, 1} such that the parity game allows all edges that player
α might take but only allows edges for α when that edge admits all the configurations in C.

Definition 6.6. Given VPG G = (V, V0, V1, E,Ω,C, θ), we define pessimistic parity game G.α
for player α ∈ {0, 1}, such that

G.α = (V, V0, V1, E
′,Ω)

with
E′ = {(v, w) ∈ E | v ∈ Vα ∨ θ(v, w) = C}

Note that pessimistic parity games are not necessarily total. A parity game that is not total
might result in a finite path, in which case the player that cannot make a move loses the path.

When solving a pessimistic parity game G.α we get winning sets (W0,W1). Every vertex in Wα

is winning for player α in G played for any configuration, as shown in the following theorem.

Theorem 6.5. Given:
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• VPG G = (V, V0, V1, E,Ω,C, θ),

• configuration c ∈ C,

• winning sets (W c
0 ,W

c
1 ) for game G,

• player α ∈ {0, 1} and

• pessimistic parity game G.α with winning sets (P0, P1)

we have Pα ⊆W c
α.

Proof. Player α has a strategy in game G.α such that vertices in Pα are won. We show that this
strategy can also be applied to game G|c to win the same or more vertices.

First we observe that any edge that is taken by player α in game G.α can also be taken in game
G|c so player α can play the same strategy in game G|c.

For player α there are possibly edges that can be taken in G.α but cannot be taken in G|c. In
such a case player α’s choices are limited in game G|c compared to G.α so if player α cannot win
a vertex in G.α then he/she cannot win that vertex in G|c.

We can conclude that applying the strategy from game G.α in game G|c for player α wins the
same or more vertices. Note that this strategy might be incomplete for game G|c, it could be the
case that a vertex owned by player α in game G.α has no successor while the same vertex has
successors in G|c. In such a case the vertex is never in Pα so it is not relevant to the theorem
who would win this vertex in G|c.

Example 6.4. Figure 6.4 shows an example VPG with corresponding pessimistic parity games.
After solving the pessimistic parity games we find P0 = {v2} and P1 = {v0}.

1

v0

0

v1

2

v2

{c1, c2}

{c2}

{c2}
{c1}

{c1, c2}

(a) VPG G consisting of 2 configurations

1

v0

0

v1

2

v2

(b) Pessimistic parity game G.0 with winning sets (P0,−)

1

v0

0

v1

2

v2

(c) Pessimistic parity game G.1 with winning sets (−, P1)

Figure 6.4: A VPG with its corresponding pessimistic parity games
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Pessimistic subgames

Vertices in winning set Pα for G.α are also winning for player α in pessimistic subgames of G,
as shown in the following lemma.

Lemma 6.6. Given:

• VPG G = (V, V0, V1, E,Ω,C, θ),

• P0 being the winning set of pessimistic parity game G.0 for player 0,

• P1 being the winning set of pessimistic parity game G.1 for player 1,

• non-empty set X ⊆ C,

• player α ∈ {0, 1} and

• winning sets (Q0, Q1) for pessimistic parity game (G ∩ X).α

we have
P0 ⊆ Q0

P1 ⊆ Q1

Proof. Let edge (v, w) be an edge in game G.α with v ∈ Vα. Edge (v, w) admits all configuration
in C so it also admits all configuration in C ∩ X, therefore we can conclude that edge (v, w) is
also an edge of game (G ∩ X).α.

Let edge (v, w) be an edge in game (G∩X).α with v ∈ Vα. The edge admits some configuration
in C ∩ X, this configuration is also in C so we can conclude that edge (v, w) is also an edge of
game G.α.

We have concluded that game (G ∩ X).α has the same or more edges for player α as game G.α
has and the same or fewer edges for player α. Therefore we can conclude that any vertex won
by player α in G.α is also won by α in game (G ∩ X).α, i.e. Pα ⊆ Qα.

Let v ∈ Pα, using Theorem 6.5 we find that v is winning for player α in G|c for any c ∈ C. Because
projections of subgames are the same as projections of the original game we can conclude that
v is winning for player α in (G ∩ X)|c for any c ∈ C ∩ X. Assume v /∈ Qα. Then v ∈ Qα and
using Theorem 6.5 we find that v is winning for player α in (G ∩X)|c for any c ∈ C ∩X. This is
a contradiction so we can conclude v ∈ Qα and therefore Pα ⊆ Qα.

6.2.2 Algorithm

In order to find P0 and P1 we need to solve pessimistic parity games. Specifically we want
a parity game algorithm that uses the vertices that are already pre-solved to efficiently solve
the pessimistic parity games. Note that when there is a single configuration left we also need
a parity game algorithm that uses the vertices that are already pre-solved. In Algorithm 6 we
present the IncPreSolve algorithm using pessimistic parity games. The algorithm uses a Solve
algorithm for solving parity games using the pre-solved vertices. First we show the correctness
of the IncPreSolve algorithm while assuming the correctness of the Solve algorithm. Later
we explore an appropriate Solve algorithm.
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Algorithm 6 IncPreSolve(G = (V, V0, V1, E,Ω,C, θ), P0, P1)

1: if |C| = 1 then
2: Let {c} = C
3: (W ′0,W

′
1)← Solve(G|c, P0, P1)

4: return (C×W ′0,C×W ′1)
5: end if
6: (P ′0,−)← Solve(G.0, P0, P1)
7: (−, P ′1)← Solve(G.1, P0, P1)
8: if P ′0 ∪ P ′1 = V then
9: return (C× P ′0,C× P ′1)

10: end if
11: Ca,Cb ← partition C in non-empty parts
12: (W a

0 ,W
a
1 )← IncPreSolve(G ∩ Ca, P ′0, P

′
1)

13: (W b
0 ,W

b
1 )← IncPreSolve(G ∩ Cb, P ′0, P

′
1)

14: W0 ←W a
0 ∪W b

0

15: W1 ←W a
1 ∪W b

1

16: return (W0,W1)

A Solve algorithm is correct when it correctly solves a parity game using sets P0 and P1, as
long as P0 and P1 are in fact vertices that are won by player 0 and 1 respectively. We assume
that the Solve algorithm is correct and prove that the values for P0 and P1 are always correct
in IncPreSolve.

Lemma 6.7. Given VPG Ĝ and assuming the correctness of Solve. For every Solve(G,P0, P1)
that is invoked during IncPreSolve(Ĝ, ∅, ∅) we have winning sets (W0,W1) for game G for
which the following holds:

P0 ⊆W0

P1 ⊆W1

Proof. When P0 = ∅ and P1 = ∅ the theorem holds trivially. So we start the analyses after the
first recursion.

After the first recursion the game is Ĝ ∩ X with X being either Ca or Cb. The set P0 is the
winning set for player 0 for game Ĝ.0 and the set P1 is the winning set for player 1 for game
Ĝ.1. In the next recursion the game is Ĝ ∩X ∩X′ with P0 being the winning set for player 0 in
game (Ĝ ∩ X).0 and P1 being the winning set for player 1 in game (Ĝ ∩ X).1. In general, after
the kth recursion, with k > 0, the game is of the form (Ĝ ∩X1 ∩ · · · ∩Xk−1) ∩Xk. Furthermore
P0 is the winning set for player 0 for game (Ĝ∩X1 ∩ · · · ∩Xk−1).0 and P1 is the winning set for
player 1 for game (Ĝ ∩ X1 ∩ · · · ∩ Xk−1).1.

Next we inspect the three places where Solve is invoked:

1. Consider the case where there is only one configuration in C (line 1-5). Because P0 is the
winning set for player 0 for game (Ĝ ∩ X1 ∩ · · · ∩ Xk−1).0 the vertices in P0 are won by
player 0 in game G|c for all c ∈ X1 ∩ · · · ∩ Xk−1 (using Theorem 6.5). This includes the
one element in C. So we can conclude P0 ⊆ W0 where W0 is the winning set for player 0
in game G|c with {c} = C.

Similarly for player 1 we can conclude P1 ⊆W1 and the lemma holds in this case.

Verifying SPLs using parity games expressing variability 52



2. On line 6 the game G.0 is solved with P0 and P1. Because G = Ĝ∩X1∩· · ·∩Xk−1∩Xk and
P0 is the winning set for player 0 for game (Ĝ ∩ X1 ∩ · · · ∩ Xk−1).0 and P1 is the winning
set for player 1 for game (Ĝ∩X1 ∩ · · · ∩Xk−1).1 we can apply Lemma 6.6 to conclude that
the lemma holds in this case.

3. On line 7 we apply the same reasoning and lemma to conclude that the lemma holds in
this case.

Next we prove the correctness of the algorithm, assuming the correctness of the Solve algorithm.

Theorem 6.8. Given VPG G = (V, V0, V1, E,Ω,C, θ) with winning sets (W c
0 ,W

c
1 ) and (W0,W1) =

IncPreSolve(G, ∅, ∅). For every configuration c ∈ C it holds that:

(c, v) ∈W0 ⇐⇒ v ∈W c
0

(c, v) ∈W1 ⇐⇒ v ∈W c
1

Proof. We assumed that Solve(G′, P0, P1) correctly solves G′ as long as vertices in P0 and
P1 are won by player 0 and 1 respectively. Lemma 6.7 shows that this is always the case when
invoking IncPreSolve(G, ∅, ∅). We therefore find that Solve(G′, P0, P1) always correctly solves
G′ during the algorithm.

We prove the theorem by applying induction on C.

Base |C| = 1: When there is only one configuration, being c, then the algorithm solves game
G|c. The product of the winning sets and {c} is returned, so the theorem holds.

Step: Consider P ′0 and P ′1 as calculated in the algorithm (line 6-7). By Theorem 6.5 all vertices
in P ′0 are won by player 0 in game G|c for any c ∈ C, similarly for P ′1 and player 1.

If P ′0 ∪ P ′1 = V then the algorithm returns (C × P ′0,C × P ′1). In which case the theorem holds
because there are no configuration vertex combinations that are not in either winning set and
Theorem 6.5 proves the correctness.

If P ′0 ∪P ′1 6= V then we have winning sets (W a
0 ,W

a
1 ) for which the theorem holds (by induction)

for game G∩Ca and (W b
0 ,W

b
1 ) for which the theorem holds (by induction) for game G∩Cb. The

algorithm returns (W a
0 ∪W b

0 ,W
a
1 ∪W b

1 ). Since Ca∪Cb = C and Ca∩Cb = ∅ all vertex configuration
combinations are in the winning sets and the correctness follows from induction.

6.2.3 A parity game algorithm using P0 and P1

We can modify the fixed-point iteration algorithm to solve parity games using pre-solved vertices.
Recall that the fixed-point iteration algorithm calculates an alternating fixed-point formula to
find the winning set for player 0. When iterating fixed-point formula µX.f(X) we choose some
initial value for X and keep iterating f(X) until we find X = f(X). The original fixed-point
iteration algorithm chooses ∅ as the initial value. In this section we show that given P0 and P1

we can use the fixed-point iteration algorithm, but instead of choosing initial value ∅ we choose
initial value P0. This will most likely decrease the number of iterations needed before we find
X = f(X). Moreover we show that we can ignore vertices in P0 in parts of the calculation
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because we already know these vertices are winning. Similarly, we find that we can choose initial
value V \P1 instead of V (where V is the set of vertices) when iterating a greatest fixed-point
formula and ignore vertices in P1.

We choose to use the fixed-point parity game algorithm because the modified version using pre-
solved vertices is very similar to the original version. When experimenting with the incremental
pre-solve algorithm we can compare its performance with the performance of independently
solving the projections using the fixed-point iteration algorithm to get a good idea of how well
the incremental pre-solve idea performs.

First recall the fixed-point formula to calculate W0:

S(G) = νZd−1.µZd−2. . . . .νZ0.F0(G,Zd−1, . . . , Z0)

with

F0(G = (V, V0, V1, E,Ω), Zd−1, . . . , Z0) ={v ∈ V0 | ∃w∈V (v, w) ∈ E ∧ w ∈ ZΩ(w)}
∪{v ∈ V1 | ∀w∈V (v, w) ∈ E =⇒ w ∈ ZΩ(w)}

Also recall that we can calculate a least fixed-point as follows:

µX.f(X) =
⋃
i≥0

Xi

where Xi = f(Xi−1) for i > 0 and X0 ⊆ µX.f(X). So picking the smallest value possible for
X0 will always correctly calculate µX.f(X). Similarly we can calculate fixed-point a greatest
fixed-point as follows:

νX.f(X) =
⋂
i≥0

Xi

where Xi = f(Xi−1) for i > 0 and X0 ⊇ νX.f(X). So picking the largest value possible for X0

will always correctly calculate νX.f(X).

Let G be a parity game and let sets P0 and P1 be such that vertices in P0 are won by player 0
and vertices in P1 are won by player 1. We can fixed-point iterate S(G) to calculate W0. We
know that W0 is bounded by P0 and P1, specifically we have

P0 ⊆W0 ⊆ V \P1

We will prove that formula

SP (G) = νZd−1.µZd−2 . . . νZ0.(F0(G,Zd−1, . . . , Z0) ∩ (V \P1) ∪ P0)

also solves W0 for G. Note that the formula F0(G,Zd−1, . . . , Z0)∩ (V \P1)∪P0 is still monotonic,
as shown in Lemma 6.9.

Lemma 6.9. Given lattice 〈2D,⊆〉, monotonic function f : 2D → 2D and A ⊆ D. The functions
f∪(x) = f(x) ∪A and f∩(x) = f(x) ∩A are also monotonic.

Proof. Let x, y ⊆ D and x ⊆ y then f(x) ⊆ f(y).

Let e ∈ f(x) ∪ A. If e ∈ f(x) then e ∈ f(y) and e ∈ f(y) ∪ A. If e ∈ A then e ∈ f(y) ∪ A. We
find f∪(x) ⊆ f∪(y).

Let e ∈ f(x) ∩ A. We have e ∈ f(x) and e ∈ A. Therefore e ∈ f(y) and e ∈ f(y) ∩ A. We find
f∩(x) ⊆ f∩(y).
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Fixed-point iteration index

We introduce the notion of fixed-point iteration indices to help with the proof of SP .

Consider the following alternating fixed-point formula:

νXm−1.µXm−2 . . . νX0.f(Xm−1, . . . , X0)

Using fixed-point iteration to solve this formula results in a number of intermediate values for
the iteration variables Xm−1, . . . X0. We define an iteration index that, intuitively, indicates
where in the iteration process we are. For an alternating fixed-point formula with m fixed-point
variables we define an iteration index ζ ⊆ Nm.

When applying iteration to formula νXj .f(X) we start with some value for X0
j and calculate

Xi+1
j = f(Xi

j). So we get a list of values for Xj , however when we have alternating fixed-point
formulas we might iterate Xj multiple times but get different lists of values because the values for
Xm−1, . . . , Xj−1 have changed. We use the iteration index to distinguish between these different
lists.

Iteration index ζ = (km−1, . . . , k0) indicates where in the iteration process we are. We start
at ζ = (0, 0, . . . , 0) and first iterate X0. When we calculate X1

0 we are at iteration index ζ =
(0, 0, . . . , 1), when we calculate X2

0 we are at iteration index ζ = (0, 0, . . . , 2) and so on. In
general when we calculate a value for Xi

j then kj = i in ζ. This induces the lexicographical order

(0, . . . , 0, 0, 0)
(0, . . . , 0, 0, 1)
(0, . . . , 0, 0, 2)

...
(0, . . . , 0, 1, 0)
(0, . . . , 0, 1, 1)
(0, . . . , 0, 1, 2)

...

We define {km−1, . . . , k0}− 1 = {km−1, . . . , k0− 1} and {km−1, . . . , k0}+ 1 = {km−1, . . . , k0 + 1}
for convenience of notation.

We write Xζ
j to indicate the value of variable Xj at moment ζ in the iteration process. Variable

Xj does not change values when a variable Xl with j > l changes values; we have for indexes

ζ = (km−1, . . . , kj , kj−1, . . . , k0) and ζ ′ = (km−1, . . . , kj , k
′
j−1, . . . , k

′
0) that Xζ

j = Xζ′

j .

We use the fixed-point iteration definition to define the values for Xζ
j . Let ζ = (km−1, . . . , k0),

we have:
Xζ+1

0 = f(Xζ
m−1, . . . , X

ζ
0 )

and for any even 0 < j < m

X
(...,kj+1,... )
j = µXj−1 · · · =

⋃
i≥0

X(...,kj ,i,... )

and for any odd 0 < j < m

X
(...,kj+1,... )
j = νXj−1 · · · =

⋂
i≥0

X(...,kj ,i,... )
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Γ-games We define Γ, which transforms a parity game, to help with the proof. The Γ operator
removes the pre-solved vertices from a game and modifies it such that the winners of the remaining
vertices are preserved.

Definition 6.7. Given parity game G = (V, V0, V1, E,Ω) with winning set W0 such that P0 ⊆
W0 ⊆ V \P1. We define Γ(G,P0, P1) = (V ′, V ′0 , V

′
1 , E

′,Ω′) such that

V ′ = (V \P0\P1) ∪ {s0, s1}
V ′0 = (V0 ∩ V ′) ∪ {s1}
V ′1 = (V1 ∩ V ′) ∪ {s0}
E′ = (E ∩ (V ′ × V ′)) ∪ {(v, sα) | (v, w) ∈ E ∧ w ∈ Pα}

Ω′(v) =

{
0 if v ∈ {s0, s1}
Ω(v) otherwise

Parity game Γ(G,P0, P1) contains vertices s0 and s1 such that they have no outgoing edges and
sα is owned by player sα. Clearly if the token ends in sα then player α wins. Vertices that had
edges to a vertex in Pα now have an edge to sα.

