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Abstract

OIL, short for Open Interaction Language, is a domain-speci�c language developed by Canon Pro-
duction Printing B.V. It is a language that can be used for specifying, analyzing, and implementing
models of system behavior. The tooling created for OIL can generate C++ code from OIL speci-
�cations. Part of this generated code is a scheduler that schedules so-called proactive events. The
focus of this project is to improve this scheduler; the aim is to reduce the number of computations
needed to do the scheduling. We investigate basic scheduling improvement strategies that do not
need the collection of additional information. We also investigate scheduling strategies for which
causal relations have to be gathered from the OIL speci�cations. These scheduling strategies could
be used to skip the scheduling of events that are not needed. Another strategy that we investigate
alters the OIL speci�cations themselves to make them easier to schedule. In this report, these
strategies for improving the scheduler are discussed, veri�ed, and achieved results are listed.

The writer was enabled by Canon Production Printing B.V. to perform research that partly forms
the basis for this report. Canon Production Printing B.V. does not accept responsibility for the
accuracy of the data, opinions, and conclusions mentioned in this report, which are entirely for
the account of the writer.
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1 Introduction

Canon Production Printing B.V. is a company that builds industrial printers. A lot of code is
written to make these printers work. The complexity of this code is continuously increasing which
makes the code harder to read and maintain. Therefore it is necessary to look for ways to reduce
this complexity for software engineers.

One approach for reducing the complexity for software engineers is by making models of the
systems you want to create. This can be accomplished by so-called domain-speci�c languages
(DSLs). These DSLs are created to accomplish speci�c tasks and are valuable because, if well-
designed, they can be much easier to use than general-purpose languages. A DSL improves the
productivity of the programmer and is a way to improve communication. This is because it is not
always necessary to be a programmer to understand a well-designed DSL.

Canon Production Printing B.V. developed such a DSL to try to improve the process of imple-
menting software components for their industrial printers. This language is called OIL, short for
Open Interaction Language. This is a textual language in which system behavior can be speci�ed.
While printing is the primary business domain of Canon Production Printing B.V., OIL contains
no language constructs or logic speci�cally tailored to the domain of printing.

In OIL, system behavior is described using state machines that respond to incoming events.
These state machines can keep track of the state of the system and can send out events themselves.
OIL utilizes a concept of separation of concerns which helps engineers to cope with complex
behavior. These concerns enable the modeling of speci�c aspects of the system separately in a
concise way. OIL has also been designed to have a readable and unambiguous visual representation.
These visualizations can be used during discussions among engineers.

Currently, two tools are speci�cally created to have OIL speci�cations as input; a version writ-
ten in Python and one made using Spoofax[1]. Spoofax is a platform speci�cally designed for
creating textual domain-speci�c programming languages. Both tools can transform OIL speci�ca-
tions to C++ code and mCRL2[2] speci�cations. However, there are a few di�erences; the Python
tool was created �rst and code generated by it is already being used in production. The Python
tool can simulate OIL speci�cations which is not possible in the tool created with Spoofax. The
tool that uses Spoofax supports the initial DSL based on XML �les but also supports a second
DSL that does not depend on XML. XML was initially being used because parsers for XML were
already available. The Spoofax-based tool is newer and aims to be more maintainable[3]. It is also
the version this project focuses on.

This project takes a closer look at the C++ code generator. In the generated code, there is a
part that schedules the events that the OIL speci�cation sends out; proactive events. Currently,
this scheduler is naive; all scheduling is done during runtime and uses little information from the
original OIL speci�cation. This project aims to make this scheduler more e�cient so it has to
do fewer computations during runtime. This would ideally result in generated C++ code needing
fewer resources.

This report starts with some background information in Chapter 2. Next, the problem de-
scription containing the research questions can be found in Chapter 3. This chapter is followed
by Chapter 4 which discusses basic improvement strategies for the naive scheduler. Afterward,
there are two chapters describing a strategy for improving the naive scheduler by gathering causal
relations between transitions. This includes an overview of the approaches for the gathering of
causal relations in Chapter 5, followed by a chapter describing the strategies how these causal
relations can be used; Chapter 6. In Chapter 7 a supporting strategy is discussed in which the
original OIL speci�cations are altered to make it easier to apply the previously mentioned schedul-
ing strategies. Afterward, Chapter 8 is dedicated to verifying the scheduling strategies to gain
trust that the generated code is correct. Next, Chapter 9 lists the results that are acquired using
the di�erent scheduling strategies. The report �nishes with Chapter 10 for the conclusions and
future work.
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2 Context

This chapter supplies more information on concepts that are used throughout this report.

2.1 What is OIL

OIL, short for Open Interaction Language is a textual language in which system behavior can be
speci�ed. An OIL speci�cation can be used to generate C++ code that implements these OIL
speci�cations[6]. Additionally, mCRL2 speci�cations can be generated to analyze the behavior of
the created OIL speci�cations. The semantics of this language are de�ned in [4]. This chapter
provides an informal description of the OIL language.

Basics Two kinds of OIL speci�cations exist; component and protocol speci�cations. This re-
port only focuses on component speci�cations. Each OIL (component) speci�cation consists of
three parts: the declaration of instance variables, the de�nition of areas, and the speci�cation of
transitions. The instance variables are used to keep track of the state of the component. An in-
stance state of the state machine gives a value to each of the instance variables. How the instance
state changes, depends on the areas and transitions. An area can be one of three things: a state,
a scope, or a region. These areas are organized in a tree structure and each area can have a parent
area and ancestor areas.

A state represents a value for a speci�c instance variable. The closest ancestor region also
referred to as the corresponding region dictates which instance variable this is. A scope can be
used to restrict behavior using an invariant that always has to hold. An area can be active, this
depends on the type of area. A scope is active when all its ancestor areas are active and the
invariant of this scope holds in the instance state. A region is active when all its ancestor areas
are active. Next, a state is active when all its ancestor areas are active and the instance variable
indicated by the corresponding region of the state has the same value as the state.

Lastly, an OIL speci�cation contains transitions. Each transition has a source and target area
and is labeled with an event. If the source area is active the transition is enabled. Handling the
event of an enabled transition results in the transition being �red. In this case, the values from the
instance state are changed so the values of the target state and its ancestor states can be found on
the instance variables of their corresponding regions. Note that this target area does not have to
become active as scopes can still have an invariant that is not true. Some more advanced concepts
can be used with transitions that can restrict their behavior or introduce additional updates to
instance variables, these are discussed later in this report.

Figure 1: OIL example on/o�
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Example 2.1 In Figure 1 a visualization of an OIL speci�cation can be seen. It models a very
basic component that can be turned on and o�. The component can additionally always handle
a test event. This example has two states ′off ′ and ′on ′ indicated with the ovals containing the
values ′off ′ and ′on ′. It has one region referencing the instance variable this.power shown using
the dotted rounded rectangle. Next, there are three transitions indicated with the arrows labeled
with the events turn_on, turn_off and test . Note that the labels are followed by an "#" followed
by a number. These numbers are used to identify a speci�c transition if multiple transitions are
labeled with the same event. On the right side, a scope can be spotted indicated with the square.
This scope does not have an invariant and is therefore always active as all its ancestor areas are
also always active. Note that this scope has only the region as its ancestor which is always active
as it has no ancestor areas and is a region. The state ′off ′ is colored indicating that this state is
active in the current instance state. The explanation uses this instance state as the initial instance
state of this OIL speci�cation.

The instance variable this.power can have two values: ′on ′ or ′off ′. In the initial instance state the
value for this.power is ′off ′ and the transition labeled with the turn_on event is enabled. When
this event is handled, the instance variable this.power changes its value to ′on ′. In this instance
state, the state ′on ′ is active. Here the transition labeled with the turn_off event is enabled.
Next, the transition labeled with the event test is always enabled. Note that this transition does
not alter any instance variable.

Figure 2: OIL example simple printer

Example 2.2 In the OIL speci�cation in Figure 2 a more complex component is modeled that
represents a simple printer. This printer can be turned on and o�. While this printer is on it
can accept and remove a print job and when the print job is added the component can print the
job. This example has the following states: ′init ′, ′no′, ′ok ′, ′off ′ and ′on ′. Next, it has regions
referencing to the instance variables this.power and this.job. Additionally, transitions are visible
with the following events on the labels; turn_on, turn_off , add_job, remove_job and print_job.
For this example, we again assume that the initial instance state is depicted by the colored states.

8



The instance variable this.power can have the value ′init ′, ′on ′ or ′off ′ and the instance variable
this.job can have the value ′no′ or ′ok ′. In the initial instance state, the instance variable this.power
has the value ′init ′ and the instance variable this.job has the value ′no′. From this initial instance
state, there is only one enabled transition; the transition labeled with the event turn_on. When
this event is handled, the instance variable this.power is set to ′on ′ and the instance variable
for this.job is set to ′no′. The instance variable this.power is altered because the target area
of the transition is nested in the state ′on ′. In this new instance state the transitions labeled
with the turn_off and add_job events are enabled. If the event add_job is handled the instance
variable this.job changes its value to ′ok ′ after which the transitions labeled with the print_job,
remove_job and turn_off event are enabled. If the turn_off event is handled from this new
instance state the instance variable this.power becomes ′off ′. In this instance state, only the
transition labeled with the turn_on event is enabled. There is a small di�erence between this
enabled transition and the transition that was enabled from the initial instance state. The second
transition labeled with the turn_on event only connects to the state ′on ′ and it does not go into
the region job connecting to the state ′no′. Firing this second transition labeled with the turn_on
event therefore only alters the value for the instance variable this.power and the value for this.job
is not altered. This approach ensures the component can be turned o� and on without losing the
added print jobs.

Separation of concerns OIL has a concept called separation of concerns. The idea is that
di�erent aspects of the component are modeled separately which helps to deal with complexity.
Each transition can be labeled with a concern that focuses on a speci�c part of the behavior. An
event is only enabled if for all concerns there is at least one enabled transition labeled with that
event and concern. Concerns that do not have a transition labeled with the speci�c event are
ignored in this synchronization.

Figure 3: OIL examples simple printer separated concerns

Example 2.3 The left part of the visualized OIL speci�cation in Figure 3 has the same behavior
as Example 2.2. Only now the OIL speci�cation is split into two concerns. Some behavior is added
with the right part; the component can cool down after it has turned on and even has to cool down
after it has been turned on twice before it can be turned on for the third time. The model is now
split up into three concerns; POWER, JOB , and HEAT . The concern of a transition is shown in
the label after the ":" character. Additionally, a scope can be spotted indicated with the rectangle.
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The scope is used to ensure that the original behavior of the printer of Example 2.2 is kept. It
does this by enforcing that the transitions labeled with the events remove_job, add_job and
print_job are only enabled whenever the instance variable this.power has the value ′on ′. In this
example the event turn_on is restricted with the help of concerns; it can only be handled if both
the concerns for POWER and HEAT can handle the turn_on event. So if the instance variable
this.heat has the value ′hot ′ a cool_down event has to be handled before a turn_on event can be
handled by the component. The concern HEAT , therefore, ensures that the component can not
handle the turn_on event three times in a row. The cool_down event can still be used however
to make additional turn_on events possible. Note that the concern JOB has been ignored in this
synchronization because it does not have any transition labeled with the event turn_on and is
therefore not taken into account.

Additional transition concepts Until now all examples only used basic transitions. However
these transitions can be used with some more advanced concepts; it is possible to add a guard,
assignments, and an assert to transitions. Guards can be added to restrict behavior while as-
signments are used to alter instance variables. Asserts are there to ensure certain properties hold
after the transition itself has �red. Furthermore, events containing parameters can be handled.
A transition can give expressions to determine the value for these parameters called arguments,
these arguments are however optional. When a transition does not supply arguments it has to �re
at the same time as another transition with de�ned arguments to be enabled; the values for the
parameters can then be determined by the arguments of this additional transition. These concepts
are discussed in more detail later in this chapter using Figure 5.

Next to this, a transition can be labeled with one of two kinds of events; reactive and proactive
events. A reactive event is an event that comes from the environment of the component, while
a proactive event is an event that comes from the component itself. A proactive event can be
speci�ed to send back information to the environment of the component, but it is also possible
that it is speci�ed to keep the event internal. A proactive event that is kept internal is referred to
as a silent proactive event. Proactive events are produced instead of handled like reactive events.
Producing is always done with priority over handling to acquire the run-to-completion semantics
of OIL; a reactive event can only be handled when no proactive event can be produced anymore.
This behavior is accomplished with a scheduler that schedules all relevant proactive events.

Figure 4: OIL scheduler overview

In the case multiple proactive events are enabled, an arbitrary one can be chosen by the
scheduler. OIL speci�cations are only valid when it does not matter which proactive event is
chosen. This is accomplished by requiring that the same events are always produced no matter
the choices made by the scheduler. This property is called con�uent proactivity. There are a few
additional properties that have to hold for a valid OIL speci�cation which are not used in this
report but can be found in [4]. This report only considers valid OIL speci�cations.
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Figure 5: OIL example printed sheet noti�er

Example 2.4 In Figure 5, a visualization of an OIL speci�cation can be seen with some more
advanced transitions. It models a component in which a client can be registered. After this reg-
istration, the model accepts print jobs and noti�es the registered client of every page the printer
prints. When all sheets are printed the printer can accept a new job. Before and after each job it
is possible to empty the tray in which the printed jobs are placed.