Note that because s0 and s1 do not have successors, their priorities do not matter for winning
sets of G′. Also note that this parity game is not total, as shown in [43] the formula S(G) also
solves non-total games.

Next we show that vertices in V \P0\P1 have the same winner in games G and G′.

Lemma 6.10. Given parity game G = (V, V0, V1, E,Ω) with winning set W0 such that P0 ⊆W0 ⊆
V \P1 and parity game G′ = Γ(G,P0, P1) with winning set Q0 we have W0\P0\P1 = Q0\{s0, s1}.

Proof. Let vertex v ∈ V \P0\P1. Assume v is won by player α in G using strategy σα : Vα → V .
We construct a strategy σ′α : V ′α → V ′ for game G′ as follows:

σ′α(w) =

{
sβ if σα(w) ∈ Pβ for some β ∈ {0, 1}
σα(w) otherwise

This strategy maps the vertices to the same successors except when a vertex is mapped to a
vertex in Pβ , in which case σ′α maps the vertex to sβ .

Let π′ be a valid path in G′, starting from v and conforming to σ′α. Since vertices s0 and s1 do
not have any successors we distinguish three cases for π′:

• Assume π′ ends in sα. Let π′ = (x0 . . . xmsα) with v = x0. Because s0 and s1 do not have
successors no xi is s0 or s1; we find xi ∈ V \P0\P1. For every xixi+1 we have (xi, xi+1) ∈ E′,
any such edge is also in E because the edges between vertices in V \P0\P1 were left intact
when creating G′. Finally we find that (xm, y) ∈ E with y ∈ Pα. There must exist a valid
path π = (x0 . . . xmy . . . ) in game G conforming to σα because σ′α and σα map to the same
vertices for all x0 . . . xm−1 and xm maps to a vertex in Pα. Player α has a winning strategy
from y so we conclude that π is won by α in game G. Because π exists and conforms to σα
we find that σα is not winning for α from v in G. This is a contradiction so we conclude
that π′ never ends in sα.

• Assume π′ ends in sα. In this case player α wins the path.
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• Assume π′ never visits sα or sα. Assume the path is won by player α, as we argued above we
find that this path is also valid in game G, conforms to σα and is winning for α. Therefore
σα is not winning for player α from v in game G, this is a contradiction so we conclude
that player α wins the path π′.

We find that π′ is always won by player α in game G′. We conclude that any vertex v ∈ V \P0\P1

won by player α in game G is also won by player α in G′.

Let v ∈ V ′\{s0, s1}. Let v be won by player α in game G′. Assume that v is not won by α in
game G then v is won by α in game G. Clearly v ∈ V \P0\P1 so we conclude that v is won by
player α in game G′. This is a contradiction so v is won by player α in game G.

Proof Using the Γ operator and the iteration indices we can now prove the correctness of SP .

Theorem 6.11. Given parity game G = (V, V0, V1, E,Ω) with winning set W0 such that P0 ⊆
W0 ⊆ V \P1. The formula

SP (G) = νZd−1.µZd−2 . . . νZ0.(F0(G,Zd−1, . . . , Z0) ∩ (V \P1) ∪ P0)

correctly solves W0 for G.

Proof. Let G′ = (V ′, V ′0 , V
′
1 , E

′,Ω′) = Γ(G,P0, P1). We consider S(G′), which calculates the
winning set for player 0 for game G′. Formula F0(G′, Zd−1, . . . , Z0) will always include s0 and
never include s1, regardless of the values for Zd−1 . . . Z0. Clearly any νZi . . . or µZi . . . contains
s0 and does not contain s1. As shown in [13] we can start the iteration of least fixed-point
formula µX.f(X) at any value X0 ⊆ µX.f(X). Similarly, we can start the iteration of greatest
fixed-point formula νX.f(X) at any value X0 ⊇ νX.f(X). So we can calculate S(G′) using fixed-
point iteration, starting least fixed-point variables at {s0} and greatest fixed-point variables at
V ′\{s1}.

We can also calculate SP (G) using fixed-point iteration starting at P0 and V \P1 because clearly
any νZi . . . or µZi . . . contains all vertices from P0 and none from P1.

We prove the theorem by going through the iteration process of SP (G) and S(G′) simultaneously.
We write Zi to denote variables in S(G′) and Yi to denote variables in SP (G). We will show that

for any iteration index ζ any iteration variable Zζi is equal to Y ζi for vertices V \P0\P1, that is

Y ζi \P0\P1 = Zζi \{s0, s1}. We only prove that this is the case when we start iteration of SP (G)
at P0 and V \P1 and start iteration of S(G′) at {s0} and V ′\{s1}. As argued above, starting at
these values correctly calculates SP (G) and S(G′).

Trivially, for any ζ and i ∈ [0, d− 1] we have P0 ⊆ Y ζi ⊆ V \P1 and {s0} ⊆ Zζi ⊆ V \{s1}.

We define operator ': V × V ′ → B such that for Y ⊆ V and Z ⊆ V ′ we have Y ' Z if and only
if:

Y \P0\P1 = Z\{s0, s1}

We prove, by induction on ζ, that for any ζ = (kd−1, . . . , k0) we have Y ζi ' Zζi for every
i ∈ [0, d− 1].

Base ζ = (0, 0, . . . , 0): we have for least fixed-point variables Zζi and Y ζi the values {s0} and P0,

clearly Y ζi ' Z
ζ
i .
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For greatest fixed-point variables Zζj and Y ζj we have Zζj \{s0, s1} = V \P1\P0. So we find

Y ζj ' Z
ζ
j .

Step: Consider ζ = (kd−1, . . . , k0). Let j ∈ [0, d − 1]. If kj = 0 then Zζj = Z
(0,0,...,0)
j and

Y ζj = Y
(0,0,...,0)
j , furthermore Z

(0,0,...,0)
j ' Y

(0,0,...,0)
j so we find Y ζj ' Zζj . If kj > 0 then we

distinguish three cases for j to show that Y ζj ' Z
ζ
j :

• Case j = 0: We have the following equations:

Y ζ0 = F0(G, Y ζ−1
d−1 , . . . , Y

ζ−1
0 ) ∩ (V \P1) ∪ P0

and
Zζ0 = F0(G′, Zζ−1

d−1 , . . . , Z
ζ−1
0 )

By induction we find Y ζ−1
i ' Zζ−1

i for all i ∈ [0, d− 1].

Consider vertex v ∈ V \P0\P1. We distinguish two cases:

– Assume v ∈ V0.

If v ∈ Y ζ0 then v must have an edge in game G to w such that w ∈ Y ζ−1
Ω(w). We find

w /∈ P1 because vertices from P1 are never in the iteration variable. If w ∈ P0 then it
follows from the way we created G′ that in G′ there exists an edge from v to s0 and
since s0 is always in the iteration variable we find v ∈ Zζ0 . If w /∈ P0 then because

Y ζ−1
Ω(w) ' Z

ζ−1
Ω(w) we find w ∈ Zζ−1

Ω(w) and therefore v ∈ Zζ0 .

If v ∈ Zζ0 then v must have an edge in game G′ to w such that w ∈ Zζ−1
Ω(w). We find

w 6= s1 because s1 is never in the iteration variable. If w = s0 then it follows from the
way we created G′ that in G there exists an edge from v to a vertex in P0 and since
any vertex in P0 is always in the iteration variable we find v ∈ Y ζ0 . If w 6= s0 then

because Y ζ−1
Ω(w) ' Z

ζ−1
Ω(w) we find w ∈ Y ζ−1

Ω(w) and therefore v ∈ Y ζ0 .

– Assume v ∈ V1.

If v ∈ Y ζ0 then for any successor w of v in game G it holds that w ∈ Y ζ−1
Ω(w). Consider

successor x of v in game G′. We distinguish three cases:

∗ x = s0: In this case x ∈ Zζ−1
Ω(x) because s0 is always in the iteration variables.

∗ x = s1: Because of the way G′ is constructed we find vertex v must have a
successor w in P1 in gameG. However we found w ∈ Y ζ−1

Ω(w). This is a contradiction

because vertices in P1 are never in the iteration variables. So this case can not
happen.

∗ x /∈ {s0, s1}: We have x ∈ V ′\{s0, s1} and therefore x is also a successor of v in

game G. We find x ∈ Y ζ−1
Ω(x) and because Y ζ−1

Ω(x) ' Z
ζ−1
Ω(x) we have x ∈ Zζ−1

Ω(x).

We always find x ∈ Zζ−1
Ω(x), therefore v ∈ Zζ0 .

If v ∈ Zζ0 then for any successor w of v in game G′ it holds that w ∈ Zζ−1
Ω(w). Consider

successor x of v in game G. We distinguish three cases:

∗ x ∈ P0: In this case x ∈ Y ζ−1
Ω(x) because vertices in P0 are always in the iteration

variables.
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∗ x ∈ P1: Because of the way G′ is constructed we find vertex v must have successor
s1 in game G′, however we found that for any successor w of v in game G′ we have
w ∈ Zζ−1

Ω(w). This is a contradiction because s1 is never in the iteration variable.

So this case can not happen.

∗ x ∈ V \P0\P1: We find that x is also a successor of v in game G′. We find

x ∈ Zζ−1
Ω(w) and because Y ζ−1

Ω(x) ' Z
ζ
Ω(x) we have x ∈ Y ζΩ(x).

We always find x ∈ Y ζ−1
Ω(x), therefore v ∈ Y ζ0 .

• Case j > 0 being even: We have

Zζj = µZj−1 · · · =
⋃
i≥0

Z
{kd−1,...,kj−1,i,... }
j−1

and

Y ζj = µYj−1 · · · =
⋃
i≥0

Y
{kd−1,...,kj−1,i,... }
j−1

Let v ∈ V \P0\P1.

If v ∈ Zζj then there exists some i such that v ∈ Z{kd−1,...,kj−1,i,... }
j−1 . Since {kd−1, . . . , kj −

1, i, . . . } < ζ we apply induction to find Y
{kd−1,...,kj−1,i,... }
j−1 ' Z

{kd−1,...,kj−1,i,... }
j−1 . Because

v ∈ V \P0\P1 we find v ∈ Y {kd−1,...,kj−1,i,... }
j−1 and therefore v ∈ Y ζj .

If v ∈ Y ζj then we apply symmetrical reasoning to find v ∈ Zζj .

• Case j > 0 being odd: We have

Zζj = νZj−1 · · · =
⋂
i≥0

Z
{kd−1,...,kj−1,i,... }
j−1

and

Y ζj = νYj−1 · · · =
⋂
i≥0

Y
{kd−1,...,kj−1,i,... }
j−1

Let v ∈ V \P0\P1.

If v ∈ Zζj then for all i ≥ 0 we have v ∈ Z{kd−1,...,kj−1,i,... }
j−1 . Assume v /∈ Y ζj , there must

exist an l ≥ 0 such that v /∈ Y
{kd−1,...,kj−1,l,... }
j . Since {kd−1, . . . , kj − 1, l, . . . } < ζ we

apply induction to find Y
{kd−1,...,kj−1,l,... }
j−1 ' Z{kd−1,...,kj−1,l,... }

j−1 . Because v ∈ V \P0\P1 we

find v /∈ Z{kd−1,...,kj−1,i,... }
j−1 which is a contradiction so we have v ∈ Y ζj .

If v ∈ Y ζj then we apply symmetrical reasoning to find v ∈ Zζj .

This proves that for any ζ we have Y ζi ' Z
ζ
i for every i ∈ [0, d− 1].

We have shown that when starting the iteration of S(G′) and SP (G) at specific values we get
identical results for vertices in V \P0\P1. We chose these values such that they solve the formulas
correctly, so we conclude that S(G′)\{s0, s1} = SP (G)\P0\P1. Lemma 6.10 shows that S(G′)
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correctly solves vertices in V \P0\P1 for game G. So SP (G) also correctly solves vertices V \P0\P1

for game G.

Moreover, any vertex in P0 is in SP (G), which is correct because P0 vertices are winning for
player 0. Any vertex in P1 is not in SP (G), which is correct because P1 vertices are winning for
player 1. We conclude that all vertices are correctly solved by SP (G).

Algorithm

We use the original fixed-point algorithm presented in [4] and modify it such that its starts in
iteration at P0 and V \P1. Moreover, we ignore vertices in P0 or P1 in the diamond and box
calculation. Finally we always add vertices in P0 to the results of the diamond and box operator.
The correctness follow from Theorem 6.11 and [4, 43].

Note that in [4] total games are used. However, it is argued that the algorithm correctly solves the
formula presented in [43]. The only property of parity games that is used in this argumentation
is that parity games have a unique owner and priority. Clearly this is still the case for total
parity games so the algorithm correctly solves the formula presented in [43]. In [43] it is shown
that the formula also correctly solves non-total parity games.

Algorithm 7 Fixed-point iteration with P0 and P1

1: function FPIter(G = (V, V0, V1, E,Ω),
P0 ⊆ V, P1 ⊆ V )

2: for i← d− 1, . . . , 0 do
3: Init(i)
4: end for
5: repeat
6: Z ′0 ← Z0

7: Z0 ← P0 ∪Diamond() ∪Box()
8: i← 0
9: while Zi = Z ′i ∧ i < d− 1 do

10: i← i+ 1
11: Z ′i ← Zi
12: Zi ← Zi−1

13: Init(i− 1)
14: end while
15: until i = d− 1 ∧ Zd−1 = Z ′d−1

16: return (Zd−1, V \Zd−1)
17: end function

1: function Init(i)
2: Zi ← P0 if i is odd, V \P1 otherwise
3: end function

1: function Diamond
2: return {v ∈ V0\P0\P1 | ∃w∈V (v, w) ∈
E ∧ w ∈ ZΩ(w)}

3: end function

1: function Box
2: return {v ∈ V1\P0\P1 | ∀w∈V (v, w) ∈
E =⇒ w ∈ ZΩ(w)}

3: end function

This algorithm can be used as a Solve algorithm in IncPreSolve since it solves parity games
using P0 and P1.

6.2.4 Running time

We consider the running time for solving VPG G = (V, V0, V1, E,Ω,C, θ) independently and
collectively. We use n to denote the number of vertices, e the number of edges, d the number of
distinct priorities and c the number of configurations.
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The fixed-point iteration algorithm without P0 and P1 runs in O(e ∗ nd) [4]. We can use this al-
gorithm to solve G independently, i.e. solve all the projections of G. This gives a time complexity
of O(c ∗ e ∗ nd).

Next, consider the IncPreSolve algorithm for a collective approach, observe that in the worst
case we have to split the set of configurations all the way down to individual configurations. We
can consider the recursion as a tree where the leafs are individual configurations and at every
internal node the set of configurations is split in two. In the worst case there are c leaves so
there are at most c − 1 internal nodes. At every internal node the algorithm solves two games
and at every leaf the algorithm solves 1 game, so we get O(c + 2c − 2) = O(c) parity games
that are being solved by IncPreSolve. In the worst case the values for P0 and P1 are empty.
In this case the FPIte algorithm behaves the same as the original algorithm and has a time
complexity of O(e ∗ nd). This gives an overall time complexity of O(c ∗ e ∗ nd), which is equal to
an independent solving approach.

Running time in practice

The incremental pre-solve algorithm will, most likely, need to solve more (pessimistic) parity
games than an independent approach would need to solve. However, the algorithm keeps trying
to increase the number of pre-solved vertices which might speed up the solving of these games.
This would cause the algorithm to solve the (pessimistic) increasingly quickly. Therefore, we
hypothesize that, even though more games are solved, the increment pre-solve algorithm performs
better than an independent approach.
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7. Locally solving (variability) parity games
As discussed in the preliminaries, parity games can be solved either globally or locally. Similar
to parity games we can solve VPGs either globally or locally. When locally solving a VPG for
vertex v̂0 we determine for every configuration the winner of vertex v̂0. When globally solving a
VPG we determine this for every vertex in the VPG.

When solving a VPG globally we might encounter significant differences in parts of the game
or intermediate results between configurations that we perhaps do not encounter when solv-
ing it locally because we can terminate earlier. Therefore we hypothesize that the increase in
performance between globally-collectively solving VPGs and locally-collectively solving VPGs
is greater than the increase in performance between globally-independently solving VPGs and
locally-independently solving VPGs.

The algorithms we have seen thus far are global algorithms. In this section we introduce local
variants for the parity game algorithms we have seen: Zielonka’s recursive algorithm and fixed-
point iteration algorithm. Furthermore, we introduce local variants for the novel VPG algorithms:
the recursive algorithm for VPGs and the incremental pre-solve algorithm.

7.1 Locally solving parity games

The two parity game algorithms introduced in the preliminaries (Zielonka’s recursive algorithm
and the fixed-point iteration algorithm) can be turned into local variants. These local variants
can be used to solve VPGs locally and independently.