A few expressions are visible located between square brackets; these are guards. There are also
assignments that are indicated using ":=" after a "\" character. Two kinds of events are used
on the labels of the transitions. There are two transitions labeled with proactive events which are
indicated by the "\" character before the event label. Three transitions are also labeled with reactive
events which are indicated by no "\" character before the event label. One of these proactive events
is also silent indicated with a dashed arrow and the word silent between square brackets.

Take a look at the transition from the state ′init ′ to ′ready ′ in Example 2.4. This transition is
labeled with a reactive event including a parameter that is assigned to an instance variable c. This
instance variable is used to keep a reference to a client instance. Looking at the transition from
′ready ′ to ′printing ′ a guard can be spotted that ensures the transition is only enabled if there
are more than zero sheets in the print job. Next, there are a few transitions that leave the state
′printing ′. One of these goes from ′printing ′ to ′printing ′ labeled with the event sheet_printed .
This is a proactive event as it has a "\" before the event label. As long as there are sheets left
to print the method sheet_printed is called on the client instance c sending information back to
the environment. Next there is a transition from ′printing ′ back to ′ready ′. This transition is also
labeled with a proactive event, but this event is internally produced because it is silent. While
there are two transitions labeled with a proactive event leaving the state ′printing ′ the guards
ensure only one of them can be �red, so no arbitrary choice has to be made here. Finally, there is
a transition labeled with the event empty_tray which could be used to empty the tray of printed
jobs. This transition is placed on an empty scope so it is always enabled as all the ancestor
areas of this scope are always active. Note that this scope has only the region as its ancestor
which is always active as it has no ancestor areas and is a region. However, the labeled event
on this transition is reactive and has a lower priority than the two proactive events. Therefore,
the empty_tray event can never be handled when the state ′printing ′ is active because either the
guard i > 0 or i == 0 holds. So this OIL speci�cation does not allow the tray to be emptied while
the printer is printing.
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Illegal events In the examples we have seen up to this point only events were considered which
were enabled. An event is only enabled if for all concerns with a transition labeled with that event
there is at least one of these transitions enabled. Note that this means that events are always
enabled if no concerns are used. It however could mean that the instance state is not altered if an
event is handled as it is possible that no transitions are �red.

It is possible that an event occurs that is not enabled or that an assertion does not hold after
the �ring of a transition labeled with this event. In this case, the OIL speci�cation received an
illegal event. It is not possible to handle any new event after an illegal event occurred. Behavior
after receiving an illegal event is not considered in this report as the OIL speci�cation has crashed.

In Example 2.1 the transitions are not labeled with concerns or have asserts. Therefore this
OIL speci�cation has no illegal events as for each concern there is at least one enabled transition.
So if the area ′off ′ is active the event turn_off is enabled and can be handled. Note, that the
handling of this event will not alter the instance state of this OIL speci�cation as no transition
labeled with the event turn_on is enabled.

Example 2.3 does have transitions labeled with concerns. The POWER concern shows very
similar behavior as we have seen in Example 2.1. However, the concerns on the labels of the
transitions alter the behavior slightly; whenever the area ′off ′ is active the event turn_off is
not enabled and can not be handled. The concern POWER does not have an enabled transition
labeled with the event turn_off . So in this instance state the turn_off event is an illegal event.
If for some reason the OIL speci�cation receives the turn_off event it is not possible to handle
any additional events and the OIL speci�cation has crashed.

2.2 Formal de�nitions

This report supplies formal de�nitions for some used concepts. OIL is formally de�ned[4], this
chapter supplies a small recap.

Variables Let X be the set of all variables and V
X be the set of all valuations over X. Next,

let EXPX be the set of all expressions over the variables X. Whenever events occur new values
may be assigned to variables. Expressions are extended with 'old' variables. In such expressions,
variables x refer to the state after the last event occurred, and variables xold refer to the state
before the last event occurred. The notation JexpKv where exp ∈ EXPX can be used to evaluate
an expression with the evaluation found in v ∈ VX .

IOLTS An IOLTS is de�ned as a tuple (S, s0, I, O,H,→). An IOLTS is a model with states
and transitions that models the behavior of a component. The set S denotes the set of states
and the set → denotes the transitions between them. These transitions are labeled with actions
which can be sent to the component or sent from the component itself. There are three sets that
denote these actions; incoming actions I, outgoing actions O and internal actions H. We write
s

act−−→ s′ ⇐⇒ (s, act, s′) ∈→ for the states s ∈ S, s′ ∈ S and action act ∈ (I∪O∪H) which means
that there is a transition between the state s and s′ labeled with the action act. Next, we write
s

act−−→ ⇐⇒ ∃n∈S(s
act−−→ n) which is used when there exists a transition leaving the state s ∈ S

labeled with the action act ∈ (I ∪ O ∪ H). We write
act−−→ s ⇐⇒ ∃n∈S(n

act−−→ s) which is used
when there exists a transition entering the state s ∈ S labeled with the action act ∈ (I ∪O ∪H).
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OIL speci�cation An OIL speci�cations is de�ned as a tuple (X,A,T). The tuple consists of
three parts; X declares the instance variables, parameters and their initial values, the areas are
de�ned in A and the transitions are speci�ed in T.

The tuple X = (X, I) is the variable speci�cation.

� The set X represents all variables which is partitioned in the set of instance variables XI

and parameters XP .

� The set I ∈ VXI represents the initial values of the instance variables.

The tuple A = (A,@,RE , EXP) is the area speci�cation.

� The set A represents all areas of the OIL speci�cation. The set A is partitioned in three sets
ARe, ASt and ASc. The set ARe represents all regions. The set ASt represents all states and
the set ASc represents all scopes.

� The @ relation is used to de�ne which areas are ancestor areas of each other; a @ a′ indicates
a′ is a ancestor area of a. The v∗ relation is the re�exive transitive closure of the @ relation.

� The function RE associates each state with its corresponding region.

� The function EXP associates each area with an expression. For regions, this expression is
always a variable in XI . For states, this expression always is a constant value in EXP . For
scopes, this expression always is a boolean expression in EXPXI

The tuple T = (E,PAR, T, CO, CO) is the transition speci�cation.

� The set E represents the set of all events and this set is partitioned in the set for proactive
events EP and the set for reactive events ER.

� The function PAR associates each event with its set of parameters.

� The set T represents all the transitions in the OIL speci�cation.

� The set CO represents all concerns in the OIL speci�cation.

� The function CO associates each transition with the concerns it is labeled with. It also
associates a set of transitions to the union of all of the concerns that each transition is
labeled with.

Transitions The tuple (so, gu, e,ARG, AG, ta, ar) ∈ T is a transition.

� The area so ∈ A represents the source area.

� The boolean expression gu ∈ EXPX represents the guard.

� The event e ∈ E represents the event on the label.

� The function ARG associates each parameter from PAR(e) with its argument expression.

� The set AG represents the assignments.

� The area ta ∈ A represents the target area.

� The boolean expression ar ∈ EXPX represents the assert.

The set of transitions that are labeled with the event e ∈ E are denoted with Te. Next, Te,c
denotes the set of transitions that are labeled with the event e ∈ E and are labeled with the
concern c ∈ CO. The set T v

e denotes the enabled transitions for the event e ∈ E and valuation
v ∈ VX
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Other The function AC associates each area with its area condition. The area condition is a
boolean expression that represents if the area is active. As stated earlier it depends on the type
of area when an area is active. A scope is active when all its ancestor areas are active and the
invariant of this scope holds in the instance state. A region is active when all its ancestor areas
are active. Next, a state is active when all its ancestor areas are active and the instance variable
indicated by the corresponding region of the state has the same value as the state. This de�nition
looks as follows for a ∈ A.

AC(a) =
∧
{EXP(RE(a′)) = EXP(a′)|a′ ∈ ASt ∧ a v∗ a′} ∧

∧
{EXP(a′)|a′ ∈ ASc ∧ a v∗ a′}

Next, the function PRC associates each transition with a boolean expression checking if the
transition is enabled. This boolean expression makes sure the source area is active and the guard
does hold. The PRC function is de�ned for each t = (so, gu, e,ARG, AG, ta, ar) ∈ T

PRC(t) = AC(so) ∧ gu ∧
∧
{p = ARG(p)|p ∈ dom(ARG)}

The function POC associates each transition with a boolean expression that represents if the
transition correctly �red. It makes sure the target area is active and the assert does hold. The
POC function is de�ned for each t = (so, gu, e,ARG, AG, ta, ar) ∈ T

POC(t) = AC(ta) ∧ ar

The POC function also associates a set of transitions with a boolean expression. In this case,
the de�nition looks as follows for each T ′ ⊆ T .

POC(T ′) =
∧
t∈T ′

POC(t)

The function CC associates each event with its concern condition. This concern condition is
a boolean expression that represents if the event is enabled. As stated earlier an event is only
enabled if for each concern with a transition labeled with the event there is a transition enabled.

CC(e) =
∧

c∈CO(Te)

∨
t∈Te,c

PRC(t)

The AU function associates an area with its area update. The area update is a set of assign-
ments needed to make the area active. The function does not consider assignments needed to
make invariants from scopes hold.

AU(a) = {EXP(RE(a′)) := EXP(a′)|a′ ∈ ASt ∧ a v∗ a′}

Next, U associates a transition with all the updates that take place on the instance variables
when the transition is �red. These updates can be the result of the target area becoming active
or assignments in the AG set.

U(t) = AU(ta) ∪AG

The U function also associates a set of transitions with all the updates that take place on the
instance variables when these transitions are �red. In this case, the de�nition looks as follows for
each T ′ ⊆ T .

U(T ′) =
⋃
t∈T ′

U(t)
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Next, an OIL speci�cation can be de�ned as an IOLTS with the so-called acceptor semantics.
In these acceptor semantics the transitions for the IOLTS can be de�ned as follows. To model
if the OIL speci�cation crashed after receiving an illegal event the failure state is used. The
failure state is denoted as FO. There are transitions de�ned that leave the failure state that are
always labeled with the fail event. During the analysis of OIL speci�cations using mCRL2 these
fail events are used to detect if the OIL speci�cation has postconditions that do not hold and the
received event was an illegal event.

Where e ∈ E, p ∈ VPAR(e), S FO = V
XI ∪ FO, s ∈ S, s′ ∈ S and v = s ∪ p.

s
e(p)−−→ s′ ⇐⇒ JCC(e)Kv ∧ s′ = v[U(T v

e )] ∧ JPOC(T v
e )K

v
U(Tv

e )

s
e(p)−−→ FO ⇐⇒ JCC(e)Kv ∧ ¬JPOC(T v

e )K
v
U(T e

v )

FO
fail−−→ FO

2.3 Code generation

Currently, there is a tool speci�cally created to have OIL speci�cations as input made using
Spoofax. Spoofax is a platform designed for creating textual domain-speci�c languages. The
Spoofax platform can generate parsers and type checkers which can be used to acquire abstract
syntax trees of source �les. Next, the Spoofax platform has a language called Stratego[5] which
can be used to de�ne transformations on these abstract syntax trees. These transformations are
used to generate C++ code and mCRL2 speci�cations from OIL speci�cations[6].

Overview code generation The code generation for OIL speci�cations in the Spoofax tooling
is done with a few transformations to di�erent abstract syntax trees. An overview is given in
Figure 6.

Figure 6: OIL pipeline

The OIL tooling made with Spoofax can generate code from two kinds of OIL speci�cations.
The �rst one is based on XML (OILXML) while the second is using a custom DSL (OILDSL)
created for OIL. Both abstract syntax trees of these OIL speci�cations are transformed to a
normalized abstract syntax tree of OIL (NORM), this transformation does not alter used concepts
in the OIL speci�cation in any way but is used as common ground to continue. It is also possible to
go back to both the DSL or XML-based OIL speci�cations. This makes it possible to transform an
XML-based OIL speci�cation into a DSL-based OIL speci�cation and vice versa. A few desugaring
and explication transformations can be used on this normalized form to re�ne di�erent aspects
of an OIL speci�cation. For example, the initial states can be de�ned implicitly and an auto
transformation is used to generate these initial states explicitly.

Next, the normalized abstract syntax tree of OIL is transformed to a desugared abstract syntax
tree (DES). In this transformation, a lot of information is standardized. For example, empty
guards are set to true. Next, a transformation to the semantic abstract syntax tree (OILSEM) is
done. This abstract syntax tree is close to the formally de�ned semantics of OIL[4]. This includes
things such as the grouping of all transitions per event. At last, a transformation to the GPL
abstract syntax tree can be done. This representation only uses concepts from an object-oriented
general-purpose language. This representation maps easily to for example C++.
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Overview generated code The Spoofax implementation of OIL can create C++ code from
OIL speci�cations[6]. It generates a class that has a few members corresponding to the instance
variables of the OIL speci�cation. It also generates a method for each reactive and proactive event
in the OIL speci�cation. These methods are used by the naive OIL run loop scheduler to achieve
the run-to-completion semantics of proactive events.

To aid the explanation the following OIL speci�cation is used.

Figure 7: OIL example code generator

Example 2.5 Three transitions can be spotted. The transition r1#1 is labeled with a reactive
event, has a guard and has an assignment. Both the transitions p1#1 and p2#1 are labeled with
proactive events. Note that p1#1 also has a guard.

Algorithm 1: Pseudocode for a reactive event

1 Function reactiveExample:

2 /* Checking precondition reactiveExample */

3 if not (AREA_CONDITION_source_area and guard) then
4 /* Can not handle reactive event reactiveExample */

5

6 /* Update instance variables reactiveExample */

7 AREA_UPDATE_reactive_example()
8

9 /* Checking postcondition reactiveExample */

10 if not (AREA_CONDITION_target_area and assert) then
11 /* The postcondition of transition reactiveExample #1 failed */

12

13 /* Produced event reactiveExample */

14 _OIL_RUN ()

In Algorithm 1 an example can be seen of a method generated for a reactive event. It is split
up into four parts. First, the precondition is checked. Such a precondition does check if there is
a transition enabled for each concern labeled with the event. A transition is enabled if the source
area is active which is checked by calling the AREA_CONDITION method generated for each
area. Next, the guard has to hold in the current instance state.

After the precondition is checked, the AREA_UPDATE method of the transitions is executed;
these are generated methods that are used to update the instance variables so they match the values
of target states and their ancestor states. An event with multiple transitions can have multiple of
these area updates.

Next, the postcondition is checked. It checks that all enabled transitions did �re correctly by
making sure their target area is active with an AREA_CONDITION method. The postcondition
also checks if the assert of the enabled transitions holds in the new instance state.

At last, the _OIL_RUN method is called which is the method that contains the scheduler
that ensures the run-to-completion semantics of OIL. If either the pre or postconditions do not
hold an error is returned as the component has received an illegal event.
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Taking this into account, the generated code for the r1 event looks as follows.

Algorithm 2: Pseudocode for r1

1 Function r1(c):

2 /* Checking precondition r1 */

3 if not (this.state = 1 and this.x < 1) then
4 /* Can not handle reactive event r1 */

5

6 /* Update instance variables r1 */

7 this.c := c
8 this.state := 2
9

10 /* Checking postcondition r1 */

11 if not (this.state = 2) then
12 /* The postcondition of transition r1 #1 failed */

13

14 /* Handled event r1 */

15 _OIL_RUN ()

Try methods are generated for each proactive event and return the boolean value true if they
produce their event. The naive OIL run loop scheduler ensures the run-to-completion semantics by
calling all these try methods. If one of the proactive events got actually produced the scheduler calls
all try methods again. This pattern is repeated until no try method returns true and no proactive
event can be produced anymore. In this way, the run-to-completion semantics is guaranteed. The
naive OIL run loop scheduler is generated in the following way for the example.

Algorithm 3: Pseudocode for the OIL run loop scheduler

1 Function _OIL_RUN:

2 _scheduler_busy := true
3

4 while _scheduler_busy do
5 _scheduler_busy := false
6 _scheduler_busy := (TRY_EVENT_p1 () or _scheduler_busy)
7 _scheduler_busy := (TRY_EVENT_p2 () or _scheduler_busy)

8

In the _OIL_RUN method, a while loop can be found that only stops looping if no proactive
try method succeeded to produce their proactive event. If one can be produced however a boolean
variable called _scheduler_busy is set to true and all proactive events are tried again. The short
circuit evaluation of a boolean expression is used to accomplish that all try event method calls in
the naive OIL run loop scheduler are always called in each iteration. The _OIL_RUN method
only returns when no proactive events can be produced anymore. Note that this approach is naive
and results in the scheduling of proactive events all being done during run time.
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Algorithm 4: Pseudocode for a proactive event

1 Function TRY_EVENT_proactiveExample:

2 _oil_e_enabled := AREA_CONDITION_source_area()
3

4 /* Checking precondition proactiveExample */

5 if _oil_e_enabled then

6 /* Update instance variables proactiveExample */

7 AREA_UPDATE_reactive_example()
8

9 /* Checking postcondition proactiveExample */

10 if not AREA_CONDITION_target_area then
11 /* The postcondition of transition proactiveExample #1 failed */

12

13 proactiveExample()
14 /* Produced event proactiveExample */

15

16 return _oil_e_enabled

In Algorithm 4 a try method generated for a proactive event is visible. The main di�erence
with a method generated for a reactive event is that this method does not return an error if the
precondition does not hold. In the case the precondition does not hold, the method just returns
false and does not alter anything. This method also does not include a call to the _OIL_RUN
method. The scheduler is only called after a reactive event is handled.

The try method looks as follows for the event p1 from the example.

Algorithm 5: Pseudocode for p1

1 Function TRY_EVENT_p1:

2 _oil_e_enabled := this.state = 2 and this.x < 2
3

4 /* Checking precondition p1 */

5 if _oil_e_enabled then

6 /* Update instance variables p1 */

7 this.state := 3
8

9 /* Checking postcondition p1 */

10 if not this.state = 3 then

11 /* The postcondition of transition p1 #1 failed */

12

13 this.c.p1 ()
14 /* Produced event p1 */

15

16 return _oil_e_enabled
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3 Problem description

The naive scheduler makes all decisions at runtime and uses little information from the original
OIL speci�cation. This results in the scheduling of proactive events taking a signi�cant time
during the execution of the generated C++ code. A small OIL speci�cation is used to illustrate
this.

Figure 8: OIL example naive scheduling

Example 3.1 The OIL speci�cation in Figure 8 has one reactive event r1 and three proactive
events p1 , p2 , and p3 . This results in the following OIL run loop being generated.

Algorithm 6: Pseudocode for the naive OIL run loop scheduler

1 Function _OIL_RUN:

2 _scheduler_busy := true
3

4 while _scheduler_busy do
5 _scheduler_busy := false
6 _scheduler_busy := (TRY_EVENT_p1 () or _scheduler_busy)
7 _scheduler_busy := (TRY_EVENT_p2 () or _scheduler_busy)
8 _scheduler_busy := (TRY_EVENT_p3 () or _scheduler_busy)

9

For scheduling this OIL speci�cation the following order of events is tried; p1 , p2 , p3 , p1 , p2 ,
p3 , p1 , p2 , p3 . It is however su�cient to try the events in the following order; p3 , p2 , p1 .

Improving the naive scheduler for proactive events should ideally result in fewer try method
calls being computed during the execution of the generated C++ code. Try method calls that do
not result in the production of an event could be skipped if the scheduler could guarantee the run-
to-completion semantics in some other way. An improved scheduler should result in more e�cient
C++ code being generated from OIL speci�cations. Generating more e�cient C++ code is useful
especially when it is used in production as fewer resources are required to run the generated code.
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The goal of this project is to investigate how the scheduling of proactive events can be improved
and what the e�ect of these improvements is on the performance of the generated C++ code. To
be able to improve the scheduling it is investigated which information can be used to remove
redundant try method calls. Next, this project looks for ways to make sure that the scheduling
is always correct and the run-to-completion semantics always holds even after the scheduler for
proactive events is altered.

This problem is translated to the following research question:

RQ1 How can the naive scheduler for proactive events be improved, so fewer try methods have to
be called?

RQ1.1 What information from OIL speci�cations can be used for improving the naive scheduler
for proactive events?

RQ1.2 How to make sure that proposed schedulers for proactive events are always generated
correctly and guarantee the run-to-completion semantics of OIL?

RQ2 What is the e�ect of improvements to the scheduler of proactive events on the performance
of the generated C++ code?
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4 Basic scheduling improvement strategies

During the project, a few scheduler improvement strategies were found which can be used without
using any complex information gathering. These strategies are discussed in this chapter.

The following OIL speci�cation is used to aid the explanation.

Figure 9: OIL example basic scheduling improvement strategies

Example 4.1 This OIL speci�cation has one reactive event r1 and two proactive events p1 and
p2 . Note that the proactive events have multiple argument combinations.

The naive OIL run loop scheduler for this OIL speci�cation looks as follows. Note that each
possible argument combination is tried for each proactive event.

Algorithm 7: Pseudocode for the naive OIL run loop scheduler

1 Function _OIL_RUN:

2 _scheduler_busy := true
3

4 while _scheduler_busy do
5 _scheduler_busy := false
6 _scheduler_busy := (TRY_EVENT_p1 (1 , 1 ) or _scheduler_busy)
7 _scheduler_busy := (TRY_EVENT_p1 (1 , 2 ) or _scheduler_busy)
8 _scheduler_busy := (TRY_EVENT_p1 (2 , 1 ) or _scheduler_busy)
9 _scheduler_busy := (TRY_EVENT_p1 (2 , 2 ) or _scheduler_busy)
10 _scheduler_busy := (TRY_EVENT_p2 (coffee) or _scheduler_busy)
11 _scheduler_busy := (TRY_EVENT_p2 (water) or _scheduler_busy)
12 _scheduler_busy := (TRY_EVENT_p2 (espresso) or _scheduler_busy)
13 _scheduler_busy := (TRY_EVENT_p2 (this.product) or _scheduler_busy)

14
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Trying existing argument expression combinations In the generation of the naive OIL run
loop scheduler the cartesian product was used to obtain all possible combinations of arguments
for scheduling an event. This is visible for the p1 event. There are two transitions with the
arguments {1, 2} and {2, 1}. These de�ned arguments result in the following four combinations of
arguments that are tried; {1, 1}, {1, 2}, {2, 1} and {2, 2}. However, the production of a proactive
event always corresponds to the �ring of at least one transition. So therefore it is also su�cient to
only try the combinations of arguments that are used on transitions. This reduces the number of
combinations that have to be tried to schedule an event. There is the possibility that a transition
has not all arguments de�ned, this is however not a problem as these transitions are �red together
with at least another transition for which the arguments are known.

This scheduling strategy does not evaluate expressions so it is still possible that multiple
arguments evaluate to the same argument value. This is visible for the argument this.product as
it can only have the value coffee, water or espresso which are all in the OIL run loop scheduler
already.

Trying all combinations of existing arguments looks as follows for the OIL run loop scheduler.
Note that this approach reduces the number of events tried for the event p1

Algorithm 8: Pseudocode for the OIL run loop scheduler with removed entries

1 Function _OIL_RUN:

2 _scheduler_busy := true
3

4 while _scheduler_busy do
5 _scheduler_busy := false
6 _scheduler_busy := (TRY_EVENT_p1 (1 , 2 ) or _scheduler_busy)
7 _scheduler_busy := (TRY_EVENT_p1 (2 , 1 ) or _scheduler_busy)
8 _scheduler_busy := (TRY_EVENT_p2 (coffee) or _scheduler_busy)
9 _scheduler_busy := (TRY_EVENT_p2 (water) or _scheduler_busy)
10 _scheduler_busy := (TRY_EVENT_p2 (espresso) or _scheduler_busy)
11 _scheduler_busy := (TRY_EVENT_p2 (this.product) or _scheduler_busy)

12

Trying only arguments expression combinations from concern that has the least of

them There may exist an event with parameters that is located in multiple concerns because
concerns always have to be synchronized, it is allowed to only try the argument combinations of
a single concern. By taking the concern that has the least of these combinations, the number of
tried combinations can be reduced. This scheduler improvement strategy is only allowed when
each transition in the concern with the least argument combinations has arguments de�ned for
each of its parameters.

In the example, there are multiple transitions labeled with the event p2 which are also labeled
with di�erent concerns; C1 , C2 . This information can be used to only try p2 (this.product) as it
is the only occurrence of the event p2 in the concern C2 . Note that each transition labeled with
the p2 event and C2 concern has arguments de�ned for its parameter. This looks as follows in
the OIL run loop scheduler.
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Algorithm 9: Pseudocode for the OIL run loop scheduler with removed entries

1 Function _OIL_RUN:

2 _scheduler_busy := true
3

4 while _scheduler_busy do
5 _scheduler_busy := false
6 _scheduler_busy := (TRY_EVENT_p1 (1 , 2 ) or _scheduler_busy)
7 _scheduler_busy := (TRY_EVENT_p1 (2 , 1 ) or _scheduler_busy)
8 _scheduler_busy := (TRY_EVENT_p2 (this.product) or _scheduler_busy)

9

Track last produced event The naive OIL run loop scheduler always tries all proactive events
and only after they are all tried a check is conducted to see if any of them was successfully
produced. If this is the case all events are tried again. This behavior is accomplished using a
while loop. It is certainly possible that not all of the events have to be tried again to guarantee
the run-to-completion semantics. The previous while loop iteration of tried events could already
have had a few events that could not be produced. If no event can be found that can be produced
there is no need for trying these events again. By keeping track of the last produced event the
scheduler could decide to try a smaller subset of proactive events.