7.1.1 Local recursive algorithm for parity games

The recursive algorithm has two recursion steps. The first recursion step gives two winning sets
which are used to find set B such that all the vertices in B won are by a particular player. The
second recursion step solves the remaining part of the game. When locally solving a parity game
we can sometimes avoid entering the second recursion when we already found the vertex we are
interested in to be in set B. In this section we introduce an algorithm that utilizes this idea to
create a local variant of the recursive algorithm.

First we inspect the notion of traps [45]. Traps are used in the original proof of the recursive
algorithm and we will use them again to reason about a local variant of the recursive algorithm.
Consider total parity game (V, V0, V1, E,Ω) in the next definition and two lemma’s.

Definition 7.1. [45] Set X ⊆ V is an α-trap in G if and only if player α can play in such a
way that once the token is in X, it will not leave X.

Lemma 7.1. [45] Set V \α-Attr(G,X) is an α-trap in G for any non-empty set X ⊆ V .

Lemma 7.2. [45] Let X ⊆ V be an α-trap in G. Then α-Attr(G,X) is also an α-trap in G.

Observe that a winning set Wα of parity game G is an α-trap in G. If α could play to Wα from
a vertex v ∈Wα then v would be winning for α.

We show that if a vertex in the first recursion is won by player α, as calculated in the recursive
algorithm, then this vertex is also won by player α in the game itself.

Lemma 7.3. Given total parity game G = (V, V0, V1, E,Ω), player α ∈ {0, 1} and non-empty
set X ⊆ V it holds that the winning set Wα for player α in G′ = G\α-Attr(G,X) is an α-trap
in G and all vertices in Wα are winning for α in G.
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Proof. Using Lemma 7.1 we find that V ′ = V \α-Attr(G,X) is a an α-trap in G. Set Wα is an
α-trap in G because if α could escape to V \V ′ then V ′ would not be an α-trap in G and if α
could escape to V ′\Wα then Wα would not be an α-trap in G′. Moreover keeping the token in
Wα causes player α to win the path because the strategy that was winning in G′ can also be
applied in G.

Let v0 be the vertex we are trying to solve locally. We could argue that if the algorithm finds
v0 to be winning for player α in the first recursion of the algorithm then we can terminate and
report v0 to be winning for α. Using the lemma above we find that indeed v0 is winning for
player α in game G when v0 is winning for α in the first recursion. However game G itself might
be the subgame of some game H. Vertex v0 is winning for α in G and in the subgame created
in the first recursion; however if we want to terminate early then v0 must also be winning for α
in game H. If v0 is not winning for α in game H and game G is the first subgame created from
game H then in order to correctly solve game H we need the complete winning sets of G. In
the conjecture below we express this property. If the conjecture holds we can terminate when
we find v0 in the first recursion to be winning for player α. However, as is shown below, the
conjecture does not hold.

Conjecture 7.4 (Disproven). For any RecursivePG(G′\A), with winning sets (W ′0,W
′
1), that

is invoked during RecursivePG(G) it holds that any vertex v ∈W ′α is won by player α in game
G.

Counterexample. Consider the following parity game G:

1

v1

3

v3

2

v2

All vertices are won by player 0 (v1 plays to v3, v3 must play to v2 and v2 must play to itself;
we always get an infinite path of v2’s).

We solve this game using RecursivePG and write down the values of relevant variables below.
We use the tilde decoration to indicate values for variables in the first recursion:

RecursivePG(G):
h = 3,α = 1
A = {v3}
RecursivePG(G\A):

h̃ = 2, α̃ = 0

Ã = {v2}
RecursivePG(G\A\Ã)

W̃ ′0 = ∅
W̃ ′1 = {v1} = W̃ ′

α̃

Vertex v1 is in W̃ ′
α̃

however in G the vertex is won by player α̃.

B̃ = {v1}
RecursivePG(G\A\B̃)

W̃ ′′0 = {v2}, W̃ ′′1 = ∅
W ′0 = W ′α = {v2}
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W ′1 = W ′α = {v1}
B = V
RecursivePG(G\B)
W0 = Wα = V

This counterexample disproves the conjecture.

When v0 is not winning for player α in the first recursion then we need the complete winning sets
to calculate B and go in the next recursion. We extend the recursive algorithm with a variable
∆ ⊆ {0, 1}. The algorithm either returns partial winning sets, containing v0, when v0 is won
by player β ∈ ∆ or the algorithm returns complete winning sets. This solves the problem, that
Conjecture 7.4 does not hold, by only allowing the algorithm to terminate before the second
recursion when α is in ∆. Pseudo code for the algorithm using ∆ is provided in Algorithm 8.

Algorithm 8 RecursivePGLocal(parity game G = (V, V0, V1, E,Ω), v0,∆)

1: if V = ∅ then
2: return (∅, ∅)
3: end if
4: h← max{Ω(v) | v ∈ V }
5: α← 0 if h is even and 1 otherwise
6: U ← {v ∈ V | Ω(v) = h}
7: A← α-Attr(G,U)
8: if α ∈ ∆ then
9: (W ′0,W

′
1)← RecursivePGLocal(G\A, v0, {α})

10: else
11: (W ′0,W

′
1)← RecursivePGLocal(G\A, v0, ∅)

12: end if
13: if W ′α = ∅ then
14: Wα ← A ∪W ′α
15: Wα ← ∅
16: else
17: B ← α-Attr(G,W ′α)
18: if α ∈ ∆ ∧ v0 ∈ B then
19: Wα ← ∅
20: Wα ← B
21: else
22: (W ′′0 ,W

′′
1 )← RecursivePGLocal(G\B, v0,∆)

23: Wα ←W ′′α
24: Wα ←W ′′α ∪B
25: end if
26: end if
27: return (W0,W1)

To prove the correctness we show any vertex in the winning set Wγ resulting from RecursiveP-
GLocal is indeed winning for player γ and that either the winning sets completely partition
the graph or that vertex v0 is in winning set Wβ such that β ∈ ∆.
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The proof is in many ways similar to the proof given in [45]. We repeat part of the original
reasoning in the following lemma.

Lemma 7.5. Given:

• total parity game G = (V, V0, V1, E,Ω),

• non-empty set X ⊆ V such that X is an α-trap in G and all vertices in X are winning for
player α in game G,

• subgame G′ = G\α-Attr(G,X)

it holds that the winner of any vertex in G′ is also the winner of that vertex in G.

Proof. Let (W ′0,W
′
1) be the winning sets of game G′. Using Lemma 7.2 we find that α-Attr(G,X)

is an α-trap in G. Using lemma 7.1 we find that V ′ = V \α-Attr(G,X) is an α-trap in G.

Consider winning set W ′α for game G′. Set W ′α is an α-trap in G′. In game G we find that player
α can not escape W ′α by going to V \V ′ because V ′ is an α-trap in G. Furthermore player α can
not escape to W ′α because W ′α is an α-trap in G′. We find that Wα is an α-trap in G. Finally
we know that the strategy for player α used in game G′ is still applicable in game G to win the
vertices in W ′α for game G.

Consider winning set W ′α for game G′. Set W ′α is an α-trap in G′. In game G we find that
player α can not escape W ′α by going to W ′α, however he/she might escape by going to V \V ′ =
α-Attr(G,X). When play goes to α-Attr(G,X) then player α can get the play into X which is
an α-trap in G and is winning for player α in G. So when the token is in W ′α either the play
stays there and α uses the strategy from game G′ to win or the play goes to X where player α
can keep the play and win.

Theorem 7.6. Given total parity game G = (V, V0, V1, E,Ω), vertex v0 (which is not necessar-
ily in V ), ∆ ⊆ {0, 1} and winning sets (Q0, Q1) for game G. We have for sets (W0,W1) =
RecursivePGLocal(G, v0,∆) that at least one of the following statements hold:

(I) For some β ∈ ∆ we have v0 ∈Wβ, W0 ⊆ Q0 and W1 ⊆ Q1.

(II) W0 = Q0 and W1 = Q1.

Proof. First note that both statements require the vertices in the winning sets to be in the correct
winning sets. Statement (I) only allows winning sets to be incomplete, it does not allow vertices
to be in a winning set when that vertex is not actually won by that player. Furthermore note
that statement (II) simply states that the game is solved completely.

Proof by induction on G.

Base: When G is empty then the algorithm returns (∅, ∅) in which case statement (II) holds
trivially.

Step: The algorithm considers the highest priority in the game and assigns the parity of this
priority to α. The set U contains all vertices with this priority and A contains all vertices from
where player α can force the play into U .
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The first recursion removes vertices in A from the game, since A is non-empty we can apply
induction to find that at least one of the two statements hold for G\A and winning sets (W ′0,W

′
1).

If W ′α = ∅ (line 13) then statement (II) must be true for G\A because α is never passed into the
∆ parameter for recursion G\A (lines 9 and 11). We find that indeed all vertices in G\A are
won by player α, moreover player α has a strategy σα for G\A that is winning for all vertices
in V \A. Clearly this strategy can also be applied game to G. Consider valid path π in game
G conforming to σα. When this path eventually stays in V \A then player α wins because σα
is winning here. Otherwise the path visits A infinitely often, in which case player α can force
the play infinitely often into U and therefore the highest priority occurring infinitely often has
parity α. So player α wins all vertices in V and the algorithm returns winning sets accordingly;
statement (II) holds.

If W ′α 6= ∅ we use Lemma 7.3 and induction on G\A to find that all vertices in W ′α are also won
by player α in game G.

The algorithm continues with calculating set B (line 17). If α ∈ ∆ and v0 ∈ B (line 18) then
the algorithm returns all vertices in B to be winning for player α. As argued, all vertices in W ′α
are winning for player α in game G. Clearly any vertex where player α can force the play to W ′α
is also winning for player α. So all vertices in B are winning for player α in G. Because v0 ∈ B
and α ∈ ∆, statement (I) holds for game G.

If α /∈ ∆ or v0 /∈ B then statement(II) holds for game G\A (because W ′α ⊆ B).

The algorithm goes into the second recursion (line 22). Using induction we find that any vertex
v ∈ W ′′β is indeed won by player β in game G\B. The algorithm returns v to be winning for
player β in game G, using Lemma 7.5 we find this to be correct. Note that we can apply Lemma
7.5 because statement (II) holds for G\A and using Lemma 7.3 we find that W ′α is an α-trap
in G. The algorithm also returns B to be winning for α, which is correct because it contains
vertices such that player α can play to W ′α where player α wins. If statement (II) holds for G\B
then statement (II) also holds for G. If statement (I) holds for G\B then statement (I) also holds
for G because we pass ∆ into the recursion unmodified.

Calling RecursivePGLocal(G, v0, {0, 1}) with v0 in G either solves the full game (statement
(II)) or correctly puts v0 in either winning set (statement (I)). In both cases v0 is in the correct
winning set and the game is solved locally.

The worst-case time complexity of the local variant is the same as the original algorithm: O(e ∗
nd). If vertex v0 is not winning for a player in ∆ then the algorithm behaves the same as the
original, so its worst-case time complexity is the same.

7.1.2 Local fixed-point iteration algorithm

The fixed-point iteration algorithm can be modified to locally solve a parity game for vertex v0

by distinguishing two cases:

1. If d − 1 is even then the outermost fixed-point variable is a greatest fixed-point variable.
When at some point v0 /∈ Zd−1 then we know v0 is never won by player 0 and we are done.

2. If d−1 is odd then the outermost fixed-point variable is a least fixed-point variable. When
at some point v0 ∈ Zd−1 then we know v0 is won by player 0 and we are done.
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If vertex v0 is won by player 0 in the first case or won by player 1 in the second case then the
algorithm never terminates early. So in the worst-case the local algorithm behaves the same as
the global algorithm, therefore we have identical worst-case time complexities of O(e ∗ nd).

7.2 Locally solving variability parity games

We consider the two collective VPG algorithms we have seen thus far and create local variants
of them.

7.2.1 Local recursive algorithm for variability parity games

In the previous section we have seen a local variant of Zielonka’s recursive algorithm for parity
games that uses ∆ ⊆ {0, 1} to indicate for which player we are trying to find the specific vertex.

Consider VPG Ĝ with configuration set C and origin vertex v̂0 which we are trying to solve
locally. Unified parity game Ĝ↓ contains vertices C×{v̂0}. If we find the winning player for each
of these vertices we have solved the VPG locally. We are going to solve a unified parity game
locally, but instead of finding the winner of a single vertex we are finding the winners for a set
of vertices, specifically C× {v̂0}.

When we locally solve a parity game using the recursive algorithm we can sometimes avoid the
second recursion because we already found the winner of v̂0. However, when locally solving a
unified parity game we might find v̂0 for some configuration but not for all. When we find v̂0 to
be won by player α ∈ ∆ for configurations C ⊆ C then we remove all vertices with configurations
C from the game, i.e. we remove vertices C × V̂ . For the remaining vertices we do go into the
second recursion. Pseudo code is presented in Algorithm 9; we introduce function LocalConfs
which returns the configurations for which we have found the local solution.

The algorithm uses definitions to reason about projections of unified parity games and sets to
configuration(s). Previously we introduced a simple projection definition that projects a unified
parity game to a configuration (Definition 5.2). This is possible because vertices in a unified
parity game consist of pairs of configurations and origin vertices. We define a similar projection
for sets of vertices consisting of pairs of configurations and origin vertices.

Definition 7.2. Given set X ⊆ (C× V̂ ) we define the projection of X to c ∈ C, denoted by X|c,
as

X|c = {v̂ | (c, v̂) ∈ X}

Furthermore we need to be able to reason about projections not only to a single vertex but to a
group of vertices.

Definition 7.3. Given set X ⊆ (C × V̂ ) we define the projection of X to C ⊆ C, denoted by
X||C , as

X||C = X ∩ (C × V̂ )

We prove the correctness of Algorithm 9 by showing that every projection of the unified parity
game is either solved globally or locally. We first prove the following auxiliary lemma to reason
about projections.

Lemma 7.7. Given unified parity game G = (V, V̂0, V̂1, E, Ω̂), configuration c ∈ C and non-empty
set X ⊆ (C× V̂ ) such that X|c 6= ∅, it holds that α-Attr(G,X)|c = α-Attr(G|c, X|c).
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Algorithm 9 RecursiveUPGLocal(parity game G = (
V ⊆ C× V̂ ,
V̂0 ⊆ V̂ ,
V̂1 ⊆ V̂ ,
E ⊆ (C× V̂ )× (C× V̂ ),
Ω̂ : V̂ → N),
v̂0 ∈ V̂ ,
∆ ⊆ {0, 1})

1: if V = ∅ then
2: return (∅, ∅)
3: end if
4: h← max{Ω̂(v̂) | (c, v̂) ∈ V }
5: α← 0 if h is even and 1 otherwise
6: U ← {(c, v̂) ∈ V | Ω̂(v̂) = h}
7: A← α-Attr(G,U)
8: if α ∈ ∆ then
9: (W ′0,W

′
1)← RecursiveUPGLocal(G\A, v̂0, {α})

10: else
11: (W ′0,W

′
1)← RecursiveUPGLocal(G\A, v̂0, ∅)

12: end if
13: if W ′α = ∅ then
14: Wα ← A ∪W ′α
15: Wα ← ∅
16: else
17: B ← α-Attr(G,W ′α)
18: CB ← LocalConfs(B)
19: (W ′′0 ,W

′′
1 )← RecursiveUPGLocal(G\B\(V||CB

), v̂0,∆)
20: Wα ←W ′′α
21: Wα ←W ′′α ∪B
22: end if
23: return (W0,W1)

1: function LocalConfs(X ⊆ V )
2: if α ∈ ∆ then
3: return {c ∈ C | (c, v̂0) ∈ X}
4: else
5: return ∅
6: end if
7: end function
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Proof. This lemma follows immediately from the fact that a unified parity game is the union of
its projections. Furthermore, edges in unified parity games do not cross configurations, i.e. for
any ((c, v), (c′, v′)) ∈ E we get c = c′.

Next we prove the correctness. We prove that either the projection onto a configuration is solved
globally by the algorithm or in the projection v̂0 is found to be winning for player β ∈ ∆. This
is very similar to the local recursive algorithm for parity games (Algorithm 8 and Theorem 7.6)
where we proved similar properties.

Theorem 7.8. Given:

• VPG Ĝ = (V̂ , V̂0, V̂1, Ê, Ω̂,C, θ),

• origin vertex v̂0 ∈ V̂ ,

• total unified parity game G = (V, V̂0, V̂1, E, Ω̂) that is a subgame of, or equal to, unified
parity game Ĝ↓,

• configuration c ∈ C,

• winning sets (Q0, Q1) for game G|c,

• a set of players ∆ ⊆ {0, 1} and

• winning sets (W0,W1) = RecursiveUPGLocal(G, v̂0,∆)

at least one of the following statements hold:

(I) For some β ∈ ∆ we have (c, v̂0) ∈Wβ, (W0)|c ⊆ Q0 and (W1)|c ⊆ Q1.

(II) (W0)|c = Q0 and (W1)|c = Q1.

Proof. Proof by induction on G.

Base: If G is empty then the algorithm returns (∅, ∅) in which case statement (II) holds trivially.

Step: When G|c is empty then (W0)|c = ∅ and (W1)|c = ∅ because the algorithm only returns
vertices in the winning sets that are in V . In this case statement (II) holds trivially. Assume for
the remainder of the proof that G|c is not empty, that is V|c 6= ∅.