The generated code is altered for this scheduler. In this code structure, a counter is used that
counts the events that are not produced since the last produced event. In the case an event is
produced this counter is reset to zero. When the counter exceeds the total number of events it is
known that all events have been tried and the remaining tries can safely be skipped. Below this
scheduler can be seen that uses the same events as in Algorithm 9. The short circuit evaluation of
a boolean expression is used to skip try method calls when the counter exceeds the total number
of events.
Algorithm 10: Pseudocode for the alternate OIL run loop scheduler

1 Function _OIL_RUN:

2 _total_events := 3
3 _event_counter := 0
4

5 while _event_counter < _total_events do
6 _event_counter = ((_event_counter < _total_events) and
7 TRY_EVENT_p1 (1 , 2 ))?0 : _event_counter + 1
8 _event_counter = ((_event_counter < _total_events) and
9 TRY_EVENT_p1 (2 , 1 ))?0 : _event_counter + 1
10 _event_counter = ((_event_counter < _total_events) and
11 TRY_EVENT_p2 (this.product))?0 : _event_counter + 1

12

Iterating self-loops There are transitions labeled with a proactive event that have the same
source and target area while the production of their event is limited by a guard. Possibly it is
more e�ective to produce the events on the labels of these transitions separately by generating a
loop that only exits when the guard does not hold. This can prevent that other events are tried
when they are not needed to. This scheduling strategy is currently not implemented but it could
still improve the scheduling.
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5 Causal relations

In the previous chapter, a few scheduling strategies were discussed to improve the scheduling
without using complex information gathering. However, information can be extracted from OIL
speci�cations that can be used to enable the use of additional scheduling strategies. This chapter
speci�es which information is found to be useful and how it can be extracted from the OIL
speci�cations.

5.1 Scheduler framework

The following OIL speci�cation is used in the �rst part of this chapter. This example is used to
motivate which information should be gathered. A formal de�nition of the gathered information
is supplied later.

Figure 10: OIL example simple

Example 5.1 This OIL speci�cation has four transitions each labeled with its own event. Two of
these events are reactive; r1 and r2 . The other two events are proactive and need to be scheduled;
p1 and p2 .

The naive OIL run loop scheduler just schedules all proactive events until none of them can
be produced. In Example 5.1 it is clearly visible the scheduler should focus on producing the p1
event after the r1 event is handled; the p1 event can always be produced after the r1 event is
handled. Additionally, there is no need for trying the p2 event after the r1 event is handled; the
p2 event can only be produced after the r2 event. The naive OIL run loop scheduler however
takes time trying to produce the p2 event after the r1 event.

So it is helpful to collect relations between events that tell which events can be produced after
each other. These causal relations can then be used to try proactive events that can always be
produced directly. There are however situations for which there are no events that are always
enabled after a speci�c event. To still be able to improve the scheduling it is helpful to collect
events that are never able to be produced after this event. With these causal relations, it can be
determined that these events do not have to be tried as they can never be produced.

For Example 5.1 we focused on causal relations between events. There are however a few ad-
vantages to gathering these causal relations for transitions instead. These advantages are discussed
using Example 5.2.
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Figure 11: OIL example multiple transitions labeled with the same event

Example 5.2 This example has six transitions. Two of them are labeled with a reactive event;
r1#1 and r1#2 . There are also four transitions labeled with a proactive event; p1#1 , p1#2 ,
p2#1 and p2#2 .

In Example 5.2 it is visible that multiple transitions can be labeled with the same event. If it is
known that an event has been handled it may not be clear which of its transitions �red. This lost
information reduces the optimization opportunities. In Example 5.2, it is not possible to produce
the event p2 after the transition r1#1 �red. However, there is another transition labeled with the
same reactive event r1#2 after which p2 always can be produced. Both transitions are labeled
with the same reactive event r1 . It can not be stated that the event p2 always or never can be
produced after the event r1 is handled. This is not a problem if the causal relations are gathered
for transitions. We can now state that p2#1 is always enabled and p2#2 is never enabled after
r1#1 �red.

For this part, we introduce the concept of proactive transitions. These proactive transitions are
transitions that are labeled with a proactive event. If the causal relations indicate that a speci�c
proactive transition can always �re the correct arguments for this speci�c proactive transition can
be generated by the scheduler. This is possible because each transition has at most one argument
de�ned for each parameter. An event can have multiple argument expressions de�ned for each
parameter from all the transitions labeled with this event. If only the event is known it is not
possible to reconstruct the speci�c arguments expressions. This would mean that all argument
expressions should be tried. In the example the event p1 has two arguments de�ned; {4} and
{6}. If the causal relations are gathered for the events both argument expressions have to be
tried when the event p1 is scheduled. This is not the case when the causal relations are gathered
for transitions; if for example, the event needs to be tried for the transition p1#1 the arguments
{4} can be used. This property however requires that each transition that is gathered for causal
relations has to have arguments de�ned for each of its parameters. So for transitions that have
not all arguments de�ned it is still necessary to try all argument expressions that are de�ned for
transitions labeled with the same event.

Gathering the transitions instead of the events makes it possible to alter the scheduler in such a
way that a part of the precondition does not have to be checked. Computations for checking which
transitions are enabled or not could be skipped because the scheduler already has this information
when causal relations are found regarding these transitions.

With this in mind, we can associate each transition with two sets of proactive transitions
to indicate causal relations; which proactive transitions are always enabled and which are never
enabled. The speci�c transition for which the sets are gathered is referred to as the preceding
transition.

� Successor transition function (TS): Transitions returned from TS are proactive transitions
that are always enabled after the preceding transition.

� No successor transition function (TNS): Transitions returned from this function are proactive
transitions that are never enabled after the preceding transition.
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Formal de�nition For the formal de�nition of the causal relations, the formal OIL semantics[4]
are used.

Let (X,A,T) be an OIL speci�cation and let (S, s0, I, O,H,→) be an IOLTS that has the same
behavior as the OIL speci�cation (X,A,T). The transition speci�cation was de�ned earlier in
Chapter 2.2 as a tuple T = (E,PAR, T, CO, CO).

With these, the set of all proactive transitions can be de�ned. These are transitions that are
labeled with a proactive event.

TP = {(so, gu, e,ARG, AG, ta, ar) ∈ T |e ∈ EP }

Now the functions for the causal relations can formally be de�ned. First, TS is formally de�ned.

De�nition 1 TS : T → P(TP ) associates each transition with its set of successor transitions. For
each successor transition, the function is de�ned as follows. Let t = (so, gu, e,ARG, AG, ta, ar)
and t′ = (so′, gu′, e′,ARG′, AG′, ta′, ar′).

TS(t) = {t′ ∈ TP |∀s∈S,s′∈S,p∈VPAR(e)((s
e(p)−−→ s′ ∧ JPRC(t)K(s ∪ p)) =⇒

(∃s′′∈S FO,p′∈VPAR(e′)(s′
e′(p′)−−−→ s′′ ∧ JPRC(t′)K(s′ ∪ p′))))}

So a transition is associated with the TS function if the event on the label of this transition
always has the possibility to be produced after the event that is on the label of the preceding
transition. Next, both the associated transition and the preceding transition are always enabled
before their corresponding event is being handled. Note that S does not include the failure state.
So only preceding transitions are considered for which the postconditions do hold.

Now TNS is de�ned.

De�nition 2 TNS : T → P(TP ): associates each transition with its no successor transitions. For
each no successor transition the function is de�ned as follows. Let t = (so, gu, e,ARG, AG, ta, ar)
and t′ = (so′, gu′, e′,ARG′, AG′, ta′, ar′).

TNS(t) = {t′ ∈ TP |∀s∈S,s′∈S,p∈VPAR(e)((s
e(p)−−→ s′ ∧ JPRC(t)K(s ∪ p)) =⇒

¬(∃s′′∈S FO,p′∈VPAR(e′)(s′
e′(p′)−−−→ s′′ ∧ JPRC(t′)K(s′ ∪ p′))))}

A transition is associated with the TNS function if the transition is never enabled or the event
on its label never has the possibility to be produced after the event that is on the label of the
preceding transition.

26



5.2 Approximated causal relations

Determining all causal relations exactly between all the transitions is expensive or even impossible.
The entire IOLTS has to be generated which can become very large in size. Therefore other
approaches are used to collect the causal relations. These are however not perfect and only
approximate all the causal relations. So not all causal relations are gathered.

If we want to refer to an approximation for which it does not matter which exact gathering
approach is used the T ∗S notation is used. These approximations are made statically on the OIL
speci�cations so therefore the approximations are not able to use information from the exact state
of the component.

Each transition is associated with four disjoint sets of transitions. The speci�c transition for
which the sets of transitions are associated is referred to as the preceding transition. The associated
sets of transitions are mutually exclusive and together contain all proactive transitions of the OIL
speci�cation.

� Successor transition function (T ∗S): Transitions returned from T ∗S are proactive transitions for
which enough information was found to see that they are always enabled after the preceding
transition.

� No successor transition function (T ∗NS): Transitions returned from this function are proactive
transitions for which enough information was found to see that they are never enabled after
the preceding transition.

� Potential successor transition function (T ∗PS): Transitions returned from this function are
proactive transitions that could be enabled after the preceding transition. Information was
found by the gathering approaches that show that there is a good chance that they are
enabled. However, no guarantees are given that the transitions are always enabled. The
returned transitions are only used to give priority to events labeled with these transitions.

� Unknown transition function (T ∗U ): Transitions returned from this function are proactive
transitions for which not enough information could be found to say something useful.

The following sets of transitions are gathered for Example 5.2 if we take r1#1 as the preceding
transition. Note that the instance state after the preceding transition has �red has the value ′s2 ′

for the instance variable this.state.

� T ∗S : p1#1 . This transition is always enabled if the instance variable this.state has the value
′s2 ′.

� T ∗NS : p1#2 . This transition is only enabled when the instance variable this.state has the
value ′s4 ′. This is never the case directly after the transition r1#1 is �red.

� T ∗PS/ T ∗U : p2#1 . Looking at the OIL speci�cation it is not clear if this transition can
always �re or not. This completely depends on the value of the instance variable this.x .
The approximations are done statically so the instance variable this.x can not be evaluated.
This transition is therefore either associated with T ∗PS or T ∗U . This depends on how much
priority it should be given.
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All proactive transitions that are not associated with the T ∗S , T
∗
NS or T ∗PS functions are associ-

ated with the T ∗U function. It is however important that each of the four sets that are associated
using the four functions (T ∗S , T

∗
NS , T

∗
PS , and T

∗
U ) have no overlap with each other. This is because

di�erent scheduling decisions are made dependent on each set of associated transitions. Overlap-
ping sets could result in events being tried in multiple places while trying them at one place is
su�cient. Note that the de�nitions for TS and TNS do not overlap, so approximations of these
sets do also not overlap.

In the formal de�nitions of TS and TNS , all states and transitions were considered from the
IOLTS. It could also have been possible to only consider reachable states and transitions. Cur-
rently, it is not trivial to take these reachable states and transitions into account while approxi-
mating the sets. This is because the exact behavior of an OIL speci�cation has to be computed.
Therefore the choice is made to not take into account the reachability of states and transitions.
However, it is de�nitely possible that unreachable transitions are associated using the T ∗U func-
tion for some transitions. So limiting the considered transitions to the reachable transitions may
de�nitely still hold some improvements.

The causal relations between the transitions are gathered from the desugared abstract syntax
tree, see Chapter 2.3. This tree is generated as part of the code generation process. In this tree,
all relevant information is stored in a standardized way. Speci�c things like guards and checks
that compute if an area is active are merged to single expressions when the desugared abstract
syntax tree is transformed in the next step to the semantic abstract syntax tree. It is possible to
use these expressions to collect the causal relations, however, it adds unnecessary complexity as
for example the guards have to be extracted again from these expressions. In the next chapters,
multiple approaches for gathering causal relations are described that use the desugared abstract
syntax tree.

5.3 Syntax analysis on implied transitions

The �rst approach for gathering the causal relations uses syntax analysis on the desugared abstract
syntax tree. The syntax analysis uses only information found in the two transitions that are
compared and does not evaluate any expression. The T syntax

S and T syntax
NS function will be used

to refer to the function returning successor and no successor transitions found by the gathering
approximation using syntax analysis on implied transitions. Next, the T syntax

PS function will be
used to refer to the function returning potential successor transitions found by the gathering
approximation using syntax analysis.

To explain this gathering approach the following OIL speci�cation is used.

Figure 12: OIL example syntax analysis

Example 5.3 This OIL speci�cation has three transitions; r1#1 , p1#1 and p2#1 . Note that
the transition p2#1 also has a guard (this.x > 2).
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Successor transitions The causal relations tell something about which transitions are enabled
or not after the preceding transition is �red. Information can be used from this preceding transition
to detect these causal relations. After the preceding transition is �red we know that the instance
state of the OIL speci�cation has speci�c properties; for example, the target area of the preceding
transition is active in this instance state. For a target area to be active its ancestor areas also have
to be active. So we can determine a set of areas that are all active after the preceding transition is
�red. The acquired active area set can even be expanded. This can be done by looking for scopes
that have no invariant or looking for regions. If their parent area is already in the obtained active
set they can be added.

There may be transitions for which the source area is active after the preceding transition is
�red. If these transitions have no guard and are labeled with an event synchronized with at most
one concern they can be associated with the T syntax

S function. This is allowed because in this case
the transition is always enabled when the source area is active. By focusing on transitions located
in at most one concern it is known that other concerns can not restrict the �ring of this transition.

In the desugared abstract syntax tree invariants on scopes and the guard on transitions are
always �lled with a boolean expression. When no invariant or guard is supplied in the original
OIL speci�cation this expression has the value true. So we can check for this value to see that a
transition has no guard or that we have a scope without invariant. It is certainly possible that a
speci�cation had a guard or invariant with the expression true. The behavior is exactly the same
so this guard or invariant can be considered as if they were not de�ned. This syntax analysis
gathering approach is purely analyzing the syntax of the OIL speci�cation and does not evaluate
any expression. An invariant or guard with the expression ¬false is therefore not considered.

In Example 5.3, we take a closer look at the transition r1#1 . Its target area is the state ′s2 ′.
So the syntax analysis on implied transitions starts looking for transitions that have this area as
its source area. This is the case for the transition p1#1 . This transition does also not have a
guard and is not labeled with a concern; it is therefore identi�ed as a transition associated with
the T syntax

S function of the transition r1#1 .

No successor transitions The syntax analysis on implied transitions detecting successor transi-
tions used the target area of the preceding transition. This target area is active after the preceding
transition has �red. For this area to be active there are combinations of regions and states that set
instance variables to speci�c values. These can be extracted to �nd a list of instance variables and
the values that they have in the active target area. This list of instance variables and values can
be used to compare to the list of instance variables and their values extracted from other areas. If
there is an instance variable that has to have di�erent values to make one of the two areas active
we know that these areas can never be active at the same time. When such a mismatch is found
for the source area of a transition we know that this transition is never enabled after the preceding
transition and it can be associated with the T syntax

NS function.
If the preceding transition is �red with another transition labeled with the same event it is

possible that this additional transition updates additional instance variables. Note however that
the postconditions of the preceding transition have to hold after its �ring. So the instance variables
that are used to �nd transitions associated with T syntax

NS are never altered to di�erent values.
We again take a closer look at the transition r1#1 in Example 5.3. The target area of this

transition is the state ′s2 ′. After the transition r1#1 is �red this area is active and the instance
variable this.state has the value ′s2 ′. If we take a closer look at the transition p2#1 , we see that
its source area is only active when the instance variable this.state has the value ′s3 ′. The syntax
analysis on implied transitions detects this mismatch in values for the instance variable this.state
and the transition is identi�ed as a transition associated with the T syntax

NS function.
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Potential successor transitions The syntax analysis on implied transitions may �nd transi-
tions for which the source area is active after the preceding transition is �red. However, the found
transitions may have a guard or have an event that is located in multiple concerns. These transi-
tions are associated with the T syntax

PS function. The syntax analysis on implied transitions is not
capable of evaluating the guards or give any guarantees when the transition has to be synchronized
over multiple concerns. However, the syntax analysis found the source area to be active so this
transition is more likely to be �red than any other transition that does not have this property.

In Example 5.3, we take the transition p1#1 . Its target area is the state ′s3 ′. The syntax
analysis on implied transitions looks for transitions that have this area as its source area and �nds
the transition p2#1 . However, this transition has a guard which the syntax analysis can not
evaluate. So the p2#1 transition is identi�ed as a transition associated with the T syntax

PS function
of the transition p1#1 .

Formal de�nition In this chapter, the syntax analysis on implied transitions is formally de�ned.
These de�nitions use the semantics of OIL[4]. Let (X,A,T) be an OIL speci�cation. The transition
speci�cation and area speci�cation are de�ned in Chapter 2.2. The transition speci�cation is a
tuple T = (E,PAR, T, CO, CO). The area speci�cation is also a tuple A = (A,@,RE , EXP).

Now T syntax
S can be de�ned.

De�nition 3 T syntax
S : T → P(TP ) associates each transition with its set of successor transitions

found by the syntax analysis of implied transitions. For each of these transitions, the function is
de�ned as follows.

T syntax
S ((so, gu, e,ARG, AG, ta, ar)) = {(so′, gu′, e′,ARG′, AG′, ta′, ar′) ∈ TP |

ta v∗ so′ ∧ gu′ = true ∧#(CO(Te′)) ≤ 1}

So the transitions associated with the T syntax
S function are only located in at most one concern

and their guard is true. The source area also has to be active after the preceding transition and
this is ensured by ta v∗ so′. This relation only holds when the so′ area is an ancestor area of the
ta area.

For de�ning T syntax
NS a helper function is de�ned; AS : A → P(ASt). The function collects a

set of of all ancestor states of an area. These states are found with the v∗ relation.

AS(area) = {state ∈ ASt|area v∗ state}

Now T syntax
NS can be de�ned.

De�nition 4 T syntax
NS : T → P(TP ) associates each transition with its set of no successor transi-

tions found by the syntax analysis of implied transitions. For each of these transitions, the function
is de�ned as follows.

T syntax
NS ((so, gu, e,ARG, AG, ta, ar)) = {(so′, gu′, e′,ARG′, AG′, ta′, ar′) ∈ TP |

∃state∈AS(ta)(∃state′∈AS(so′)(

RE(state) = RE(state′) ∧ ¬(EXP(state) = EXP(state′)))}

This de�nition uses mismatches in values assigned to the same instance variables to �nd transitions
associated with the T syntax

NS function. Note that the EXP function always returns a constant value
for a state. A mismatch means that the source area is never active after the preceding transition
has �red.
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Next, T syntax
PS is de�ned.

De�nition 5 T syntax
PS : T → P(TP ) associates each transition with its set of potential successor

transitions found by the syntax analysis of implied transitions. For each of these transitions, the
function is de�ned as follows.

T syntax
PS ((so, gu, e,ARG, AG, ta, ar)) = {(so′, gu′, e′,ARG′, AG′, ta′, ar′) ∈ TP |

ta v∗ so′ ∧ ¬(gu′ = true ∧#(CO(Te′)) ≤ 1)}

The de�nition collects transitions in which the source area is implied by the target area of the
preceding transition. However, a guard or concern may limit its �ring. Therefore it is associated
with the T syntax

PS function.
The following lemmas show that the gathered transitions are always correct; the associated

transitions are correct approximations and do not overlap. The proofs for these lemmas can be
found in Appendix A.3.1.

The lemmas for T syntax
S and T syntax

NS look as follows.

Lemma 1 All gathered transitions for T syntax
S by the syntax analysis are located in TS.

∀t∈TTS(t) ⊇ T syntax
S (t).

Lemma 2 All gathered transitions for T syntax
NS by the syntax analysis are located in TNS.

∀t∈TTNS(t) ⊇ T syntax
NS (t)

Next, lemmas are supplied that show that there is no overlap with the associated transition of
T syntax
PS . Earlier it was already stated that there is no overlap between transitions associated with
TS and TNS . So Lemma 1 and Lemma 2 are su�cient to show that there is no overlap between
transitions associated with T syntax

S and T syntax
NS .

Lemma 3 The gathered transitions for T syntax
S and T syntax

PS do not overlap for the syntax analysis.

∀t∈TT syntax
S (t) ∩ T syntax

PS (t) = ∅

Lemma 4 The gathered transitions for T syntax
NS and T syntax

PS do not overlap for the syntax analysis.

∀t∈TT syntax
NS (t) ∩ T syntax

PS (t) = ∅
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5.4 SMT solving on implied transitions

The next approach for gathering the causal relations is with the help of an SMT solver. T smt
S

function will be used to refer to the function returning successor transitions found by the gathering
approximation using SMT analysis on implied transitions. Likewise, the T smt

NS function will return
the no successor transitions found by the gathering approximation using SMT analysis on implied
transitions.

The previous causal relation gathering approach which used syntax analysis to �nd implied
transitions could not evaluate expressions. So the existence of these resulted in the transition not
being considered for a transition associated with the T syntax

S function. For example, a transition
with the guard ¬false is associated with the T syntax

PS function while it does not limit the �ring of the
transition in any way. The SMT analysis gathering approach aims to �x this by making it possible
to evaluate expressions. Evaluating expressions also makes it possible to associate transitions with
T smt
NS ; a transition with the guard false can never �re and can safely be associated with T smt

NS .
An SMT solver[8][9] is a tool for deciding the satis�ability of certain problems. In such a

problem expressions can be de�ned using boolean types or even types like integers, real numbers,
and enums. The SMT solver only states that an SMT problem is satis�able when there exists
a value for each variable that guarantees the expression always holds. An SMT problem is not
satis�able if these values do not exist. So the problem x > 5∧ true where x is an integer variable is
satis�able; an x with the value 10 makes sure this expression always holds. However, an expression
like x > 5 ∧ false where x is an integer variable is not satis�able. No integer value for x could
result in this expression being true.

If the SMT problems are formatted in a certain way the SMT solver can be used to see if
assumptions imply that assertions hold. This looks as follows; Assumptions ∧ ¬(Assertions).
When such an SMT problem is unsatis�able it means that the assumptions imply the assertions.
So a problem with the assumption x = 10 and assertion x > 5 will results in the following SMT
problem x = 10 ∧ ¬(x > 5). This SMT problem is unsatis�able as either x = 10 or ¬(x > 5) is
true, they are never simultaneously true. So we can conclude that x = 10 implies x > 5.

The preceding transition and the transition that is considered for a causal relation can be
used to generate satis�ability problems. Conclusions can be drawn when such a problem is found
satis�able or not by the SMT solver. The big advantage of using the SMT solver is that expressions
can now be taken into account. Ideally, this would result in more transitions being gathered for
T smt
S and T smt

NS . The choice is made to initially limit the causal relation gathering approach of
T smt
S to transitions that are labeled with events that are in at most one concern. This restriction

is introduced to simplify the SMT analysis and is revisited in Chapter 5.5.
If the preceding transition is �red with another transition labeled with the same event it is

possible that this additional transition updates additional instance variables. Note however that
the postconditions of the preceding transition have to hold after its �ring. So the instance variables
that are used to �nd transitions associated with T smt

NS are never altered to di�erent values.
In the implementation, Z3[8] is used to solve the satis�ability problems. The SMTlib[10] stan-

dard is used for all these problems. This is a standard used by all big SMT solver implementations
that state how SMT problems can be formatted. So adding support for other solvers should be
relatively easy.
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To explain the generation of the satis�ability problems the following OIL speci�cation is used.

Figure 13: OIL example SMT analysis

Example 5.4 This OIL speci�cation has a transition with a reactive event; r1#1 . This transition
has a guard (this.a == 5) and an assignment (this.b := 50− this.a). Next, a few transitions with
silent proactive events are visible. Note, that all these transitions have a guard.

Active target area and assertion After the preceding transition is �red we know that the
target area of this transition is active and that its assertion holds. These properties can be used
to show that a considered transition can be associated with T smt

S or T smt
NS . To see if a transition is

associated with T smt
S the solver needs to show that the source area is always active and the guard

does always hold in the instance state after the preceding transition is �red. A similar check can
be used to see if a transition is associated with T smt

NS . In this case, the source area has to be never
active or the guard has to never hold in the instance state after the preceding transition is �red.

The active target area and assertion of the preceding transition can directly be used to see if
the source area of the evaluated transition is active and if its guard holds. All this information
is from the same instance state. The '.' in the instance variable names is replaced with a '_'
character to be compatible with the SMTlib standard.

Looking at the example the following assumptions and assertions are generated from the tran-
sitions r1#1 and p1#1 . These are used to check if p1 is associated with the T smt

S function of
r1 .

� Assumptions: this_state = 2

� Assertions: this_state = 2 ∧ 5 = 5

Looking at these assumptions and assertions it is clear that the assertions are implied by
the assumptions. So the transition labeled with p1 is associated with the T smt

S function of the
transition labeled with r1 .

This approach can be used as-is for checking transitions associated with T smt
S . To check if the

evaluated transition is associated with T smt
NS the assertions are negated. This gives a satis�ability

problem that checks if the assertions never hold.
Using the SMT solver in this way is close to the syntax analysis �nding implied transitions.

It mainly focuses on showing that the source area is active and the guard holds of the evaluated
transition. It however should �nd more causal relations as it can interpret the expressions found
in the guard and scopes.
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Assignments, active source area, and guard Next, the instance state of the OIL speci�ca-
tion before the preceding transition was �red is also used, this instance state is referred to as the
old instance state. The instance state after the preceding transition is referred to as the present
instance state. The two instance states are connected via the assignments that the preceding
transition can contain.

To be able to use information from the old instance state, additional variables are used. Each
instance variable is now used twice; one referring to the old instance state and one referring to the
present instance state. The variables that are de�ned for the old instance state are pre�xed with
old_.