The algorithm considers the highest priority in the game and assigns the parity of this priority
to α. The set U contains all vertices with this priority and A contains all vertices from where
player α can force the play into U .

The first recursion removes vertices in A from the game. Since A is non-empty we can apply
induction to find that at least one of the two statements hold for G\A and winning sets (W ′0,W

′
1).

If W ′α = ∅ (line 13) then no vertex is won by player α in G\A and therefore no vertex in (G\A)|c
is won by player α. Therefore statement (II) holds for G\A and indeed all vertices in (G\A)|c
are won by player α, moreover player α has a strategy σα for (G\A)|c that is winning for all
vertices. Clearly this strategy can also be applied in game G|c. Consider valid path π in game
G|c conforming to σα. When this path eventually stays in (V \A)|c then player α wins because σα
is winning here. Otherwise the path visits A|c infinitely often, in which case player α can force

Verifying SPLs using parity games expressing variability 69



the play into U|c infinitely often and therefore the highest priority occurring infinitely often has
parity α. So player α wins all vertices in V|c and the algorithm returns winning sets accordingly;
statement (II) holds.

Otherwise the algorithm continues with calculating set B (line 17) and CB (line 18).

For the remainder of the proof numerous case distinction need to be made. These distinctions
will be presented in a Fitch-like style to improve readability.

First we distinguish two cases for A|c.

Assume A|c = ∅
Clearly G|c = (G\A)|c, so all vertices in (W ′α)|c are won by player α in game G|c.

Assume A|c 6= ∅
We use Lemma’s 7.7, Lemma 7.3 and induction on G\A to find that the vertices in (W ′α)|c
are won by player α in G|c.

In either case we find that all vertices in (W ′α)|c are won by player α in G|c.

Assume c ∈ CB
The second subgame that is created by the algorithm (line 19) does not contain any vertices
with configuration c because V||CB

is removed from the game. Therefore W ′′0 and W ′′1 do not
contain any vertices with configuration c. We find that the only vertices with configuration c
that are returned by the algorithm are in the set B.
For c to be in CB we must have (W ′α)|c 6= ∅. We can apply Lemma 7.7 to find that set B|c
contains all vertices such that player α can force the play to (W ′α)|c in game G|c. Earlier we
found that all vertices in (W ′α)|c are won by player α in game G|c, so clearly all vertices in
B|c are also won by player α.
The algorithm returns vertices B|c to be winning for player α. Because c ∈ CB we find that
α ∈ ∆ and v̂0 ∈ B|c. We conclude that statement (I) holds.

Assume c /∈ CB
If statement (I) holds for G\A then we would have found α ∈ ∆ and v̂0 ∈ (W ′α)|c. Because
(W ′α)|c ⊆ B|c we would also have found c ∈ CB . Since this is not the case we find that
statement (II) holds for G\A.

Assume (W ′α)|c = ∅
In this case B|c = ∅ and the second subgame G′ created (line 19) projected onto c is
identical to G|c. Using induction we find that statement (I) or (II) hold for G′. The
algorithm returns W ′′0 and W ′′1 for game G′ so the same statement that holds for the
subgame holds for G. Note that B does not contain vertices with configuration c.
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Assume (W ′α)|c 6= ∅
We apply Lemma 7.7 to find that B|c = α-Attr(G|c, (W

′
α)|c). For the second subgame

G′ created (line 19) we have (G′)|c = G|c\B|c because V||CB
contains no vertices with

configuration c.
The algorithm returns any vertex v̂ in (W ′′β )|c to be winning for player β in game G|c.
Using induction and Lemma 7.5 we find that indeed v̂ is won by player β in game G|c.
Furthermore the algorithm returns B|c to be winning for player α. Earlier we found that
all vertices in (W ′α)|c are won by player α in game G|c, so clearly all vertices in B|c are
also won by player α.
The vertices with configuration c that are returned by the algorithm are in the correct
winning set. If statement (I) holds for the subgame G′ then statement (I) also holds for
G because we use ∆ unmodified in the recursion. If statement (II) holds for the subgame
G′ then statement (II) also holds for G.

The pseudo code presented for the algorithm uses a set-wise representation of unified parity
games. As we have seen previously in the RecursiveUPG algorithm, we can modify the re-
cursive algorithm to use a function-wise representation with a function-wise attractor set cal-
culation. The RecursiveUPGLocal algorithm can be transformed in the same way. The
RecursiveUPGLocal algorithm introduces a definition for projecting to sets of configurations
as well as the LocalConfs subroutine. We introduce function-wise variants for this definition
and subroutine.

Definition 7.4. Given function X : V̂ → 2C we define the projection of X to C ⊆ C, denoted
by X||C , as

X||C(v̂) = X(v̂) ∩ C

Algorithm 10 shows a function wise implementation of the LocalConfs subroutine. It is trivial
to see that this algorithm and the projection definition are equal under the =λ operator to their
set-wise counterparts.

Algorithm 10 Function-wise LocalConfs subroutine

1: function FLocalConfs(X : V̂ → 2C)
2: if α ∈ ∆ then
3: return X(v̂0)
4: else
5: return ∅
6: end if
7: end function

We can solve a VPG locally using this local recursive algorithm for unified parity games. We
can either represent the parity games set-wise or we can represent them function-wise, in which
case we can represent the sets of configurations explicitly or symbolically. In all three cases
the time complexities are identical to their global counterparts because in the worst case the
vertex we are searching for is never won by player α ∈ ∆ at any recursion level. Furthermore
the added projection operation and the LocalConfs subroutine are subsumed in worst-case
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time complexity by the attractor set calculation. Therefore the worst-case time complexity
argumentation presented for the global variants is also valid for the local variants.

7.2.2 Local incremental pre-solve algorithm

The incremental pre-solve algorithm is particularly appropriate for local solving; if we find v0 in
Pα then we know that v0 is won by player α for every configuration, therefore we are done for
that particular recursion. This can potentially reduce the recursion depth of the algorithm and
therefore reduce the number of (pessimistic) games solved.

Furthermore, when there is only a single configuration left the incremental pre-solve algorithm
solves the corresponding parity game. When taking a local approach it is sufficient to solve this
parity game locally using the local fixed-point iteration algorithm. Note that the pessimistic
games still must be solved globally to find as much assistance as possible for further recursions.

If v0 is not found in either P0 or P1 and is only solved when there is one configuration left, then
the local algorithm behaves the same as the global algorithm; we have identical worst-case time
complexities: O(c ∗ e ∗ nd).
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8. Experimental evaluation
The algorithms proposed to solve VPGs collectively all have the same or a worse time complexity
than the independent approach. The aim of the collective algorithms is to solve VPGs effectively
when there are a lot of commonalities between configurations. A worst-case time complexity
analyses does not say much about the performance in case there are many commonalities. In
order to evaluate actual running time the algorithms are implemented and a number of test
VPGs are created to test the performance on. In this section we discuss the implementation and
look at the results.

During the previous sections we put forth a number of hypotheses about the performance of the
algorithms introduced. In this section we evaluate these hypotheses, specifically we hypothesised:

• that the recursive algorithm for VPGs can attract a large number of configurations per
origin vertex at the same time,

• that the recursive symbolic algorithm for VPGs performs well when solving VPGs origin-
ating from FTSs,

• that the incremental pre-solve algorithm outperforms independent approaches and,

• that the increase in performance between a global-collective and local-collective approach is
greater than the increase in performance between a global-independent and local-independent
approach.

8.1 Implementation

The algorithms are implemented in C++ version 14 and use BuDDy1 [27] as a BDD library. The
complete source is hosted on github2.

The implementation is split in three phases: parsing, solving and solution printing. The solving
part contains the implementations of the algorithms presented. The parsing and solution printing
parts are implemented trivially and hardly optimized and their running times are not considered
in the experimental evaluation.

The parsing phase of the algorithm creates BDDs from the input file and in doing so parts of the
BDD cache gets filled. After parsing the BDD cache is cleared to make sure that the work done
in the solving phase corresponds with the algorithms presented and no work to assist it has been
done prior to this phase. Creating BDDs is not a trivial task, however one could argue that an
FTS should already express its transition guards as BDDs. In any case, we leave the creation of
BDDs out of scope.

8.1.1 Game representation

The graph is represented using adjacency lists for incoming and outgoing edges, furthermore
every edge maps to a set of configurations representing the θ value for the edge. Sets of config-
urations are either represented symbolically or explicitly. In the former case we use BDDs, in
the latter case we use bit-vectors. For independent algorithms the edges are not mapped to sets
of configurations. Finally sets of vertices are represented using bit-vectors.

1https://sourceforge.net/projects/buddy/
2https://github.com/SjefvanLoo/VariabilityParityGames/tree/master/implementation/VPGSolver
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Note that only the representation of the games used during the algorithm is relevant. Since we
do not evaluate the parsing phase it is not relevant how the games are stored in a file.

8.1.2 Independent algorithms

Four independent algorithms are implemented, i.e. standard parity game algorithms. A global
and local variant is implemented of the following algorithms:

• Zielonka’s recursive algorithm and

• fixed-point iteration algorithm.

We implement the fixed-point iteration algorithm to use pre-solved vertices P0 and P1. When
using the algorithm for an independent approach we use ∅ for P0 and P1, in which case the
algorithm behaves the same as the original fixed-point iteration algorithm.

A few optimizations are applied to the fixed-point iteration algorithm. The following three are
described in [4]:

• For fixed-point variable Zi its value is only ever used to check if a vertex with priority i is
in Zi. So instead of storing all vertices in Zi we only have to store the vertices that have
priority i. We can store all fixed-point variables in a single bit-vector, named Z, of size n.

• The algorithm only updates a certain range of fixed-point variables. So the diamond and
box operations can use the previous result and only reconsider vertices that have an edge
to a vertex that has a priority for which its fixed-point variable is updated.

• The algorithm updates variables Z0 to Zm and reinitializes Z0 to Zm−1, however if Zm is
a least fixed-point variable then Zm has just increased and due to monotonicity the other
least fixed-point formulas, i.e. Zm−2, Zm−4, . . . , will also increase so there is no need to
reset them. Similarly for greatest fixed-point variables. So we only to reset half of the
variables instead of all of them.

Furthermore, the vertices in the game are reordered such that they are sorted by parity first
and by priority second. Using the above optimizations the algorithm needs to reset variables
Zm, Zm−2, . . . . These variables are stored in a single bit-vector Z. By reordering the variables
to be sorted by parity and priority these vertices that need to be reset are always consecutively
stored in Z. Resetting this sequence can be done by a memory copy instead of iterating all the
different vertices. Note that when the algorithm is used by the pre-solve algorithm the variables
are not reset to simply ∅ and V but are reset to two specific bit-vectors that are given by the
pre-solve algorithm. These bit-vectors have the same order and resetting can be done by copying
a part of them into Z.

The advantage of using a memory copy as opposed to iterating all the different vertices is due
to the fact that a bit vector uses integers to store its boolean values. A 64-bit integer can store
64 boolean values. Iterating and writing every boolean value individually causes the integer to
be written 64 times. However with a memory copy we can simply copy the entire integer value
and the integer is only written once.

Finally, priority compression is applied when using the fixed-point iteration algorithm. Priority
compression makes sure the lowest priority is 0 or 1 and for every priority p that is lower or equal
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to the highest priority occurring in the game we have p being either the lowest priority in the
game or there is a vertex in the game with priority p− 1 [4, 17].

8.1.3 Collective algorithms

Six collective algorithms are implemented, i.e. algorithms for solving VPGs. A global and local
variant is implemented of the following algorithms:

• Zielonka’s recursive algorithm for VPGs with explicit configuration set representation,

• Zielonka’s recursive algorithm for VPGs with symbolic configuration set representation and

• incremental pre-solve algorithm.

The incremental pre-solve algorithms uses the fixed-point iteration algorithm as described above
to solve the (pessimistic) parity games. When using the incremental pre-solve algorithm we
apply priority compression once, directly on the VPG. Since the (pessimistic) parity games that
are created during the algorithm have the same vertices as the VPG we do not have to apply
priority compression again when using the fixed-point iteration algorithm to solve them.

The incremental pre-solve algorithm creates subgames by splitting the set of configurations. The
games we evaluate are based on features so we simply split the set of configurations by arbitrarily
choosing a feature and including this feature in one set of configurations and excluding this
feature in the other set of configurations. The problem of finding good heuristics to split the sets
of configurations is also described in [37]. We leave this problem out of scope for this research.

8.1.4 Random verification

In order to prevent implementation mistakes 200 VPGs are created randomly, every VPG is
projected to all its configurations to get a set of parity games. These parity games are solved
using the PGSolver tool [20]. All algorithms implemented are used to solve the 200 VPGs
independently and collectively, the solutions are verified against the solutions created by the
PGSolver.

8.2 Test cases

We evaluate the performance of the algorithms on numerous test cases. We have two SPL model
checking problems as well as random VPGs. The model checking VPGs are created as described
in chapter 5, with the exception that only vertices are added when they are reachable from the
initial vertex. So these games are never disjointed. Random games can be disjointed.

In this section we present the different test cases and their characteristics. In the next section
the running times are presented.

8.2.1 Model checking games

We use two SPL examples. First, the minepump example as described in [25] and implemented
in the mCRL2 toolset [6] as described in [37]. The minepump example models the behaviour of
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controllers for a pump that pumps water out of a mineshaft. There are 10 different features that
change the way the sensors/actors behave. In total there are 128 valid feature assignments, i.e.
products.

The mCRL2 implementation creates an LTS with parametrized actions where the parameters
describe the boolean formulas guarding the transitions, effectively making it an FTS consisting
of 582 states and 1376 transitions. This FTS is interpreted in combination with nine different
µ-calculus formulas to create nine VPGs.

We choose to represent the sets of configurations using 10 boolean variables even though 128
configurations could be represented using only 7 boolean variables. By using the same number of
variables as there are features the boolean formulas from the FTS are left intact when using them
in the VPG. Table 8.1 shows the different formulas, as well as the result of the verification and
the size of the resulting games. All the properties can be expressed in the modal µ-calculus we
introduced in Definition 3.10. However, for readability, we present them using action formulas,
regular formulas and universal quantifiers [22].

Next we have the elevator example, described in [30]. This example models the behaviour of an
elevator where five different features modify the behaviour of the model. All feature assignments
are valid. Therefore, we have 25 = 32 feature assignments, i.e. products. Again an mCRL2
implementation3 (created by T.A.C. Willemse) is used to create seven VPGs. The FTS consists
of 33738 states and 206290 transitions. Table 8.2 shows the different formulas, as well as the
result of the verification and the size of the resulting games.

8.2.2 Random games

We create a set of random VPGs such that some games are very similar to the VPGs originating
from the SPL verification problems and some games are very different. We use these games to
further evaluate the performance of the algorithms.

The guard sets in the minepump and elevator games have a very specific distribution where nearly
all of the sets admit either 100% or 50% of the configurations. This is because an edge requiring
the presence or absence of one specific feature results in a set admitting 50%. On average the
edges in the examples admit 92% of the configurations. Most likely VPGs originating from FTSs
will have such a distribution.

Random VPGs can be created by creating a random parity game and creating sets of configur-
ations that guard the edges. For these sets we need to consider two factors: how large are the
sets guarding the edges and how are they constructed.

We use λ to denote the average relative size of guard sets in a VPG. So for every guard set in a
VPG we divide its size by the total number of configurations to get the relative size of the guard
set. Taking the average of all these relative sizes calculates λ.

For every random game we create, we pick a specific λ. This allows us to create games that have
a λ similar to those observed in the minepump and elevator example, i.e. λ = 0.92, and games
that have a λ very different from the SPL games.