Assignments give values to variables from the present instance state but may use values from
the old instance state. This behavior is visible in the assignment of the transition r1#1 ; this.b :=
50 − this.a. This assignment can be used to add the following assumption to the SMT problem
this_b = 50 − old_this_a. The added variables for the old instance state can also be used to
add information from the guard and the knowledge that the source area was active before the
preceding transition was �red.

The generated assumptions and assertions can be seen below that check if the transition p2#1
is associated with T smt

S or T smt
NS of the transition r1#1 .

� Assumptions: this_state = 2 ∧ old_this_state = 1 ∧ this_b = 50− old_this_a ∧
old_this_a = 5

� Assertions: this_state = 2 ∧ this_b > 10

So now the solver can use this information to �nd that old_this_a has to be 5 as a result of
the guard of the transition r1#1 . This information can further show that this_b has to be 45
which is enough information to see that the guard of the transition p2#1 always holds and that
the transition p2#1 is associated with T smt

S of the transition r1#1 .

Reactive transitions There is an additional source of information that could be used to expand
the number of assumptions. Earlier it was stated that OIL speci�cations have a so-called run-to-
completion semantics; reactive events are only handled when no proactive event can be produced.
So, if a reactive transition is being �red no proactive transition could be �red in that instance
state. Now it is known that either the source area of the evaluated transition was not active in
this instance state or the guard did not hold in it.

The satis�ability problem generated for reactive transitions can have additional assumptions;
the negation of both the guard and the source area being active of the evaluated transition on
the old variables. Adding these assumptions means that the proactive transition could not �re
in the old instance state. These assumptions could be added for all proactive transitions in the
OIL speci�cation however this will greatly increase the size of the satis�ability problems while
the information from the proactive transition that is evaluated has most likely the most relevant
information. Therefore the assumptions are only introduced for the evaluated transition.

So in Example 5.4, the assumptions and assertions generated to see if the transition p4#1 is
associated with either T smt

S or T smt
NS of the transition r1#1 looks as follows.

� Assumptions: this_state = 2 ∧ old_this_state = 1 ∧ this_b = 50− old_this_a ∧
old_this_a = 5 ∧ ¬(old_this_c = 4)

� Assertions: this_c = 4

The ¬(old_this_c = 4) assumption is added to the generated satis�ability problem. However,
this additional assumption does not result in enough information to show any additional causal
relation.
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More updates Currently, there are no restrictions on how many transitions can �re at the same
time as the preceding transition. However, this next approach is only allowed when the preceding
transition only �res on its own.

It is possible to detect instance variables that are not altered by the �ring of a transition. This
information can be used to add assumptions that set the value of these present instance variables
to the same value as the old instance variables.

These added assumptions do complement the added assumptions from the reactive transitions.
For example, there can be reactive transitions that do not assign any new values to instance
variables. So, no proactive transition can be �red in the instance state before this transition as it
was labeled with a reactive event and because it does not alter any instance variables the solver
can �nd that there are also no proactive transitions that can be �red after it.

So looking at Example 5.4, the assumptions and assertions generated to see if the transition
p4#1 is associated with T smt

S or T smt
NS of the transition r1#1 now look as follows.

� Assumptions: this_state = 2∧this_a = old_this_a∧this_b = 50−old_this_a∧this_c =
old_this_c ∧ old_this_a = 5 ∧ ¬(old_this_c = 4)

� Assertions: this_c = 4

Because the instance variable c is never changed by the transition r1#1 the solver now �nds that
the transition p4#1 is associated with T smt

NS for the r1#1 transition.
Unfortunately, the bene�ts of these added assumptions are limited. This is the result of the

restriction that the preceding transition can only �re on its own that has to be introduced.
It is however also possible to take into account all transitions that the preceding transition

can �re with at the same time. The detection that �nds which instance variables are not altered
becomes a bit trickier as other transitions can also update instance variables. Taking all these
transitions into account increases the generated satis�ability problem signi�cantly while only �nd-
ing new causal relations in very speci�c situations, see Chapter 9 for the exact results. A problem
with all assumptions takes around 1.6 times longer to solve than a problem without the assump-
tion that speci�c instance variables are not altered. The reduced e�ectiveness is mostly the result
of that multiple combinations of transitions can �re together with the preceding transition. All
possible combinations of enabled transitions have to be considered to show that a speci�c instance
variable is not assigned a new value.

During testing, no example is found for which valuable information survived these additional
assumptions or the restrictions that had to be introduced otherwise. Therefore the assumptions
for not altered instance variables are not added in the current implementation. This results in
smaller problems that are solved faster.
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Formal de�nition The SMT analysis on implied transitions is formally de�ned.
Let (X,A,T) be an OIL speci�cation. The transition speci�cation and the AC function were

de�ned earlier in Chapter 2.2. The transition speci�cation is a tuple T = (E,PAR, T, CO, CO).
and the AC function associates each area with a boolean expression which can be used to evaluate
if that area is active in an instance state. Note that X is the set of all variables, and EXPX is
the set of all expressions using the variables from X.

To be able to de�ne the SMT analysis the σold : EXPX → EXPX function is de�ned �rst.
This function is used to substitute the variables an expression contains to alternate variables so
that they can be used to refer to the instance state before the preceding transition. The de�nition
looks as follows

σold(c) = c

σold(x) = xold

σold(op(exp1, ..., expn)) = op(σold(exp1), ..., σold(expn))

Where c is a constant, c ∈ V, x ∈ X is a variable and op is an n-ary operator where n > 0 and
op : Vn → V.

Next, Assign : Assignments→ EXPX converts a set of assignments in the form x := f where
x ∈ X and f ∈ EXPX to an expression in the following way.

Assign(assignments) =
∧

(x:=f)∈assignments

(x = σold(f))

Note that the assignments use variables from the old instance state. Next, two functions are
supplied that represent the SMT problems for �nding the causal relations. The SMT problem
looks as follows for T smt

S indicated with ϕS : T × TP → EXPX .

ϕS((so, gu, e,ARG, AG, ta, ar), (so′, gu′, e′,ARG′, AG′, ta′, ar′)) =
AC(ta) ∧ ar ∧ σold(AC(so) ∧ gu) ∧Assign(AG) ∧ ¬(AC(so′) ∧ gu′)

A similar function is de�ned for T smt
NS indicated with ϕNS : T × TP → EXPX .

ϕNS((so, gu, e,ARG, AG, ta, ar), (so′, gu′, e′,ARG′, AG′, ta′, ar′)) =
AC(ta) ∧ ar ∧ σold(AC(so) ∧ gu) ∧Assign(AG) ∧ (AC(so′) ∧ gu′)

The only di�erence is the removed negation around (AC(so′)∧ gu′) to �nd transitions that are
never implied.

36



Now, these functions can be used to give the de�nitions of the di�erent analyses. First, T smt
S

is de�ned.

De�nition 6 T smt
S : T → P(TP ) associates each transition with its set of successor transitions

found by the SMT analysis of implied transitions. For each of these transitions, the function is
de�ned as follows. Let t = (so, gu, e,ARG, AG, ta, ar) and t′ = (so′, gu′, e′,ARG′, AG′, ta′, ar′).

T smt
S (t) = {t′ ∈ TP |ϕS(t, t

′)is unsatis�able ∧#(CO(Te′)) ≤ 1}

The satis�ability problem is placed in conjunction with a check that makes sure the transitions
associated by T smt

S are labeled with at most one concern.
Next, T smt

NS is de�ned.

De�nition 7 T smt
NS : T → P(TP ) associates each transition with its set of no successor transitions

found by the SMT analysis of implied transitions. For each of these transitions, the function is
de�ned as follows. Let t = (so, gu, e,ARG, AG, ta, ar) and t′ = (so′, gu′, e′,ARG′, AG′, ta′, ar′).

T smt
NS (t) = {t′ ∈ TP |ϕNS(t, t

′)is unsatis�able}

In this de�nition the satis�ability problem ϕNS can be found.
The following lemmas are created that are proven to show that the gathered transitions for

the SMT analysis are always correct; are the associated transitions always approximations. The
proofs for these lemmas can be found in Appendix A.3.2.

Lemma 5 All gathered transitions for T smt
S by the SMT analysis are located in TS.

∀t∈TTS(t) ⊇ T smt
S (t)

Lemma 6 All gathered transitions for T smt
NS by the SMT analysis are located in TNS.

∀t∈TTNS(t) ⊇ T smt
NS (t)

Earlier it was already stated that there is no overlap between transitions associated with TS
and TNS . So Lemma 5 and Lemma 6 are su�cient to show that there is no overlap between
transitions associated with T smt

S and T smt
NS .
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5.5 Multiple concerns

Until now we only considered transitions labeled with events that are located in at most one concern
for transitions associated with T ∗S . However, this greatly reduces the number of causal relations
that can be found as concerns are often used to model di�erent aspects of an OIL speci�cation
separately and concisely. So a gathering approach that does consider transitions labeled with
events that are located in multiple concerns is certainly bene�cial. The T co

S function will be used
to refer to the function returning successor transitions found by the gathering approximation using
concern analysis. Likewise, the T co

NS function will return the no successor transitions found by the
gathering approximation using concern analysis.

To accomplish this, we drop the restriction that the events of transitions have to be located
in at most one concern for both the syntax and SMT analysis on implied transitions. So now
these gathering approaches can collect transitions that have events located in multiple concerns.
Synchronization between transitions over multiple concerns is not considered so it is now possible
for the syntax and SMT analysis on implied transitions to �nd transitions that do not have the
properties of a transition associated with TS . The function T ∗

′

S refers to either the already gathered
T syntax
S or T smt

S without the concern restriction.
A post-analysis is introduced that makes sure that after it completes only transitions are

gathered that have the properties of TS . It can also be used to associate transitions with TNS .
This post-analysis can be introduced directly after both the syntax and SMT analysis on implied
transitions. It can however also be used once both have been completed as neither the syntax nor
SMT analysis on implied transitions depend on already gathered transitions associated with T ∗S
or T ∗NS . This post-analysis consists of two parts; one part looks at transitions associated with T co

S

and another looks at transitions associated with T co
NS . Both mimic the behavior that can be found

in the concern condition discussed in Chapter 2.2.

CC(e) =
∧

c∈CO(Te)

∨
t∈Te,c

PRC(t)

To explain the concern analysis in more detail the following OIL speci�cation is used.

Figure 14: OIL example concern analysis
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Example 5.5 The OIL speci�cation in Figure 14 has one transition labeled with a reactive event
and seven transitions labeled with proactive events. Note that the events p2 , p3 and p4 are de�ned
in multiple concerns. For this example, it is assumed that all transitions which have the guard true
have been identi�ed as a transition associated with T ∗

′

S of r1#1 . The transition that is guarded
with the guard false is identi�ed as a transition associated with the T ∗NS function of r1#1 . There

is one transition p3#2 with a di�erent guard and this transition is associated with T ∗
′

PS of r1#1 .

Successor transitions The concern analysis starts by taking a preceding transition and select-
ing a transition associated with it using T ∗

′

S . The concern analysis for T co
S collects all concerns that

have a transition labeled with the same event as the selected transition from T ∗
′

S . Next, it collects
all transitions in each concern that are labeled with the same event which could be synchronized
with the selected transition from T ∗

′

S . Now, the concern analysis checks if for each concern there
is at least one transition that is associated with T ∗

′

S of the preceding transition. If this is the
case, the transition can be associated with T co

S of the preceding transition. However, if this is not
the case the transition is associated with T co

PS of the preceding transition. There is a concern for
which the concern analysis can not guarantee that there is an enabled transition labeled with the
same event as the selected transition from T ∗

′

S . This in turn means the concern analysis can not
guarantee that the transition is always enabled.

In Example 5.5, the transition p1#1 has been identi�ed as a transition associated with the T ∗
′

S

function of r1#1 . Notice that the event p1 only occurs once and is only located in one concern.
So the concern analysis concludes that each concern has at least one transition associated with the
T ∗

′

S function. So the p1#1 transition is identi�ed as a transition associated with the T co
S function

for the r1#1 transition. Note that this is exactly the same behavior as we would have had if we
kept the restriction on the syntax and SMT analysis to only gather transitions labeled with events
located in at most one concern.

Next, a closer look is taken at p2#1 . This is a transition associated with the T ∗
′

S function for
the preceding transition r1#1 but notice that the event p2 also occurs in another concern. This
is however no problem because both concerns have a transition that is associated with the T ∗

′

S

function of r1#1 . So the p2#1 transition is associated with T co
S for the r1#1 transition.

The p3#1 transition was found to be a transition associated with the T ∗
′

S for the preceding
transition r1#1 by the syntax analysis on implied transitions. Note that the event p3 occurs
in another concern. However, for this C2 concern, no transition is associated with T ∗

′

S . So this
concern limits the production of the event p3 . This means that the transition p3#1 is associated
with the T co

PS function for the r1#1 transition.

No successor transitions Next, the dual of the concern analysis for transitions associated with
T co
S will be used to gather transitions associated with T co

NS . The concern analysis takes a preceding
transition and selects a transition associated with it using T ∗NS . The concern analysis for T co

NS

collects all concerns that have a transition labeled with the same event as the selected transition
from T ∗NS . Next, it collects all transitions in each concern that are labeled with the same event
which could be synchronized with the selected transition from T ∗NS .

Now the concern analysis checks if there is a concern for which all transitions are located in
T ∗NS of the preceding transition. If this is the case we may associate the selected transition to T co

NS

of the preceding transition. There is a concern that can never �re a transition that is labeled with
the same event as the selected transition. So this selected transition can therefore also never �re.

We take a closer look at the transition p4#1 . The event p4 is found in the concern C1 and
C2 . The concern analysis detects that all transitions labeled with this event in the C2 concern
are associated with the T ∗NS function of the r1#1 transition. Meaning that the p4 event can
never be produced after the transition r1#1 . So now p4#1 is associated with T co

NS of the r1#1
transition.
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Formal de�nition The concern analysis is formally de�ned. Let (X,A,T) be an OIL speci�ca-
tion. The transition speci�cation was de�ned earlier in Chapter 2.2 as a tuple that looks as follows
T = (E,PAR, T, CO, CO).

The formal de�nition of this concern analysis consists of two parts. First, the formal def-
initions of both the syntax analysis and SMT analysis are used but now with the removal of
the #(CO(Te′)) ≤ 1 restriction. These look as follows. Let t = (so, gu, e,ARG, AG, ta, ar) and
t′ = (so′, gu′, e′,ARG′, AG′, ta′, ar′).

T syntax′

S (t) = {t′ ∈ TP |ta v∗ so′ ∧ gu′ = true}

T smt′

S (t) = {t′ ∈ TP |(ϕS(t, t
′)is unsatis�able)}

These sets are then used in the following de�nitions.

De�nition 8 T co
S : T → P(TP ) associates each transition with its set of successor transitions

found by the concern analysis. For each of these transitions, the function is de�ned as follows.

T co
S (t) = {(so′, gu′, e′,ARG′, AG′, ta′, ar′) ∈ TP |∀c∈CO(Te′ )

(∃t′∈Te′,c(t
′ ∈ T ∗

′

NS(t)))}

De�nition 9 T co
NS : T → P(TP ) associates each transition with its set of no successor transitions

found by the concern analysis. For each of these transitions, the function is de�ned as follows.

T co
NS(t) = {(so′, gu′, e′,ARG

′, AG′, ta′, ar′) ∈ TP |∃c∈CO(Te′ )
(∀t′∈Te′,c(t

′ ∈ T ∗NS(t)))}

De�nition 10 T co
PS : T → P(TP ) associates each transition with its set of potential successor

transitions found by the concern analysis. For each of these transitions, the function is de�ned as
follows.

T co
PS(t) = T ∗S(t) \ (T co

S (t) ∪ T co
NS(t))

These de�nitions are used in the following lemmas that are proven to make sure the gathered
transitions are correct; are the associated transitions always approximations. The shown lemmas
are proven in Appendix A.3.3.

The lemmas look as follows for the transitions associated with T co
S and T co

NS .

Lemma 7 All gathered transitions for T co
S by the concern analysis are located in TS.

∀t∈TTS(t) ⊇ T co
S (t)

Lemma 8 All gathered transitions for T co
NS by the concern analysis are located in TNS.

∀t∈TTNS(t) ⊇ T co
NS(t)

Next, two lemmas make sure there is no overlap with transitions associated with T co
PS . Earlier

it was already stated that there is no overlap between transitions associated with TS and TNS .
So Lemma 7 and Lemma 8 are su�cient to show that there is no overlap between transitions
associated with T co

S and T co
NS .

Lemma 9 The gathered transitions for T co
S and T co

PS do not overlap for the concern analysis.
∀t∈TT co

S (t) ∩ T co
NS(t) = ∅

Lemma 10 The gathered transitions for T co
S and T co

PS do not overlap for the concern analysis.
∀t∈TT co

NS(t) ∩ T co
PS(t) = ∅
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5.6 Unstable areas

The previous causal relation gathering approaches struggle when the transitions are located in
separate parts of OIL speci�cations; for example when an OIL speci�cation has multiple regions
that can be active at the same time. In this chapter, a causal relation gathering approach is
discussed which uses the already obtained causal relations together with the OIL speci�cation to
try to see if additional causal relations can be found. This gathering approach makes it possible to
collect causal relations for transitions that are located in separate parts of OIL speci�cations. The
Tunstable
NS function will be used to refer to the function returning no successor transitions found by

the gathering approximation using unstable area analysis
To aid this explanation the following OIL speci�cation is used.

Figure 15: OIL example unstable area analysis

Example 5.6 The OIL speci�cation in Figure 15 has three regions each with an active state; ′s1 ′,
′s3 ′, and ′s6 ′. In this example these states are also the initial states of this OIL speci�cation. Next,
there are three transitions labeled with a reactive event and two transitions labeled with a proactive
event. The proactive transition p1#1 is identi�ed as a transition associated with T ∗S of r2#1 and
the transition p2#1 is identi�ed as a transition associated with T ∗S of the transition r3#1. Besides
these two causal relations no other causal relations are found. So both the transitions p1#1 and
p2#1 are associated with T ∗U of r1#1.

Unstable areas The unstable area analysis looks for unstable areas. These are areas for which
there are always transitions enabled that leave this area. If these unstable areas are detected
properly they can be used to acquire additional no successor transitions for Tunstable

NS .
An unstable area has the following properties. The area has at least one incoming and one

outgoing transition. The outgoing transition has to be labeled with a proactive event. At least
one of the outgoing transitions has to be associated with T ∗S for all the incoming transitions. So
if this area is entered via one of the incoming transitions it is known from an earlier analysis that
this area can always be left immediately with one of the outgoing transitions. However, there are
a few nuances we have to cover. The unstable area has to be a state that is not an initial state.
Initial states are unwanted because we can not depend on the incoming transitions to detect if an
outgoing transition is enabled. Next, an unstable area can not be the parent area of any other
area. This property is currently enforced to be certain that the unstable areas have the correct
behavior as edge cases like an outgoing transition connecting to a nested area of the unstable area
are removed. It may be correct to drop the requirement that an unstable area can not be a parent
area but this is currently not known.
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If there are transitions that leave an unstable area we know that the transitions in T ∗S capture
the behavior of these transitions. This is the case even if the transition is never �red. In this case,
it is never needed to �re this transition as other transitions are always enabled and are �red with
priority. When all transitions of an event over multiple concerns all leave such an unstable area
it is allowed to say that T ∗S captures the behavior of the complete event. So if transitions in this
event are still associated with T ∗U they can be associated with Tunstable

NS .
In Example 5.6, the syntax and SMT analysis on implied transition would not have found

any causal relation between the transitions r1#1 and p1#1 . However, the state ′s4 ′ is an
unstable area. Whenever r2#1 is �red the area is always left immediately by the �ring of p1#1
because there is only one transition labeled with the event p1 it means the event p1 is completely
accounted for by the transitions associated with T ∗S . So all transitions labeled with the event
p1 can be associated with Tunstable

NS of both the transition r1#1 and r3#1 as these had this
transition associated with T ∗U . State ′s6 ′ is an initial state so not an unstable area. Therefore
the unstable area analysis can not be used to draw conclusions for causal relations between the
transitions r1#1 and p2#1 .

Formal de�nition The unstable area analysis is formally de�ned. However, no lemmas are
formulated using this de�nition in this report.

Let (X,A,T) be an OIL speci�cation. The transition speci�cation, area speci�cation and
variable speci�cation are de�ned in Chapter 2.2. The transition speci�cation is a tuple T =
(E,PAR, T, CO, CO). The area speci�cation is a tuple A = (A,@,RE , EXP) and the variable
speci�cation is also a tuple X = (X, I).

The following two functions are used to return a set of transitions that enter or leave a speci�c
area. First, In : A → P(T ) associates an area with all the transitions that have this area as the
target area.

In(area) = {(so, gu, e,ARG, AG, ta, ar) ∈ T |ta = area}

Next, Out : A→ P(T ) associates an area with all the transitions that have this area as source
area.

Out(area) = {(so, gu, e,ARG, AG, ta, ar) ∈ T |so = area}

The Out function also associates a set of areas with the set of transitions that have a source
area in this area set; Out : P(A)→ P(T ).

Out(areas) =
⋃

area∈areas
Out(area)

The set of unstable areas is de�ned as follows.

AU = {area ∈ ASt|¬∃a∈A(a @ area)

∧ In(area) 6= ∅ ∧ ∀t∈In(area)((T ∗S(t) ∩Out(area)) 6= ∅) ∧ ¬(EXP(area) ∈ I)}

So an unstable area is not a parent area of any area. It also has at least one incoming transition.
All incoming transitions do have at least one transition associated with the T ∗S function that is an
outgoing transition of that same area. So when an incoming transition enters this area there is
an outgoing transition that leaves the same area that can always be �red. The last thing that is
checked is that the area can not be an initial state. The EXP function returns a constant value
when a state is inputted. When this constant value is in the set of initial values we know that this
state is an initial state.
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Using these unstable areas a de�nition can be supplied for Tunstable
NS .

De�nition 11 Tunstable
NS : T → P(TP ) associates each transition with its set of no successor

transitions found by the unstable area analysis. For each of these transitions, the function is
de�ned as follows. Let t = (so, gu, e,ARG, AG, ta, ar) and t′ = (so′, gu′, e′,ARG′, AG′, ta′, ar′).

Tunstable
NS (t) = {t′ ∈ TP |∀c′∈(CO(Te′ )\CO(t′))(Out(AU ) ⊇ Te′,c′) ∧ t′ ∈ Out(AU ) ∧ ¬(t′ ∈ T ∗S(t)}

A transition can be associated with Tunstable
NS if that transition is not associated with T ∗S already

and it leaves an unstable area. It is also important that all transitions from other concerns that
can be synchronized with the same event do leave such an unstable area.

5.7 Combining gathering approaches

The gathering approaches using syntax and SMT analysis for gathering implied transitions can be
used on their own. However, the approach using the SMT solver is eight times slower while it �nds
more causal relations in the end, see Chapter 9 for exact numbers. Therefore the choice is made to
combine the two gathering approaches. First, the syntax analysis �nds some causal relations, and
afterward, the SMT solver is used to try to �nd even more causal relations. The SMT analysis
on implied transitions only generates problems for transitions that are not associated with T ∗S or
T ∗NS . In this way, the SMT solver is only used when the syntax analysis can not say something
useful. For example, this is the case when a transition has a guard.

Both syntax and SMT analysis on implied transitions ignored the restriction for transitions
having at most one concern. So after these two analyses, the concern analysis takes place to
collect the transitions that do conform to multiple concerns. This concern analysis can be used
after either the syntax or SMT analysis on implied transitions has �nished however it is also �ne
to only use it once after both have �nished. This is allowed because neither analysis does depend
on already gathered transitions associated with T ∗S or T ∗NS .

At last, the unstable area analysis takes place. This gathering approach needs transitions
associated with T ∗S and is put last to ensure the concern analysis is �nished.
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6 Scheduling improvement strategies with gathered causal

relations

In the previous chapter, approaches were discussed for gathering causal relations that can be
used to make more informed scheduling decisions. In this chapter, the scheduling strategies are
listed that were found that use the gathered causal relations to make more informed decisions.
The scheduling strategies always produce a valid schedule even in the case no causal relations are
gathered. The scheduling strategies also do not alter the OIL speci�cations in any way, they only
try to improve the scheduling itself.

6.1 Improved scheduling complementing naive OIL run loop scheduler

The naive OIL run loop scheduler is used to ensure the run-to-completion semantics, see Chapter
2.3. However, causal relations are now gathered which can be used to improve the scheduling.
In this chapter, a few scheduling strategies are listed that can be used to complement the naive
OIL run loop scheduler. The naive OIL run loop scheduler is still used to fall back to after these
scheduling strategies are completed.

To aid this explanation a small OIL speci�cation is used.

Figure 16: OIL example improved scheduling complementing current OIL run loop scheduler

Example 6.1 The OIL speci�cation in Figure 16 has one reactive event; r1 . Next it also has three
proactive events p1 , p2 and p3 . For this example, all causal relations are correctly identi�ed and
all proactive transitions are either associated with T ∗S or T ∗NS. So p2#1 and p1#1 are associated
with T ∗S of r1#1 . Next, p1#2 is associated with T ∗S of p2#1 and p2#2 is associated with T ∗S of
p1#1 . The transition p3#1 is associated with T ∗S of both p1#2 and p2#2 .

Scheduling successor events When an event is handled the generated code determines which
of the transitions of this event can �re and checks if each concern has an enabled transition. If
this is the case, it executes the updates of each enabled transition, and afterward the naive OIL
run loop scheduler is used for the run-to-completion semantics, see Chapter 2.3.