Once we decided a value for λ we need to decide the sizes of the individual guard set. We do so
by using a probabilistic distribution ranging from 0 to 1 with a mean equal to λ. We consider two
distributions, namely a modified Bernoulli distribution which creates guard sets of only relative

3https://github.com/SjefvanLoo/VariabilityParityGames/blob/master/implementation/Elevator.tar.gz
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formula t/f n d

ϕ1
Absence of deadlock

128/0 3494 2
[true∗]〈true〉>

ϕ2
The controller cannot infinitely often receive water level readings

0/128 3004 3
µX.[(¬levelMsg)∗.levelMsg]X

ϕ3
The controller cannot fairly receive each of the three message types

0/128 9156 3
µX.([true∗.commandMsg]X ∨ [true∗.alarmMsg]X ∨
[true∗.levelMsg]X)
The pump cannot be switched on infinitely often

ϕ4 (µX.νY.([pumpStart.(¬pumpStop)∗.pumpStop]X ∧
[¬pumpStart]Y )) ∧ ([true∗.pumpStart]µZ.[¬pumpStop]Z)

96/32 6236 4

The system cannot be in a situation in which the pump runs
indefinitely in the presence of methane

ϕ5 [true∗](([pumpStart.(¬pumpStop)∗.methaneRise]µX.[R]X) ∧
([methaneRise.(¬methaneLower)∗.pumpStart]µX.[R]X))

96/32 7096 3

for R = ¬(pumpStop + methaneLower)

ϕ6

Assuming fairness (ϕ3), the system cannot be in a situation in
which the pump runs indefinitely in the presence of methane (ϕ5)

112/16 9224 4
[true∗](([pumpStart.(¬pumpStop)∗.methaneRise]Ψ) ∧
([methaneRise.(¬methaneLower)∗.pumpStart]Ψ))
for
Ψ = µX.([R∗.commandMsg]X∨[R∗.alarmMsg]X∨[R∗.levelMsg]X)
and R = ¬(pumpStop + methaneLower)

ϕ7

The controller can always eventually receive/read a message, i.e.
it can return to its initial state from any state 128/0 5285 3
[true∗]〈true∗.receiveMsg〉>

ϕ8
Invariantly the pump is not started when the low water level
signal fires

128/0 3902 2

[true∗.lowLevel.(¬(normalLevel + highLevel))∗.pumpStart]⊥

ϕ9
Invariantly, when the level of methane rises, it inevitably
decreases

0/128 5418 3

[true∗.methaneRise]µX.[¬methaneLower]X ∧ 〈true〉>
Table 8.1: Minepump properties with their partitioning and the size of the resulting VPG. In
the t/f columns the first number shows for how many products the property holds. Columns
n and d shows the number of vertices and distinct priorities in the resulting VPG. The formula
column is taken verbatim from [37]

.
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formula t/f n d

ϕ1

If a landing button is pressed at Level i, the lift will inevitably
open its doors on Level i

2/30 1379959 3
[true∗]∀i ∈ [1, 5].[landingButton(i)](µX.([¬open(i)]X∧〈true〉>)
)

ϕ2

If a lift button is pressed at Level i, the lift will inevitably open
its doors on Level i 4/28 1381390 3
[true∗]∀i ∈ [1, 5].[liftButton(i)](µX.([¬open(i)]X ∧ 〈true〉>))

ϕ3

If the lift is travelling up while there are calls in that direction it
will not change the direction it is travelling

4/28 1778065 3
[true∗](

[direction(up).(¬(direction(down) + ∃k ∈ [1, 5].open(k)))∗]
∀i ∈ [1, 5].[open(i)]∀j ∈ [i+ 1, 5].

[liftButton(j)]µY.(
[¬open(j)]Y ∧ [direction(down)]false ∧ 〈true〉>))

ϕ4

If the lift is travelling down while there are calls in that
direction it will not change the direction it is travelling

4/28 1853633 3
[true∗](

[direction(down).(¬(direction(up) + ∃k ∈ [1, 5].open(k)))∗]
∀i :∈ [1, 5].[open(i)]∀j ∈ [1, i− 1].

[liftButton(j)]µY.(
[¬open(j)]Y ∧ [direction(up)]false ∧ 〈true〉>))

ϕ5

If the lift is idling on Level i, it can remain at Level i
16/16 1282147 2(∀i ∈ [1, 5].〈true ∗ .idling(i)〉>)∧

[true∗]∀i ∈ [1, 5].[idling(i)]νY.〈idling(i)〉Y

ϕ6

The lift may stop at Levels 2,3 and 4 for landing calls when
travelling upwards

32/0 443352 2∀i ∈ [2, 4].(〈(¬liftButton(i))∗.direction(up).
(¬(liftButton(i) + direction(down)))∗.open(i)〉>)

ϕ7

The lift may stop at Levels 2,3 and 4 for landing calls when
travelling downwards

32/0 443012 2∀i ∈ [2, 4].(〈(¬liftButton(i))∗.direction(down).
(¬(liftButton(i) + direction(up)))∗.open(i)〉>)

Table 8.2: Elevator properties with their partitioning and the size of the resulting VPG. In the
t/f columns the first number shows for how many products the property holds. Columns n and
d shows the number of vertices and distinct priorities in the resulting VPG.
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size 0.5 and 1 and a beta distribution which creates guard sets with a more varying range of
relative sizes. We can use the former to create random games that are similar to the SPL games
and use the latter to create random games that are different to the SPL games.

• A modified Bernoulli distribution; in a Bernoulli distribution there is a probability of p to
get an outcome of 1 and a probability of 1−p to get an outcome of 0. We modify this such
that there is a probability of p to get 1 and a probability of 1− p to get 0.5. This gives a
mean of 1p + 0.5(1 − p) = 0.5p + 0.5. So to get a mean of λ we choose p = 2λ − 1. Note
that we cannot use this distribution when λ < 0.5 because p becomes less than 0.

• A beta distribution; a beta distribution ranges from 0 to 1 and is curved such that it has
a specific mean. The beta distribution has two parameters: α and β and a mean of α

α+β .

We pick β = 1 and α = λβ
1−λ to get a mean of λ.

Figures 8.1, 8.2 and 8.3 show the shapes of the distribution for different values for λ.

0 0.2 0.4 0.6 0.8 1

(a) Modified Bernoulli distribution with p = 0

0 0.2 0.4 0.6 0.8 1

(b) Beta distribution with β = 1 and α = 1

Figure 8.1: Edge guard size distribution for λ = 0.5

0 0.2 0.4 0.6 0.8 1

(a) Modified Bernoulli distribution with p = 0.5

0 0.2 0.4 0.6 0.8 1

(b) Beta distribution with β = 1 and α = 3

Figure 8.2: Edge guard size distribution for λ = 0.75
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0 0.2 0.4 0.6 0.8 1

(a) Modified Bernoulli distribution with p = 0.8

0 0.2 0.4 0.6 0.8 1

(b) Beta distribution with β = 1 and α = 9

Figure 8.3: Edge guard size distribution for λ = 0.9

Consider the creation of a random game that has 2m configurations, some λ is decided upon
and one of the above distribution is chosen. For an individual guard set we use the random
distribution to decide how large this guard set should be. Consider the creation of a specific guard
set and let r denote the relative size of this guard set, decided using the random distribution we
chose.

We now need to consider how to create a guard set of relative size r. We can simply create a
random set of configurations without any notion of features; we call this a configuration based
approach. Using this approach we can easily create a guard set of relative size r by simply picking
b2m ∗ rc configurations randomly.

Alternatively we can use a feature based approach where we create sets by looking at features.
Consider features f0, . . . , fm, we can create a boolean function that is the conjunction of k
features where every feature in the conjunction has probability 1

2 of being negated. For example
when using k = 3 and m = 5 we might get boolean formula f1 ∧ ¬f2 ∧ ¬f4. Such a boolean

formula corresponds to a set of configurations of size 2m−k and a relative size 2m−k

2m = 2−k. Since
we are creating a set of relative size r, we choose k = min(m, b− log2 rc). When using a feature
based approach we can only create sets that have a relative size of 2−i for some i ∈ N.

When creating a random game for some λ we have considered how we can choose the size of
individual set sizes and how to construct sets of that size. This gives us four different ways to
construct games:

1. Bernoulli distributed and feature based. These games are most similar to the SPL games.

2. Bernoulli distributed and configuration based. These games do have the characteristics of
an SPL game in terms of set size but have unstructured sets guarding the edges. Further-
more with a configuration based approach fewer guard sets will be identical than with a
feature based approach.

3. Beta distributed and configuration based. These games are most different from the SPL
games.

4. Beta distributed and feature based. Using a feature based approach we can only create
sets of size 2−i for any λ ≥ 1

2 . So using a beta distribution we must round to such a size.
Almost all the sets will get a relative size of either 1

2 or 1. So this creates almost the exact
same games as using the Bernoulli distribution, therefore we will not consider this category
of games.
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Category # vertices
Maximum

# successors
# distinct
priorities # confs λ

Type 1, scale in λ
Type 2, scale in λ 100− 600 3− 20 1− 10 24 − 212 game nr

100
Type 3, scale in λ
Type 1, scale in # confs 100− 600 3− 20 1− 10 2game nr 0.92

Table 8.3: Categories of random games

We create four sets of random games. For random games of type 1,2 and 3 we create 25 games:
game 75 to game 99, where game i has λ = i

100 and a random number of features, nodes, edges
and maximum priority. Furthermore we create 52 games to evaluate how the algorithm scales
when the number of features becomes larger. For every i ∈ [2, 15] we create random games i,
i.25, i.50 and i.75 of type 1 with λ = 0.92, bic features and a random number of nodes, edges
and maximum priority.

Besides the number of configurations and the value for λ we need to choose the number of vertices
for a game, the minimum number of successors of a vertex, the maximum number of successors
of a vertex and the number of distinct priorities in the game. The number of minimum and
maximum successor is decided per game. So if we pick l and h as the number of minimum and
maximum then for every vertex in the game we uniformly pick its number of successors between
l and h.

Table 8.3 shows the different categories of games and the corresponding parameters. The min-
imum number of successors per vertex is always 1 so this value is omitted from the table. The
games that scale in λ share the same random configuration per game number. So game i of type
1 that scales in λ has the same number of vertices, maximum successors, distinct priorities and
configurations as game i of type 2 and 3 that scale in λ.

8.3 Results

In this section the experimental results are presented.4 We evaluate the performance on six sets
of games:

• the minepump games,

• the elevator games,

• random games of type 1 with an increasing λ,

• random games of type 2 with an increasing λ,

• random games of type 3 with an increasing λ, and

• random games of type 1 with an increasing number of configuration.

We present the times it took to solve a VPG. For an independent approach this means the
sum of the times it takes to solve every projection of the VPG. For a collective approach this

4The complete collection of test VPGs can be found at:
https://github.com/SjefvanLoo/VariabilityParityGames/tree/master/implementation
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simply means the solve time for the VPG. In either case we only measure the solve time; parsing,
projecting and solution printing is excluded from the evaluation.

The exact times can be found in appendix A; in this section the results are visualized and
presented in a way such that we can easily compare independent and collective approaches. We
have four independent approaches:

• Recursive algorithm (global),

• Recursive algorithm (local),

• fixed-point iteration (global) and

• fixed-point iteration (local).

For every set of problems we present four charts; for every independent approaches we present
a chart where its performance is compared to one or two collective algorithms. We compare the
performance of the recursive algorithm for VPGs with the performance of the original recursive
algorithm and the performance of the incremental pre-solve algorithm with the performance of
the fixed-point iteration algorithm. In some of the charts the solve times are divided by the
independent solve times to visualize how much better or worse the collective variants perform.

The following legend holds for all charts presented in this section:

Independent approaches:

Recursive algorithm for parity games (global)

Fixed-point iteration algorithm for parity games (global)

Recursive algorithm for parity games (local)

Fixed-point iteration algorithm for parity games (local)

Collective approaches:

Recursive algorithm for VPGs with a symbolic representation of configurations (global)

Recursive algorithm for VPGs with an explicit representation of configurations (global)

Incremental pre-solve algorithm (global)

Recursive algorithm for VPGs with a symbolic representation of configurations (local)

Recursive algorithm for VPGs with an explicit representation of configurations (local)

Incremental pre-solve algorithm (local)

All the experiments are ran on a Linux x64 operating system with an Intel i5-4570 @ 3.20 GHz
processor and 8GB of DDR3 RAM.

8.3.1 SPL examples

Figures 8.4 and 8.5 show the solving times (in ms) of the algorithms when applied to the SPL
examples.
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Figure 8.4: Running times on the minepump games. The x-axis shows the game numbers,
these correspond with the formulas described in Table 8.1. The y-axis shows, on a logarithmic
scale, the number of milliseconds required to solve the VPG.

For the minepump example we see that the recursive algorithm for VPGs using a symbolic
representation performs particularly well; about a 3 to 18 times increase in performance compared
to the independent approach. For the elevator example we also find an increase in performance
for the symbolic recursive algorithm compared to the independent algorithm; about a 2 to 6 times
increase. The difference is most likely because the minepump games have twice as many features
as the elevator games have. Notably, for the elevator games we also find a good performance
for the incremental pre-solve algorithm, which we do not find for the minepump games. Finally,
we observe that there is no clear difference between the relative performances of the global
algorithms and the local algorithms.
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Figure 8.5: Running times on the elevator games. The x-axis shows the game numbers, these
correspond with the formulas described in Table 8.2. The y-axis shows, on a logarithmic scale,
the number of milliseconds required to solve the VPG.

8.3.2 Random games

Figure 8.6 shows the performance of the algorithms on type 1 games. The recursive algorithms
for VPGs perform quite well, even though there are a few instances where the performance is
worse than the independent approach. The symbolic variant performs quite a bit better than
the explicit variant. The relative performance of the local variants of the recursive algorithms is
about the same as the relative performance of the global variants.

For the incremental pre-solve algorithm we do see a big difference between a local and global
approach. The global variant performs well only for games 90 and up. The local variant, however,
performs well for nearly all the games. Furthermore, even for the games where the global variant
performs well relative to the independent global approach does the local variant performs even
better relative to the independent local approach.
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Figure 8.6: Running times on random games of type 1 with λ = game nr
100 . The x-axis shows the

game numbers. The y-axis shows, on a logarithmic scale, how much faster the algorithms solved
a VPG compared to the independent algorithm. Clearly the independent algorithm always has
value of 1 for every VPG. If an algorithm has a value above 1 for a VPG then it performed
worse than the independent algorithm; if the value is below 1 then it performed better than the
independent algorithm.

Figure 8.7 shows the performance of the algorithms on type 2 games. For the recursive algorithms
we see that the explicit variant takes over from the symbolic variant. This is to be expected since
these games have edge guards that are not created from features but created by picking random
configurations. This decreases the performance of symbolic set operations but has no effect the
performance of explicit set operations. Both variants still perform somewhat better than the
independent approach. Again we do not find a significant difference between the global and local
approach.

For the incremental pre-solve algorithm we find a similar result as with type 1 games. The global
variant performs well only when λ is high. The local variant performs significantly better and
performs well for almost all games.
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Figure 8.7: Running times on random games of type 2 with λ = game nr
100 The x-axis shows the

game numbers. The y-axis shows, on a logarithmic scale, how much faster the algorithms solved
a VPG compared to the independent algorithm.

Figure 8.8 shows the performance of the algorithms on type 3 games. For these games we see
the symbolic variant of the recursive algorithm performing worse than the independent approach
for almost all games. The explicit variant still performs significantly better than the symbolic
variant and performs somewhat better than the independent approach. This is similar to type 2
games, which is to be expected because both types of games use configuration sets not based on
features. Again we do not find a significant difference between the global and local approach.

The global incremental pre-solve algorithm performs worse than the independent approach for
almost all games. Notably for these games we do not find a significant increase in relative
performance when using a local variant.

Notably, the explicit recursive algorithm seems to be the only algorithm unaffected by the fact
that the guard sets sizes of type 3 games vary wildly (they are distributed using a beta distribu-
tion). Maybe surprisingly, the incremental pre-solve algorithm is affected heavily by this. This is
most likely because there are a lot fewer edges that admit all configurations and therefore player
α will probably win fewer vertices in a pessimistic game for player α.
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Figure 8.8: Running times on random games of type 3 with λ = game nr
100 The x-axis shows the

game numbers. The y-axis shows, on a logarithmic scale, how much faster the algorithms solved
a VPG compared to the independent algorithm.

8.3.3 Scaling

Figure 8.9 shows the performance of the algorithms on type 1 games where the number of con-
figurations increase exponentially in the x-axis of the charts. For the recursive algorithm we see
that the collective approach starts outperforming the independent approach around 24 configur-
ations. As the number of configurations grow we see that the symbolic variant keeps increasing
in relative performance while the explicit variants relative performance starts to flatten. This
is to be expected because the performance of the explicit variant always scales linearly in the
number of configurations. In the worst case the symbolic variant scales quadratically in the
number of configurations, however when the sets of configurations can be represented efficiently
it scales much better and in this case sublinear (since the performance of the local variant keeps
increasing relative to the explicit variant).

The global incremental pre-solve algorithms does not increase notably in relative performance
when the number of configurations increases. However, the relative performance of the local
variant does increase in performance when the number of configurations increases. The recursion
of the incremental pre-solve algorithm can be conceptualized as a tree where at every node the
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algorithm tries to increase the pre-solved vertices. The local variant can terminate when at some
node the vertex that is being locally solved is found. In such a case the whole subtree of that
node is longer computed. When the number of configurations grow then potentially the size of
this subtree also grows. The fact that the local incremental pre-solve algorithm scales well in the
number of configurations is most likely because the algorithm can terminate early for a relatively
large set of configurations.
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Figure 8.9: Running times on random games of type 1 with λ = 0.92 and the number of features
equal to bgame nrc. The x-axis shows the game numbers. The y-axis shows, on a logarithmic
scale, how much faster the algorithms solved a VPG compared to the independent algorithm.

8.3.4 Internal metrics

Earlier we hypothesised that the recursive algorithm for VPGs could perform well if we can
attract many configurations simultaneously. For every VPG we measure the average number of
configurations that were attracted simultaneously. We measure this relative to the total number
of configurations in the VPG. This gives a number for every VPG. For every set of VPGs we
average this number to get an average set size for every problem set. These values indicate how
many configurations were attracted simultaneously. In Table 8.4 these values are presented for
the different problems being globally solved, note that whether the sets are represented explicitly
or symbolically is irrelevant. We see that this number somewhat predicts the performance of the
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recursive algorithms.

Minepump 46%
Elevator 51%
Type 1, scaling in λ 61%
Type 2, scaling in λ 55%
Type 3, scaling in λ 22%
Type 1, scaling in # confs 72%

Table 8.4: Relative size of attracted sets

The incremental pre-solve algorithm tries to outperform its independent counterpart by growing
the set of pre-solved vertices. We measure how many vertices are pre-solved for the different
sets of problems. For every VPG we measure the average number of pre-solved vertices for
every (pessimistic) parity game solved. We measure this relative to the number of vertices in
the VPG. This gives a number for every VPG. For every set of VPGs we average this number
to get an average vertex size for every problem set. These values indicate how many vertices
were pre-solved on average. In Table 8.5 these values are presented for the different problems.
The algorithm recurses into two branches after every two pessimistic parity games solved. The
further we go down the tree the higher the number of pre-solved vertices. So the average numbers
presented in the table are quite high because there are exponentially more parity games that are
further down the recursion tree.

For the global variant the number presented in Table 8.5 somewhat predicts the performance
of the incremental pre-solve algorithm compared to the fixed-point iteration algorithm. For the
local variant this is not the case. The local variant performs well when parts of the recursion
tree are not calculated because we have terminated early. However, if the recursion tree is less
deep then the numbers in the table decrease. Therefore, for the local algorithm the numbers do
not predict the performance.

Global Local
Minepump 58% 29%
Elevator 84% 38%
Type 1, scaling in λ 87% 9%
Type 2, scaling in λ 82% 9%
Type 3, scaling in λ 57% 19%
Type 1, scaling in # confs 91% 12%

Table 8.5: Relative number of pre-solved vertices

8.3.5 Discussion

From the experimental results we observe that the symbolic variant of the recursive algorithms
for VPGs performs well for the model verification problems. For type 1 random games it also
performs well and particularly scales very well in the number of configurations. For type 2
and 3 games the sets of configurations can no longer be efficiently represented symbolically and
performance drops.

After comparing independent and collective approaches we compare the performances of the
algorithms overall.
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First we compare the independent algorithms. Table 8.6 shows for every set of VPGs how long it
took each algorithm to solve all the VPGs in that set. We observe that the recursive algorithm

Recursive Recursive Fixed-point Fixed-point
global local global local

Minepump 1032 ms 788 ms 16713 ms 15989 ms
Elevator 79468 ms 65588 ms 7393468 ms 2108539 ms
Type 1, scaling in λ 1830 ms 1730 ms 53677 ms 51506 ms
Type 2, scaling in λ 1936 ms 1721 ms 74710 ms 72536 ms
Type 3, scaling in λ 1892 ms 1680 ms 62568 ms 51231 ms
Type 1, scaling in # confs 32903 ms 29393 ms 439199 ms 274201 ms

Table 8.6: Comparison of independent algorithms. The times shown are the times it took an
algorithm to solve all the VPGs in a problem set independently.

performs significantly better than the fixed-point algorithm across all problems. We also see
that the local variants perform somewhat better across the board. In table 8.7 we compare
the performance of the collective algorithms. We observe that the recursive symbolic variant
performs the best for model-checking problems and for type 1 games. Furthermore, most likely
the algorithm will scale well for models with a large number of features. The local variant of
the incremental pre-solve algorithm also performs well relative to its independent counterpart.
However, because the fixed-point iteration is heavily outperformed by the recursive algorithm
its overall performance is worse that the recursive variants. On average, the global variant of
the incremental pre-solve algorithm also outperforms its independent counterpart. However, we
have seen in the comparison charts that it does so less consistently and significantly than the
local variant and the symbolic recursive algorithm do.

Recursive Recursive Recursive Recursive Incremental Incremental
explicit explicit symbolic symbolic pre-solve pre-solve
global local global local global local

Minepump 1019 ms 942 ms 148 ms 133 ms 5900 ms 3223 ms
Elevator 81225 ms 78635 ms 25764 ms 25602 ms 1634659 ms 1278387 ms
Type 1,

209 ms 158 ms 91 ms 86 ms 8040 ms 3801 ms
scaling in λ
Type 2,

234 ms 199 ms 2741 ms 2585 ms 67458 ms 13459 ms
scaling in λ
Type 3,

677 ms 665 ms 15891 ms 15897 ms 196328 ms 102182 ms
scaling in λ
Type 1,

1088 ms 1048 ms 114 ms 104 ms 53460 ms 683 msscaling
in # confs

Table 8.7: Comparison of collective algorithms. The times shown are the times it took an
algorithm to solve all the VPGs in a problem set collectively.

Furthermore, we observe that the explicit variant of the recursive algorithm performs decent
across most games. We conclude from this that the efficiency of the symbolic algorithm does not
only come from representing sets of configurations efficiently; using a collective approach even
without this representation seems to be efficient. It seems that, for the games we experimented
with, using the explicit recursive algorithm never significantly hurts performance but in some

Verifying SPLs using parity games expressing variability 90



cases can significantly increase performance compared to the independent approach.

Earlier we hypothesized that a local-collective approach would increase performance more com-
pared to a global-collective approach than a local-independent approach would compared to a
global-independent approach. We observe that this is the case for the incremental pre-solve al-
gorithm but not at all the case for the recursive algorithms. Furthermore, this is only the case for
the random games; in the SPL games there is not a significant difference in relative performance.
We conclude that local solving has the potential to increase performance, however this is not a
given and depends on the algorithm and the type of VPG.
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9. Conclusion
An SPL can be verified using traditional model-checking techniques. These techniques check
every product described by the SPL independently. However, the number of products potentially
scales exponentially in the number of features. So we could end up with a large number of
products which makes independent checking undesirable. We have presented a method of model-
checking an SPL, that models its behaviour using an FTS, such that commonalities between the
different products are exploited to increase performance.

We generalized parity games to express variability; these games are called variability parity games
(VPGs). VPGs express variability through configurations; a VPG describes a parity game for
every configuration. We have shown that we can construct a VPG from an FTS and modal
µ-calculus formula such that solving the FTS gives the information needed to decide which
products satisfy the formula. VPGs can be solved independently where we solve every parity
game described by the VPG separately. We introduced several collective algorithms that solve
a VPG as a whole and try to exploit commonalities between the different configurations.

First we introduced a variant of Zielonka’s recursive algorithm that solves VPGs. The algorithm
views a VPG as a collection of parity games; a parity game for every configuration. We can
represent such a collection with a single game graph and for every vertex and edge we have a set
of configurations indicating if this vertex or edge is part of the parity game of that configuration.
We modified the recursive algorithm to use such a representation. Specifically, we modified
the attractor algorithm to try and attract multiple configurations per vertex at the same time.
This modified attractor algorithm relies heavily on set operations over the sets of configurations
associated with the vertices and edges. These sets can be either represented symbolically or
explicitly, giving two variants of the recursive algorithm for VPGs.

Next we introduced the incremental pre-solve algorithm for VPGs. This algorithm tries to find
vertices that are won by one of the players for all configurations, if such a vertex is found it is said
to be pre-solved. The algorithm tries to find these vertices and then splits the configurations
in two sets and goes into recursion for both of them. In the recursion the configuration set
has decreased in size so potentially more vertices can be pre-solved. The algorithm finds these
vertices through solving pessimistic parity games. Pessimistic parity games are created from
a VPG and for a player α, they have the property that any vertex won by player α is also
won by player α in the VPG played for any configuration. The incremental pre-solve algorithm
creates two pessimistic parity games (for player 0 and 1) and solves them using the fixed-point
iteration algorithm. The fixed-point algorithm is modified to use vertices that already were pre-
solved to increase its performance. The algorithm incrementally builds up the set of pre-solved
vertices until either all vertices are pre-solved or a single configuration remains. In the worst
case the algorithm solves linearly more (pessimistic) parity game than using an independent
approach would. However, by increasing the number of pre-solved vertices the algorithm tries
to outperform the independent approach by solving the (pessimistic) parity games increasingly
quicker.

We introduced local variants of the recursive algorithm for parity games and the fixed-point
algorithm for parity games. A local parity game algorithm tries to only determine the winner
of a single vertex instead of all the vertices, potentially increasing its performance. We also
introduced local variants of the collective algorithms mentioned above.

The incremental pre-solve algorithm has the same time complexity as independently solving a
VPG using the fixed-point iteration algorithm. The recursive algorithms for VPGs have a worse
worst-case time complexity than independently solving a VPG using the recursive algorithm
for parity games. However, the aim of the algorithms is to solve VPGs originating from FTSs
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efficiently. Often times these VPGs will have a lot of commonalities between the configurations.
The algorithms are implemented and their actual performance is compared to independent ap-
proaches. The minepump and elevator SPLs are used to evaluate the performances. Furthermore
a collection of random games is created with different characteristics ranging from very similar
to VPGs originating from SPLs to completely different from VPGs originating from SPLs.

We observed that for the SPL VPGs and random VPGs created to be similar to SPL VPGs the
symbolic variant of the incremental pre-solve algorithm performs best. The incremental pre-solve
algorithm generally also outperforms its independent counterpart, i.e. independently solving a
VPG using the fixed-point iteration algorithm. However, for the SPL VPGs, it does so less
significantly and consistently than the symbolic recursive algorithm does. It also scales poorer in
the number of features than the symbolic recursive algorithm does. Furthermore the independent
approach using the recursive algorithm greatly outperforms the independent approach using the
fixed-point algorithm. Because the incremental pre-solve algorithm uses the fixed-point algorithm
its absolute performance is significantly worse than the recursive algorithm for VPGs.

We observed the explicit recursive variant performs either very similar or better than the inde-
pendent approach across all games considered. From this we conclude that, even when VPGs are
less similar to the SPL VPGs, there is room to exploit commonalities and in some cases increase
performance without running the risk of significantly decreasing performance. Whether there
are types of VPGs for which the explicit algorithm would perform significantly worse than the
independent approach is left unanswered.

Notably, the difference between the local and global variants of the recursive algorithms for VPGs
is very little. However, the difference between the local and global variant of the incremental
pre-solve algorithm is large for some of the games. However, the difference is not large for the
SPL VPGs. We conclude that local algorithms for VPGs can increase performance compared to
global algorithms, more so that locally solving parity games increases performance compared to
globally solving parity games. However, this is highly dependent on the algorithm and the type
of VPG.

Future work Even though the incremental pre-solve algorithms performance was not the best,
it did on average outperform its independent counterpart. Therefore it would be interesting to
study the incremental pre-solve algorithm using a different way of solving pessimistic parity
games; for example, using a variant of the recursive algorithm that can work with pre-solved ver-
tices. This would potentially yield an algorithm that is more robust than the symbolic recursive
algorithm in the sense that it performs well across different VPGs and not only for VPGs that
originate from SPLs.

In this research we did not look into ways of splitting configurations in such a way that the incre-
mental pre-solve algorithm performs well; we simply split configurations based on an arbitrary
feature. In [37] it is observed that finding good heuristics for splitting sets of products is relevant
to efficiently verifying SPLs. It would be interesting to study such heuristics and to evaluate if
heuristics found for VPGs would applicable to the method described in [37], and vice versa.

Furthermore, many optimizations are known for solving parity games [39, 19, 21, 42]. It would
be interesting to study if these improvements are applicable to VPGs and if they increase the
performance of VPG solving more than they increase the performance of parity game solving.

Finally, the creation of VPGs is left unstudied in this thesis, it would be interesting to study
how one could efficiently create VPGs from FTSs including the creation of BDDs.
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A. Running time results

A.1 Minepump

Independent recursive
1 32.244785 ms
2 57.142866 ms
3 177.300524 ms
4 133.978037 ms
5 146.279183 ms
6 226.548281 ms
7 130.892825 ms
8 19.238491 ms
9 107.901228 ms

Independent recursive local
1 16.516449 ms
2 56.678234 ms
3 166.261729 ms
4 106.755556 ms
5 109.640023 ms
6 143.138385 ms
7 104.86387 ms
8 8.027416 ms
9 76.519869 ms

Independent fixed-point iteration
1 29.264917 ms
2 40.674684 ms
3 137.869316 ms
4 14726.550907 ms
5 625.375016 ms
6 329.514887 ms
7 356.932852 ms
8 4.185899 ms
9 462.522931 ms

Independent fixed-point iteration local
1 29.151388 ms
2 40.714354 ms
3 137.886107 ms
4 14727.598255 ms
5 403.33502 ms
6 241.624277 ms
7 357.023658 ms
8 4.211994 ms
9 47.330273 ms

Collective recursive explicit
1 21.105355 ms
2 43.435309 ms
3 184.89286 ms
4 249.706248 ms
5 81.458676 ms
6 290.469176 ms
7 78.83509 ms
8 15.117246 ms
9 53.835425 ms

Collective recursive explicit local
1 12.970156 ms
2 43.580676 ms
3 185.462523 ms
4 193.083871 ms
5 81.18502 ms
6 290.545893 ms
7 77.43355 ms
8 11.307562 ms
9 46.51709 ms

Collective recursive symbolic
1 3.933221 ms
2 6.762879 ms
3 25.027742 ms
4 37.363271 ms
5 12.63568 ms
6 42.715093 ms
7 11.664699 ms
8 1.07143 ms
9 6.86998 ms

Collective recursive symbolic local
1 1.726035 ms
2 6.785146 ms
3 24.711643 ms
4 27.177316 ms
5 12.641605 ms
6 42.53417 ms
7 11.653422 ms
8 0.574656 ms
9 5.629393 ms

Incremental pre-solve
1 301.939317 ms
2 249.815426 ms
3 863.458598 ms
4 2101.13278 ms
5 729.301981 ms
6 532.095869 ms
7 609.091435 ms
8 1.075446 ms
9 511.882915 ms

Incremental pre-solve local
1 301.278774 ms
2 1.272113 ms
3 129.359424 ms
4 1483.78104 ms
5 392.239293 ms
6 300.501929 ms
7 611.020332 ms
8 1.063772 ms
9 2.727468 ms
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A.2 Elevator

Independent recursive
1 14466.302056 ms
2 14915.141763 ms
3 15915.937528 ms
4 16807.44934 ms
5 8897.951572 ms
6 4209.467145 ms
7 4256.189379 ms

Independent recursive local
1 11838.428495 ms
2 12506.151312 ms
3 13098.469679 ms
4 13802.101726 ms
5 8183.027254 ms
6 3065.580388 ms
7 3094.191485 ms

Independent fixed-point iteration
1 1401628.67246 ms
2 1067460.29847 ms
3 2332354.10185 ms
4 2424947.16972 ms
5 102844.054783 ms
6 32238.619157 ms
7 31994.798117 ms

Independent fixed-point iteration local
1 199995.861137 ms
2 181748.74947 ms
3 545209.245758 ms
4 1069414.76658 ms
5 78133.171755 ms
6 13345.84391 ms
7 20690.864052 ms

Collective recursive explicit
1 15983.614369 ms
2 16555.489895 ms
3 16789.886104 ms
4 17433.006986 ms
5 8948.312123 ms
6 2773.313927 ms
7 2741.204448 ms

Collective recursive explicit local
1 14872.319637 ms
2 16197.062632 ms
3 16679.869784 ms
4 17439.30272 ms
5 8826.895628 ms
6 2318.720608 ms
7 2300.391218 ms

Collective recursive symbolic
1 5378.403412 ms
2 5684.740647 ms
3 5039.525624 ms
4 5295.952172 ms
5 2872.894073 ms
6 766.722225 ms
7 725.489882 ms

Collective recursive symbolic local
1 5060.426053 ms
2 5777.377482 ms
3 5184.639277 ms
4 5428.615541 ms
5 2925.932923 ms
6 631.693549 ms
7 593.154428 ms

Incremental pre-solve
1 469686.601635 ms
2 288973.070041 ms
3 402712.387165 ms
4 420408.603193 ms
5 25793.497523 ms
6 13467.418415 ms
7 13617.735125 ms

Incremental pre-solve local
1 339790.3129 ms
2 223654.225843 ms
3 347841.546228 ms
4 356190.556856 ms
5 8342.778568 ms
6 1258.440146 ms
7 1308.733329 ms
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A.3 Random games of type 1, scaling in λ

Independent recursive
75 5.783399 ms
76 3.507118 ms
77 68.609542 ms
78 4.307716 ms
79 171.997666 ms
80 3.473343 ms
81 20.470233 ms
82 43.836144 ms
83 10.754656 ms
84 291.048354 ms
85 34.906948 ms
86 105.089482 ms
87 52.09508 ms
88 217.12306 ms
89 6.753343 ms
90 499.414706 ms
91 66.743923 ms
92 19.052549 ms
93 3.431335 ms
94 3.383136 ms
95 60.166179 ms
96 68.754161 ms
97 55.764131 ms
98 8.832847 ms
99 4.415689 ms

Independent recursive local
75 4.517718 ms
76 3.349256 ms
77 60.562244 ms
78 4.157373 ms
79 168.280489 ms
80 2.656416 ms
81 19.806984 ms
82 43.172386 ms
83 10.726911 ms
84 280.660021 ms
85 30.78568 ms
86 105.265016 ms
87 47.11039 ms
88 213.383031 ms
89 5.910715 ms
90 466.893468 ms
91 60.137594 ms
92 17.647992 ms
93 2.539196 ms
94 3.181258 ms
95 56.683168 ms
96 63.162656 ms
97 47.249534 ms
98 8.310182 ms
99 3.762845 ms

Independent fixed-point iteration
75 19.627751 ms
76 2.14961 ms
77 314.44995 ms
78 105.881319 ms
79 9147.908303 ms
80 6.795065 ms
81 67.508151 ms
82 35.756278 ms
83 76.968366 ms
84 3205.297742 ms
85 59.952406 ms
86 528.268287 ms
87 41.405433 ms
88 36154.141433 ms
89 5.312185 ms
90 1734.147577 ms
91 214.862985 ms
92 38.540643 ms
93 16.448299 ms
94 0.814891 ms
95 188.552178 ms
96 933.268529 ms
97 581.380477 ms
98 184.611497 ms
99 12.650092 ms

Independent fixed-point iteration local
75 10.478241 ms
76 1.66616 ms
77 150.873986 ms
78 94.269122 ms
79 9152.663811 ms
80 3.13701 ms
81 67.256277 ms
82 35.863347 ms
83 76.960887 ms
84 2585.838483 ms
85 37.120349 ms
86 528.651148 ms
87 34.945019 ms
88 36241.631034 ms
89 2.324323 ms
90 604.389592 ms
91 214.881639 ms
92 38.737549 ms
93 7.405805 ms
94 0.81029 ms
95 189.256045 ms
96 932.433677 ms
97 304.747583 ms
98 184.646778 ms
99 4.620931 ms
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Collective recursive explicit
75 13.179941 ms
76 5.045615 ms
77 6.336736 ms
78 9.772348 ms
79 14.215647 ms
80 4.898211 ms
81 9.771256 ms
82 8.075173 ms
83 3.630777 ms
84 34.836531 ms
85 3.598688 ms
86 4.393503 ms
87 1.743596 ms
88 15.101981 ms
89 1.528683 ms
90 22.885089 ms
91 6.176384 ms
92 1.976313 ms
93 8.196764 ms
94 1.971804 ms
95 4.259683 ms
96 8.133055 ms
97 4.606805 ms
98 9.784656 ms
99 5.056011 ms

Collective recursive explicit local
75 13.200242 ms
76 4.425631 ms
77 4.606634 ms
78 9.009662 ms
79 14.223333 ms
80 2.603217 ms
81 3.365161 ms
82 4.929775 ms
83 3.564961 ms
84 20.384742 ms
85 2.905875 ms
86 3.191562 ms
87 1.644649 ms
88 13.847766 ms
89 1.049236 ms
90 18.964289 ms
91 6.147093 ms
92 1.962646 ms
93 3.024402 ms
94 1.515896 ms
95 1.801201 ms
96 5.530923 ms
97 4.290898 ms
98 9.632382 ms
99 2.472193 ms

Collective recursive symbolic
75 6.942651 ms
76 2.46779 ms
77 3.948197 ms
78 5.674459 ms
79 8.810585 ms
80 2.776076 ms
81 3.996077 ms
82 4.821725 ms
83 3.773631 ms
84 14.074491 ms
85 2.593924 ms
86 0.861131 ms
87 0.797176 ms
88 4.577257 ms
89 1.197462 ms
90 3.340015 ms
91 5.222941 ms
92 1.08472 ms
93 2.707787 ms
94 0.339749 ms
95 0.453768 ms
96 2.956694 ms
97 2.951662 ms
98 4.460949 ms
99 0.652745 ms

Collective recursive symbolic local
75 9.684677 ms
76 2.348568 ms
77 3.455208 ms
78 5.663252 ms
79 8.707741 ms
80 1.524961 ms
81 4.0165 ms
82 4.820994 ms
83 3.768966 ms
84 9.240854 ms
85 2.363849 ms
86 0.859659 ms
87 0.749002 ms
88 4.490098 ms
89 1.135063 ms
90 3.203913 ms
91 5.210439 ms
92 1.068052 ms
93 2.270763 ms
94 0.341987 ms
95 0.453611 ms
96 2.834343 ms
97 2.868619 ms
98 4.468894 ms
99 0.609133 ms
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Incremental pre-solve
75 24.10313 ms
76 11.218956 ms
77 245.581084 ms
78 79.38162 ms
79 729.210486 ms
80 12.009477 ms
81 80.603635 ms
82 221.42212 ms
83 39.769917 ms
84 3906.57147 ms
85 115.230275 ms
86 158.678762 ms
87 47.751048 ms
88 760.61273 ms
89 12.159277 ms
90 1171.34907 ms
91 235.925567 ms
92 34.046692 ms
93 8.460347 ms
94 0.131598 ms
95 3.280932 ms
96 82.014619 ms
97 39.518362 ms
98 11.305339 ms
99 9.764942 ms

Incremental pre-solve local
75 12.429163 ms
76 7.00983 ms
77 1.076886 ms
78 44.26665 ms
79 17.488957 ms
80 0.498895 ms
81 1.032711 ms
82 0.618111 ms
83 2.150437 ms
84 3652.819939 ms
85 0.492338 ms
86 0.9242 ms
87 0.208906 ms
88 39.231847 ms
89 0.22777 ms
90 1.332649 ms
91 1.409215 ms
92 0.542712 ms
93 1.535109 ms
94 0.117479 ms
95 0.466705 ms
96 4.859004 ms
97 2.771066 ms
98 6.767962 ms
99 0.554674 ms
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A.4 Random games of type 2, scaling in λ

Independent recursive
75 5.572237 ms
76 3.886284 ms
77 71.522315 ms
78 2.304195 ms
79 175.527 ms
80 3.462186 ms
81 19.904324 ms
82 49.190906 ms
83 9.397631 ms
84 370.173095 ms
85 33.034355 ms
86 101.017842 ms
87 54.011849 ms
88 277.018051 ms
89 7.332896 ms
90 482.92123 ms
91 61.479266 ms
92 17.699253 ms
93 3.155225 ms
94 3.254518 ms
95 56.647944 ms
96 58.454469 ms
97 55.691609 ms
98 9.093579 ms
99 4.250813 ms

Independent recursive local
75 4.993032 ms
76 2.777006 ms
77 51.969796 ms
78 2.145411 ms
79 166.831989 ms
80 2.625606 ms
81 19.594841 ms
82 48.034131 ms
83 8.562243 ms
84 366.608514 ms
85 25.455226 ms
86 73.522082 ms
87 47.168199 ms
88 261.574307 ms
89 5.020165 ms
90 368.893109 ms
91 66.534406 ms
92 18.584134 ms
93 2.570556 ms
94 3.267228 ms
95 51.163045 ms
96 56.701722 ms
97 53.53649 ms
98 8.846735 ms
99 4.164454 ms

Independent fixed-point iteration
75 13.248044 ms
76 4.904823 ms
77 212.49508 ms
78 29.021233 ms
79 11100.371072 ms
80 6.147743 ms
81 52.954776 ms
82 34.200157 ms
83 94.732149 ms
84 14663.811045 ms
85 94.903842 ms
86 678.222564 ms
87 38.267891 ms
88 43620.52326 ms
89 4.121256 ms
90 1494.600774 ms
91 225.48317 ms
92 44.600972 ms
93 15.181433 ms
94 4.081361 ms
95 210.571513 ms
96 992.03064 ms
97 963.018774 ms
98 105.644549 ms
99 7.015923 ms

Independent fixed-point iteration local
75 12.470087 ms
76 1.470259 ms
77 95.511138 ms
78 27.627334 ms
79 11093.380929 ms
80 2.364584 ms
81 53.370789 ms
82 33.992381 ms
83 46.078413 ms
84 14230.865929 ms
85 40.219652 ms
86 235.093898 ms
87 25.92723 ms
88 43606.352352 ms
89 2.162115 ms
90 585.769655 ms
91 224.934857 ms
92 44.599862 ms
93 4.075561 ms
94 3.437583 ms
95 98.24308 ms
96 992.33474 ms
97 963.997442 ms
98 105.2284 ms
99 6.975608 ms

Verifying SPLs using parity games expressing variability 102



Collective recursive explicit
75 11.582399 ms
76 5.557129 ms
77 5.882631 ms
78 3.56182 ms
79 18.407353 ms
80 4.50393 ms
81 3.715213 ms
82 5.772085 ms
83 5.68015 ms
84 61.428437 ms
85 3.011144 ms
86 11.129041 ms
87 2.04068 ms
88 23.852764 ms
89 3.053057 ms
90 20.924669 ms
91 6.294277 ms
92 3.608108 ms
93 5.046793 ms
94 1.609743 ms
95 1.899699 ms
96 6.603682 ms
97 4.909781 ms
98 10.970918 ms
99 2.646825 ms

Collective recursive explicit local
75 12.371467 ms
76 3.326987 ms
77 3.581174 ms
78 4.136829 ms
79 17.425269 ms
80 2.178803 ms
81 3.366602 ms
82 5.695551 ms
83 2.455281 ms
84 61.029529 ms
85 1.862928 ms
86 3.866284 ms
87 1.950294 ms
88 23.496673 ms
89 0.736546 ms
90 13.178012 ms
91 6.20594 ms
92 2.287151 ms
93 4.422565 ms
94 1.394032 ms
95 1.238352 ms
96 4.873597 ms
97 4.63077 ms
98 10.86504 ms
99 2.670858 ms

Collective recursive symbolic
75 8.590814 ms
76 6.154989 ms
77 85.029403 ms
78 4.249487 ms
79 454.203139 ms
80 3.51584 ms
81 10.555987 ms
82 35.00474 ms
83 5.56905 ms
84 1557.613182 ms
85 8.732898 ms
86 35.374897 ms
87 9.563621 ms
88 264.682693 ms
89 1.904499 ms
90 214.847173 ms
91 12.082922 ms
92 3.388263 ms
93 2.774365 ms
94 0.5237 ms
95 1.53478 ms
96 4.988797 ms
97 4.497413 ms
98 4.880229 ms
99 0.642964 ms

Collective recursive symbolic local
75 12.884992 ms
76 2.628672 ms
77 42.703954 ms
78 4.302818 ms
79 457.175236 ms
80 1.612656 ms
81 10.656932 ms
82 35.11936 ms
83 5.11544 ms
84 1567.519498 ms
85 5.046267 ms
86 15.793766 ms
87 9.364436 ms
88 270.137893 ms
89 1.01092 ms
90 108.909367 ms
91 12.10892 ms
92 3.452279 ms
93 2.920813 ms
94 0.578589 ms
95 1.153317 ms
96 4.919032 ms
97 4.535802 ms
98 4.890286 ms
99 0.64128 ms
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Incremental pre-solve
75 40.864312 ms
76 24.04339 ms
77 2125.279617 ms
78 74.18574 ms
79 10548.586273 ms
80 21.25207 ms
81 230.552061 ms
82 891.771734 ms
83 77.268964 ms
84 15161.231952 ms
85 413.975688 ms
86 804.467899 ms
87 360.230714 ms
88 6193.263862 ms
89 29.984868 ms
90 28914.631371 ms
91 694.84558 ms
92 71.502263 ms
93 15.43645 ms
94 6.294129 ms
95 91.693459 ms
96 323.904371 ms
97 296.481792 ms
98 36.927466 ms
99 9.060785 ms

Incremental pre-solve local
75 35.812991 ms
76 19.939048 ms
77 11.267082 ms
78 73.497531 ms
79 45.171472 ms
80 0.82058 ms
81 3.454883 ms
82 7.587814 ms
83 3.10014 ms
84 13126.034303 ms
85 3.565127 ms
86 4.315561 ms
87 2.283749 ms
88 52.009152 ms
89 0.493271 ms
90 38.726892 ms
91 5.756349 ms
92 1.065428 ms
93 1.30138 ms
94 5.638633 ms
95 1.014387 ms
96 5.851124 ms
97 5.45393 ms
98 4.119885 ms
99 0.43048 ms
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A.5 Random games of type 3, scaling in λ

Independent recursive
75 5.151231 ms
76 3.604603 ms
77 70.708286 ms
78 2.329638 ms
79 196.596803 ms
80 4.219329 ms
81 21.676263 ms
82 47.541397 ms
83 9.635504 ms
84 347.51953 ms
85 34.52527 ms
86 119.458258 ms
87 53.553651 ms
88 223.079026 ms
89 6.848982 ms
90 480.2348 ms
91 58.862406 ms
92 17.289855 ms
93 2.896246 ms
94 3.320768 ms
95 45.185803 ms
96 67.472313 ms
97 57.18095 ms
98 8.827342 ms
99 4.352249 ms

Independent recursive local
75 4.321471 ms
76 3.36463 ms
77 67.045277 ms
78 2.463787 ms
79 179.7972 ms
80 4.226262 ms
81 22.061602 ms
82 41.275329 ms
83 10.009246 ms
84 342.845079 ms
85 26.856433 ms
86 121.77033 ms
87 55.439681 ms
88 224.774085 ms
89 7.276428 ms
90 343.94985 ms
91 58.962511 ms
92 16.825969 ms
93 2.460236 ms
94 3.214327 ms
95 37.36455 ms
96 55.541583 ms
97 38.940735 ms
98 5.902098 ms
99 3.167523 ms

Independent fixed-point iteration
75 25.575229 ms
76 5.925763 ms
77 243.831927 ms
78 109.736644 ms
79 11020.561653 ms
80 6.065144 ms
81 77.810369 ms
82 37.962145 ms
83 112.963567 ms
84 10825.315091 ms
85 93.401165 ms
86 683.16394 ms
87 33.900335 ms
88 35623.490809 ms
89 4.028757 ms
90 1495.140344 ms
91 198.317844 ms
92 29.820193 ms
93 20.077013 ms
94 3.824404 ms
95 251.811213 ms
96 730.404449 ms
97 663.050439 ms
98 264.842467 ms
99 7.13727 ms

Independent fixed-point iteration local
75 6.447583 ms
76 3.937245 ms
77 86.499632 ms
78 107.420124 ms
79 4505.261921 ms
80 6.09288 ms
81 77.817817 ms
82 16.59241 ms
83 113.320589 ms
84 10658.541404 ms
85 43.264458 ms
86 684.641534 ms
87 34.090233 ms
88 32877.686634 ms
89 4.090678 ms
90 534.077027 ms
91 199.14394 ms
92 29.995618 ms
93 7.908287 ms
94 3.828793 ms
95 156.78394 ms
96 638.498578 ms
97 332.57441 ms
98 99.536863 ms
99 2.512545 ms
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Collective recursive explicit
75 12.902371 ms
76 15.140991 ms
77 18.717939 ms
78 11.013356 ms
79 77.8986 ms
80 9.891766 ms
81 9.0947 ms
82 14.099915 ms
83 7.211647 ms
84 183.074633 ms
85 7.353104 ms
86 29.286211 ms
87 4.941745 ms
88 121.480495 ms
89 2.922741 ms
90 63.375097 ms
91 12.290787 ms
92 10.663925 ms
93 12.072567 ms
94 2.519906 ms
95 7.509088 ms
96 11.690614 ms
97 8.799267 ms
98 15.079385 ms
99 7.514165 ms

Collective recursive explicit local
75 7.104126 ms
76 7.483722 ms
77 14.410184 ms
78 7.374659 ms
79 52.12921 ms
80 7.179271 ms
81 8.931317 ms
82 12.31199 ms
83 5.816688 ms
84 196.619454 ms
85 9.118515 ms
86 29.225048 ms
87 4.979079 ms
88 156.352514 ms
89 1.860649 ms
90 65.152861 ms
91 12.285151 ms
92 7.372765 ms
93 4.875889 ms
94 2.525663 ms
95 14.717426 ms
96 13.9454 ms
97 11.64738 ms
98 8.958566 ms
99 2.744124 ms

Collective recursive symbolic
75 18.54137 ms
76 18.296847 ms
77 476.01134 ms
78 7.939144 ms
79 2959.308729 ms
80 7.872336 ms
81 55.342337 ms
82 273.237373 ms
83 20.358435 ms
84 6615.501783 ms
85 48.054967 ms
86 519.476449 ms
87 36.730716 ms
88 2886.350328 ms
89 6.518033 ms
90 1710.51928 ms
91 88.979346 ms
92 35.9586 ms
93 9.854976 ms
94 2.611188 ms
95 24.157741 ms
96 31.650372 ms
97 23.72306 ms
98 11.150034 ms
99 2.903731 ms

Collective recursive symbolic local
75 8.698159 ms
76 15.287062 ms
77 404.360803 ms
78 7.927143 ms
79 2045.078 ms
80 7.938775 ms
81 54.964416 ms
82 250.826435 ms
83 20.280726 ms
84 6554.989919 ms
85 59.498466 ms
86 513.878872 ms
87 36.316144 ms
88 3821.29137 ms
89 6.040122 ms
90 1821.926626 ms
91 88.742239 ms
92 36.185988 ms
93 8.150113 ms
94 2.62318 ms
95 49.1887 ms
96 40.688449 ms
97 33.738615 ms
98 6.778539 ms
99 1.288989 ms
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Incremental pre-solve
75 73.734811 ms
76 28.641868 ms
77 3754.799599 ms
78 123.479098 ms
79 29096.679104 ms
80 33.534004 ms
81 459.50578 ms
82 2065.343313 ms
83 172.782392 ms
84 31559.535147 ms
85 859.952952 ms
86 3885.281168 ms
87 1055.404786 ms
88 34179.411694 ms
89 56.631884 ms
90 84285.964489 ms
91 1855.988683 ms
92 188.596517 ms
93 31.280134 ms
94 13.42136 ms
95 369.221645 ms
96 1124.808958 ms
97 948.932646 ms
98 89.644036 ms
99 15.072768 ms

Incremental pre-solve local
75 43.558063 ms
76 27.014061 ms
77 2196.073022 ms
78 107.994854 ms
79 22233.181687 ms
80 7.830664 ms
81 271.692867 ms
82 1071.624026 ms
83 60.29467 ms
84 26370.072606 ms
85 303.293351 ms
86 1325.389916 ms
87 343.330116 ms
88 33579.322758 ms
89 9.660728 ms
90 13009.351329 ms
91 307.125961 ms
92 76.306882 ms
93 21.666715 ms
94 7.713631 ms
95 207.979102 ms
96 363.974039 ms
97 191.276935 ms
98 42.050393 ms
99 4.143319 ms
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A.6 Random games of type 1, scaling in the number of
features

Independent recursive
2.0 0.831682 ms
2.25 0.787779 ms
2.5 0.630085 ms
2.75 0.768894 ms
3.0 1.808512 ms
3.25 0.873079 ms
3.5 1.303374 ms
3.75 0.847835 ms
4.0 1.681708 ms
4.25 3.279441 ms
4.5 3.66918 ms
4.75 1.558638 ms
5.0 4.309323 ms
5.25 2.893653 ms
5.5 5.59452 ms
5.75 5.736842 ms
6.0 12.759288 ms
6.25 6.920441 ms
6.5 12.602162 ms
6.75 8.326259 ms
7.0 12.128731 ms
7.25 14.289059 ms
7.5 16.616108 ms
7.75 14.929757 ms
8.0 51.708592 ms
8.25 29.056171 ms
8.5 38.009515 ms
8.75 65.541624 ms
9.0 83.306977 ms
9.25 77.116324 ms
9.5 88.795178 ms
9.75 104.625002 ms
10.0 109.839213 ms
10.25 201.184011 ms
10.5 71.639255 ms
10.75 173.372201 ms
11.0 278.696424 ms
11.25 190.420726 ms
11.5 166.337719 ms
11.75 212.147761 ms
12.0 446.367466 ms
12.25 411.10256 ms
12.5 611.590006 ms
12.75 376.966971 ms
13.0 1048.267745 ms
13.25 1460.488019 ms
13.5 1159.976893 ms
13.75 1428.482043 ms
14.0 1319.015823 ms
14.25 2558.800215 ms
14.5 2547.022879 ms
14.75 1702.58316 ms
15.0 3637.486788 ms
15.25 3077.368185 ms
15.5 4212.603012 ms
15.75 4828.130663 ms
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Independent recursive local
2.0 0.845191 ms
2.25 0.767179 ms
2.5 0.53975 ms
2.75 0.572876 ms
3.0 1.332794 ms
3.25 0.708959 ms
3.5 1.291144 ms
3.75 0.843332 ms
4.0 1.614021 ms
4.25 3.231037 ms
4.5 2.814344 ms
4.75 1.333007 ms
5.0 3.510366 ms
5.25 2.605022 ms
5.5 5.960058 ms
5.75 6.280421 ms
6.0 12.824149 ms
6.25 6.878454 ms
6.5 8.105308 ms
6.75 7.782662 ms
7.0 10.466472 ms
7.25 13.976853 ms
7.5 13.401955 ms
7.75 15.546727 ms
8.0 47.294253 ms
8.25 26.072257 ms
8.5 38.181981 ms
8.75 51.229874 ms
9.0 58.960801 ms
9.25 77.765224 ms
9.5 91.086372 ms
9.75 106.955251 ms
10.0 105.642766 ms
10.25 149.697167 ms
10.5 59.093611 ms
10.75 161.967224 ms
11.0 260.206377 ms
11.25 188.520127 ms
11.5 148.423159 ms
11.75 211.188823 ms
12.0 329.366103 ms
12.25 326.42036 ms
12.5 617.843715 ms
12.75 377.525177 ms
13.0 1062.828274 ms
13.25 1193.730158 ms
13.5 879.727791 ms
13.75 1365.846105 ms
14.0 1337.705727 ms
14.25 2004.668309 ms
14.5 1998.261304 ms
14.75 1701.711136 ms
15.0 3586.237182 ms
15.25 2993.832268 ms
15.5 3772.95595 ms
15.75 3938.494334 ms

Independent fixed-point iteration
2.0 1.222122 ms
2.25 1.133871 ms
2.5 0.526085 ms
2.75 1.256012 ms
3.0 10.007389 ms
3.25 0.653871 ms
3.5 1.128714 ms
3.75 6.658314 ms
4.0 1.222348 ms
4.25 4.570886 ms
4.5 9.554861 ms
4.75 2.521594 ms
5.0 74.04515 ms
5.25 8.378165 ms
5.5 28.951916 ms
5.75 45.63253 ms
6.0 1884.595558 ms
6.25 4.029901 ms
6.5 176.488428 ms
6.75 230.247336 ms
7.0 6.192419 ms
7.25 9.909952 ms
7.5 155.378584 ms
7.75 10.296701 ms
8.0 876.484578 ms
8.25 57.978683 ms
8.5 172.483793 ms
8.75 1186.537532 ms
9.0 62.05414 ms
9.25 450.213645 ms
9.5 271.981159 ms
9.75 6887.116 ms
10.0 124.2075 ms
10.25 31039.306543 ms
10.5 30.166836 ms
10.75 8019.228783 ms
11.0 2837.548451 ms
11.25 123.43605 ms
11.5 60.914666 ms
11.75 111.798733 ms
12.0 3111.775565 ms
12.25 209.116113 ms
12.5 584.160629 ms
12.75 193.744241 ms
13.0 35438.150725 ms
13.25 69412.506047 ms
13.5 50077.86549 ms
13.75 27055.392409 ms
14.0 403.672671 ms
14.25 2860.536252 ms
14.5 37655.061565 ms
14.75 786.531295 ms
15.0 6134.357818 ms
15.25 2955.288551 ms
15.5 118306.907779 ms
15.75 29027.486125 ms
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Independent fixed-point iteration local
2.0 1.221726 ms
2.25 1.122385 ms
2.5 0.33584 ms
2.75 0.472064 ms
3.0 5.498123 ms
3.25 0.314695 ms
3.5 1.111351 ms
3.75 6.665386 ms
4.0 1.226083 ms
4.25 4.582422 ms
4.5 3.885753 ms
4.75 1.623997 ms
5.0 32.555541 ms
5.25 4.824165 ms
5.5 28.753541 ms
5.75 45.750097 ms
6.0 1585.701822 ms
6.25 4.08783 ms
6.5 67.935102 ms
6.75 230.142028 ms
7.0 4.958423 ms
7.25 9.922013 ms
7.5 71.667973 ms
7.75 10.286904 ms
8.0 630.285925 ms
8.25 43.19819 ms
8.5 173.03034 ms
8.75 562.239159 ms
9.0 30.276466 ms
9.25 359.964972 ms
9.5 273.467268 ms
9.75 6883.883355 ms
10.0 124.974115 ms
10.25 13847.918176 ms
10.5 13.333751 ms
10.75 8027.709909 ms
11.0 2840.919689 ms
11.25 123.803546 ms
11.5 32.688601 ms
11.75 111.654487 ms
12.0 1491.764149 ms
12.25 103.405101 ms
12.5 588.127372 ms
12.75 195.841903 ms
13.0 35425.29469 ms
13.25 34923.642069 ms
13.5 21415.153714 ms
13.75 27084.473 ms
14.0 403.123418 ms
14.25 2700.289123 ms
14.5 9553.674124 ms
14.75 789.869555 ms
15.0 6135.838701 ms
15.25 1845.041556 ms
15.5 74896.828066 ms
15.75 20444.306506 ms

Collective recursive explicit
2.0 3.689382 ms
2.25 3.421375 ms
2.5 1.321109 ms
2.75 2.18316 ms
3.0 4.987218 ms
3.25 0.983535 ms
3.5 1.607078 ms
3.75 1.423996 ms
4.0 1.740855 ms
4.25 9.460022 ms
4.5 9.151982 ms
4.75 1.586286 ms
5.0 4.564488 ms
5.25 2.189078 ms
5.5 6.413069 ms
5.75 6.948876 ms
6.0 3.662662 ms
6.25 1.214467 ms
6.5 6.181864 ms
6.75 6.432064 ms
7.0 1.070284 ms
7.25 1.480217 ms
7.5 2.620133 ms
7.75 2.205924 ms
8.0 5.118212 ms
8.25 3.582384 ms
8.5 4.342961 ms
8.75 8.397231 ms
9.0 7.123557 ms
9.25 4.121446 ms
9.5 6.071836 ms
9.75 7.492039 ms
10.0 3.968228 ms
10.25 16.948431 ms
10.5 1.864118 ms
10.75 15.662477 ms
11.0 13.343244 ms
11.25 9.390556 ms
11.5 5.05927 ms
11.75 5.823042 ms
12.0 18.187711 ms
12.25 16.342897 ms
12.5 21.5048 ms
12.75 10.785761 ms
13.0 35.854223 ms
13.25 48.255687 ms
13.5 37.936213 ms
13.75 34.426066 ms
14.0 27.098822 ms
14.25 80.789609 ms
14.5 108.803807 ms
14.75 54.611687 ms
15.0 107.030578 ms
15.25 45.12552 ms
15.5 111.968127 ms
15.75 124.825594 ms
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Collective recursive explicit local
2.0 2.348458 ms
2.25 2.902567 ms
2.5 1.277929 ms
2.75 1.322573 ms
3.0 2.258321 ms
3.25 0.573683 ms
3.5 1.592866 ms
3.75 1.074024 ms
4.0 1.246714 ms
4.25 3.953101 ms
4.5 3.315987 ms
4.75 0.991203 ms
5.0 2.639893 ms
5.25 2.348003 ms
5.5 5.33634 ms
5.75 6.770864 ms
6.0 3.722354 ms
6.25 1.217468 ms
6.5 1.967965 ms
6.75 3.643114 ms
7.0 1.624517 ms
7.25 1.481051 ms
7.5 1.409988 ms
7.75 1.724534 ms
8.0 6.181395 ms
8.25 3.130761 ms
8.5 3.732697 ms
8.75 4.951618 ms
9.0 2.317672 ms
9.25 4.256602 ms
9.5 6.089713 ms
9.75 7.518627 ms
10.0 3.889302 ms
10.25 5.623036 ms
10.5 1.731465 ms
10.75 8.713679 ms
11.0 8.556716 ms
11.25 5.561564 ms
11.5 4.815343 ms
11.75 5.759282 ms
12.0 8.295555 ms
12.25 6.372578 ms
12.5 21.595398 ms
12.75 10.797121 ms
13.0 35.756249 ms
13.25 85.921009 ms
13.5 22.788833 ms
13.75 34.238522 ms
14.0 24.262727 ms
14.25 69.111176 ms
14.5 161.253008 ms
14.75 54.125483 ms
15.0 101.85229 ms
15.25 40.104211 ms
15.5 109.339547 ms
15.75 122.412531 ms

Collective recursive symbolic
2.0 3.262736 ms
2.25 3.854871 ms
2.5 1.814205 ms
2.75 3.178633 ms
3.0 4.480284 ms
3.25 1.007125 ms
3.5 1.653495 ms
3.75 1.176028 ms
4.0 1.00418 ms
4.25 2.88306 ms
4.5 3.737277 ms
4.75 1.301316 ms
5.0 2.344471 ms
5.25 0.530157 ms
5.5 2.207829 ms
5.75 3.078832 ms
6.0 2.665448 ms
6.25 1.391205 ms
6.5 1.386358 ms
6.75 2.07436 ms
7.0 0.815236 ms
7.25 1.202583 ms
7.5 1.919336 ms
7.75 1.494987 ms
8.0 4.263079 ms
8.25 1.262287 ms
8.5 1.984775 ms
8.75 5.37509 ms
9.0 1.876328 ms
9.25 1.941336 ms
9.5 3.968792 ms
9.75 3.593196 ms
10.0 1.476037 ms
10.25 1.898132 ms
10.5 0.556618 ms
10.75 2.581225 ms
11.0 1.116342 ms
11.25 0.891594 ms
11.5 1.062457 ms
11.75 1.371136 ms
12.0 1.555298 ms
12.25 1.145364 ms
12.5 2.259401 ms
12.75 1.16684 ms
13.0 2.010952 ms
13.25 2.045104 ms
13.5 2.090693 ms
13.75 1.513717 ms
14.0 0.311262 ms
14.25 1.851603 ms
14.5 5.755441 ms
14.75 1.625853 ms
15.0 1.560027 ms
15.25 0.486548 ms
15.5 1.175458 ms
15.75 1.356144 ms
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Collective recursive symbolic local
2.0 3.258418 ms
2.25 3.882941 ms
2.5 1.664378 ms
2.75 1.686219 ms
3.0 2.449441 ms
3.25 0.518552 ms
3.5 1.737923 ms
3.75 1.191066 ms
4.0 1.016765 ms
4.25 2.89878 ms
4.5 2.043714 ms
4.75 0.695672 ms
5.0 1.209631 ms
5.25 0.85079 ms
5.5 2.20691 ms
5.75 3.098205 ms
6.0 2.692335 ms
6.25 1.387245 ms
6.5 0.492061 ms
6.75 2.08924 ms
7.0 1.536968 ms
7.25 1.206975 ms
7.5 1.185762 ms
7.75 1.490256 ms
8.0 4.162072 ms
8.25 2.033141 ms
8.5 2.011455 ms
8.75 2.991366 ms
9.0 0.921848 ms
9.25 1.948832 ms
9.5 3.939665 ms
9.75 3.552001 ms
10.0 1.490848 ms
10.25 1.212432 ms
10.5 0.525402 ms
10.75 2.566581 ms
11.0 1.104146 ms
11.25 0.889719 ms
11.5 1.027237 ms
11.75 1.348293 ms
12.0 0.827223 ms
12.25 0.630874 ms
12.5 2.271923 ms
12.75 1.166266 ms
13.0 1.996657 ms
13.25 4.203315 ms
13.5 1.258266 ms
13.75 1.530374 ms
14.0 0.315723 ms
14.25 1.606094 ms
14.5 8.342462 ms
14.75 1.65994 ms
15.0 1.553522 ms
15.25 0.500135 ms
15.5 1.062274 ms
15.75 1.276518 ms

Incremental pre-solve
2.0 3.027823 ms
2.25 3.056003 ms
2.5 2.420596 ms
2.75 2.903228 ms
3.0 8.968049 ms
3.25 2.66567 ms
3.5 3.25113 ms
3.75 3.013486 ms
4.0 5.42656 ms
4.25 12.377157 ms
4.5 14.507135 ms
4.75 4.765442 ms
5.0 18.986578 ms
5.25 5.661775 ms
5.5 15.943753 ms
5.75 22.621107 ms
6.0 77.486745 ms
6.25 19.285423 ms
6.5 28.655507 ms
6.75 40.345489 ms
7.0 28.69868 ms
7.25 35.097079 ms
7.5 51.9112 ms
7.75 52.303305 ms
8.0 45.751888 ms
8.25 82.996192 ms
8.5 134.40839 ms
8.75 269.843533 ms
9.0 121.9773 ms
9.25 204.60547 ms
9.5 262.423825 ms
9.75 301.717134 ms
10.0 121.304941 ms
10.25 594.192081 ms
10.5 8.949736 ms
10.75 860.301552 ms
11.0 158.94577 ms
11.25 113.17543 ms
11.5 0.159143 ms
11.75 602.142005 ms
12.0 156.559805 ms
12.25 944.023468 ms
12.5 434.253602 ms
12.75 1196.079578 ms
13.0 2445.847367 ms
13.25 4712.871414 ms
13.5 4129.468355 ms
13.75 1190.968878 ms
14.0 0.143011 ms
14.25 4019.764436 ms
14.5 6998.876242 ms
14.75 2540.239206 ms
15.0 3314.935058 ms
15.25 2982.548442 ms
15.5 1379.077967 ms
15.75 12668.325032 ms
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Incremental pre-solve local
2.0 0.798992 ms
2.25 2.494454 ms
2.5 0.483175 ms
2.75 0.740626 ms
3.0 2.077046 ms
3.25 0.274311 ms
3.5 0.421767 ms
3.75 0.870524 ms
4.0 0.260408 ms
4.25 0.72037 ms
4.5 1.196638 ms
4.75 0.330133 ms
5.0 3.168872 ms
5.25 0.449824 ms
5.5 1.352182 ms
5.75 1.725661 ms
6.0 63.53004 ms
6.25 0.248895 ms
6.5 3.852187 ms
6.75 3.642727 ms
7.0 10.454824 ms
7.25 0.250003 ms
7.5 1.462712 ms
7.75 0.275768 ms
8.0 4.069187 ms
8.25 1.050522 ms
8.5 1.035266 ms
8.75 5.397 ms
9.0 0.382111 ms
9.25 3.839694 ms
9.5 1.096205 ms
9.75 19.257683 ms
10.0 0.264334 ms
10.25 37.33974 ms
10.5 0.12137 ms
10.75 9.524515 ms
11.0 2.748464 ms
11.25 0.196986 ms
11.5 0.153325 ms
11.75 0.20295 ms
12.0 1.377195 ms
12.25 0.21173 ms
12.5 0.431508 ms
12.75 0.187851 ms
13.0 5.65634 ms
13.25 444.761634 ms
13.5 6.973845 ms
13.75 16.897137 ms
14.0 0.147741 ms
14.25 0.479535 ms
14.5 4.16456 ms
14.75 0.249741 ms
15.0 0.364773 ms
15.25 7.931287 ms
15.5 4.174871 ms
15.75 1.291211 ms
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