The enabled transitions from the handled event can be used to see if one of the transitions
has any transitions associated with T ∗S . The events from these associated transitions can always
be produced so one of them can be chosen arbitrarily and tried. This arbitrary choice is allowed
because of the con�uent proactivity property of valid OIL speci�cations, see Chapter 2.1. It is
again known which transitions are enabled during the production of the tried event so T ∗S can
be used again to continue chaining proactive events. At some point, T ∗S will not associate any
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transitions for any of the enabled transitions in an event. Now the naive OIL run loop scheduler
can be used to still ensure the run-to-completion semantics.

Scheduling these successor events is accomplished by adding the try method call of the event at
the end of the method that handles the event of the preceding transition. These added try method
calls are surrounded by if statements ensuring that they are only called when the appropriate
preceding transition was enabled. The insertion of the try method call according to transitions
associated with T ∗S can be done for each generated method; both reactive and proactive events.
When this is done, it also indirectly means that events are chained.

In Example 6.1 it is visible that after the handling of the r1 event it is possible to produce
the following events; p2 , p1 followed by p3 . The code generated for the event r1 and p2 can
be found in Algorithm 11 and 12. The generated code for event r1 has a TRY_EVENT_p2 ()
method call. So �rst this event is tried before the scheduler falls back to the naive OIL run loop.
This event comes from a transition associated with T ∗S so it is known that this event can always
be produced. Now we take a closer look at the if statements surrounding the try method calls,
the event p2 has two transitions; one from the state 4 to 5 and one from the state 2 to 3 . So
here two try event method calls are added as each transition has its own transitions associated
with T ∗S . One try method call is called when the transition leaving the state 4 is enabled calling
TRY_EVENT_p3 (). The other try method call is called when the transition leaving the state
2 is enabled calling TRY_EVENT_p1 (). Only after the two added try event method calls have
been completed the naive OIL run loop scheduler is called.

Algorithm 11: Pseudocode for r1

1 Function r1:

2 _t_enabled1 := state = 1
3

4 /* Checking precondition r1 */

5 ...
6 /* Update instance variables r1 */

7 ...
8 /* Checking postcondition r1 */

9 ...
10 /* Handled event r1 */

11

12 if _t_enabled1 then

13 TRY_EVENT_P2 ()// Added successor event

14

15 _OIL_RUN ()
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Algorithm 12: Pseudocode for p2

1 Function TRY_EVENT_P2:

2 _t_enabled1 := state = 2
3 _t_enabled2 := state = 4
4

5 _oil_e_enabled := _t_enabled1 or _t_enabled2
6

7 /* Checking precondition p2 */

8 if _oil_e_enabled then

9 /* Update instance variables p2 */

10 ...
11 /* Checking postcondition p2 */

12 ...
13 /* Produced event p2 */

14

15 if _t_enabled1 then

16 TRY_EVENT_P1 () // Added successor event

17

18 if _t_enabled2 then

19 TRY_EVENT_P3 () // Added successor event

20

21

22 return _oil_e_enabled

Remove OIL run loop scheduler call It is known which transition is �red last before the
naive OIL run loop scheduler is used. This could be the result of the original reactive event
that the component received or the last scheduled successor event, see the last section. When
all proactive transitions are associated with T ∗NS for this last �red transition it is known that no
proactive transition is enabled after this speci�c transition. This means that also no proactive
event can be produced. So, there is no need to fall back on the naive OIL run loop scheduler if
only this transition �res.

The _OIL_RUN method call is currently added at the end of the handling of a reactive
event. An if statement is used to surround the _OIL_RUN method call to ensure that it is only
called for the transitions that do not have all proactive transitions associated with T ∗NS . If no
transitions labeled with the same event need the _OIL_RUN method call it is not added. It
is also possible that all transitions need the naive OIL run loop scheduler which results in the
_OIL_RUN method call just being added similar to the original implementation.

This technique can be used as-is, but it could also be enhanced further. This is done by
combining this technique with the scheduling strategy that schedules successor events, see the last
section. It is possible to follow the chain of scheduled transitions associated with T ∗S and determine
the last transition that results in the scheduling of an event. This transition can then be used to
determine if the naive OIL run loop scheduler is needed by checking if all proactive transitions are
associated with T ∗NS . Note that it is possible that multiple transitions �re at the same time and
enable di�erent behavior therefore the detection of these chains is currently limited to transitions
that �re on their own.

So in the example, the events p2 , p1 , and p3 are chained by the scheduled successor events.
So the last produced event for the event r1 is p3 . The last �red transition labeled with this event
p3#1 has no proactive transitions that are enabled after it; all proactive transitions are associated
with T ∗NS for p3#1 . Meaning that the _OIL_RUN method call can safely be removed.
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The generated method for the r1 event looks as follows.

Algorithm 13: Pseudocode for r1 with removed OIL run call

1 Function r1:

2 _t_enabled1 := state = 1
3

4 /* Checking precondition r1 */

5 ...
6 /* Update instance variables r1 */

7 ...
8 /* Checking postcondition r1 */

9 ...
10 /* Handled event r1 */

11

12 if _t_enabled1 then

13 TRY_EVENT_P2 ()// Added successor event

14

15 // Removed _OIL_RUN method call

6.2 Removing events OIL run loop scheduler

After the proposed scheduling strategies of the last chapter, there are still situations in which the
scheduler has to fall back to the naive OIL run loop scheduler. However, there is still room to
improve the naive OIL run loop scheduler itself with the found causal relations.

For this part, the following OIL speci�cation is used to aid the explanation.

Figure 17: OIL example reduced scheduled OIL run loop scheduler events

Example 6.2 In Figure 17 an OIL speci�cation can be seen with one reactive event r1 and three
proactive events p1 , p2 and p3 . The gathering approaches detect the that p1#1 is associated with
T ∗S of r1#1 and p2#1 is associated with T ∗S of p1#1 . Next the p1#1 transition is associated with
T ∗NS of p2#1 and both transitions labeled with the p3 event. The p2#1 transition is associated
with T ∗NS of r1#1 and both transitions labeled with the p3 event. The gathering approaches are not
able to detect transitions associated with T ∗S for the p2#1 transition. The gathering approaches
associated both transitions labeled with the p3 event with T ∗PS of p2#1 .
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Removing events OIL run loop scheduler The naive OIL run loop scheduler tries to schedule
all proactive events to ensure the run-to-completion semantics. This behavior of the scheduler
could be improved by only scheduling events that are not completely accounted for.

In one of the previous scheduling strategies, successor events were scheduled, see the �rst
section of this chapter. Also, there is knowledge from transitions associated with T ∗NS . If all
transitions from a speci�c event are always associated with either T ∗S or T ∗NS it is not needed
to depend on the OIL run loop scheduler to schedule this speci�c event. The speci�c event is
either always scheduled already or there is no need for scheduling it at all. Note that this check
does not depend on the last handled event. Each unique argument combination for an event is
analyzed separately as each unique argument combination is also tried separately by the OIL run
loop scheduler. This makes it possible to remove single argument combinations from the OIL run
loop scheduler.

In Example 6.2, the p1 and p2 events are not scheduled from the OIL run loop scheduler as
can be seen by the removed try method call for both events. This is because for these events all
transitions (p1#1 and p2#1 ) are associated with either T ∗S or T ∗NS of all transitions in the OIL
speci�cation. During the code generation, the events on the labels of the transitions p3#1 and
p3#2 are analyzed separately as these transitions have unique argument combinations.

The original OIL run method looks as follows for the OIL speci�cation of Example 6.2.

Algorithm 14: Pseudocode for naive the OIL run loop scheduler

1 Function _OIL_RUN:

2 _scheduler_busy := true
3

4 while _scheduler_busy do
5 _scheduler_busy := false
6 _scheduler_busy := (TRY_EVENT_p1 () or _scheduler_busy)
7 _scheduler_busy := (TRY_EVENT_p2 () or _scheduler_busy)
8 _scheduler_busy := (TRY_EVENT_p3 (water) or _scheduler_busy)
9 _scheduler_busy := (TRY_EVENT_p3 (coffee) or _scheduler_busy)

10

The OIL run method looks as follows when the scheduling strategy is used that removes events
from the naive OIL run loop scheduler. The try method calls for the event p1 and p2 are removed.

Algorithm 15: Pseudocode for the OIL run loop scheduler with removed entries

1 Function _OIL_RUN:

2 _scheduler_busy := true
3

4 while _scheduler_busy do
5 _scheduler_busy := false
6 _scheduler_busy := (TRY_EVENT_p3 (water) or _scheduler_busy)
7 _scheduler_busy := (TRY_EVENT_p3 (coffee) or _scheduler_busy)

8
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6.3 Recursive OIL scheduler

Another strategy would be to stop using the OIL run loop scheduler for ensuring the run-to-
completion semantics and start using a recursive scheduling strategy. The big downside of the
OIL run loop scheduler is that it is a single global scheduler that can not be optimized for speci�c
parts of the OIL speci�cation. A recursive OIL scheduler aims to �x this by having a di�erent
local scheduler for every event. The basic scheduling improvement strategies can still be used
together with this recursive scheduler.

The following OIL speci�cation is used to explain the recursive OIL scheduler.

Figure 18: OIL example recursive scheduling

Example 6.3 The OIL speci�cation in Figure 18 has 3 reactive transitions labeled with the same
event. All of them are followed by a transition labeled with a proactive event r1 . There are also 3
transitions labeled with di�erent proactive events; notice that guards are placed on these transitions.
In this example, the gathering approaches �nd that p1#1 and p2#1 are associated with T ∗PS of
the transition r1#1 . Next, the p3#1 transition is associated with T ∗PS of both r1#2 and r1#3 .
The gathering approaches also �nd that both the transition p1#1 and p2#1 are associated with
T ∗NS of both r1#2 and r1#3 . The transition p3#1 is associated with T ∗NS of r1#1 . Using the
OIL run loop scheduler this OIL speci�cation could not be optimized; the OIL run loop scheduler
is discussed in Chapter 6.1.

Recursive scheduling Adding a local scheduler at the end of each handled event creates a
situation in which event-speci�c information can be used by the scheduler. In this explanation we
refer to the event for which the local scheduler is created as the preceding event.

First, we need to gather the relevant events that are needed in each local scheduler. Each
transition labeled with the preceding event can when �red result in the need for the scheduling of
di�erent proactive events to guarantee the run to completion semantics. So we need to �nd the
proactive events that are needed to guarantee the run to completion semantics for each transition
labeled with the preceding event. Whenever a transition labeled with the preceding event has a
transition associated with T ∗S one of them can be selected arbitrarily and the event on the label
of this associated transition can be used in the local scheduler. Only using this event in the
local scheduler is su�cient as it can always be produced when the transition �res. Whenever a
transition labeled with the preceding event has no transitions associated with T ∗S all the events on
the labels of the transitions associated with both T ∗PS and T ∗U are used in the local scheduler of
the preceding event. In this way transitions associated with T ∗NS are used to reduce the number
of events in the local scheduler. When no causal relations are gathered all proactive transitions
will be used as all proactive transitions are associated with T ∗U .
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The events in the local scheduler are used in such a way that only the events are tried that were
gathered for a transition that is enabled. When none of the tried events result in the production
of an event the run to completion semantics of OIL is guaranteed. This is because all events are
tried on the labels of the transitions associated with T ∗PS and T ∗U of enabled transitions. In this
case an event is not tried if all transitions labeled with this event are associated with T ∗NS of all
the enabled transitions. These events can safely be skipped because the gathering approaches
showed that none of its transitions can �re. However, it could happen that one of the tried
events successfully produces. In this case the current local scheduler is abandoned and the local
scheduler of the produced event is used to try di�erent events. This is because the abandoned
scheduler is only relevant directly after its preceding event has been handled. The local scheduler
of the produced event is now responsible for the run to completion semantics. Note that the local
scheduler is guaranteed to change when events are scheduled from transitions associated with T ∗S .

This scheduling strategy makes sure that events are never tried when all transitions labeled
with these events are associated with T ∗NS . It also implements a few optimizations that had
to be introduced separately using the OIL run loop scheduling strategy, such as tracking the last
produced event, scheduling successor events, and removing events from the OIL run loop scheduler
completely, see Chapter 4, 6.1, and 6.2.

In Algorithm 16 the generated code for the r1 event of Example 6.3 can be seen including its
local scheduler. First, note that each try method call in this local scheduler is only listed ones,
so a try method is only called at most once for each combination of enabled transitions. This
minimizes the number of tried events when multiple transitions are enabled. Next, the _triggered
variable is used to track if an event has been successfully produced. When this variable becomes
true all remaining events are not tried anymore as this local scheduler is abandoned. The short
circuit evaluation of a boolean expression is used to accomplish this behavior. Whenever an event
is successfully produced another local scheduler is used as this produced event has its own local
scheduler.

In Example 6.3 there are three transitions labeled with the event r1 . For the transition r1#1
the events p1 and p2 are used as the transition r1#1 has no transitions associated with T ∗S and
the transitions p1#1 and p2#1 are associated with T ∗PS of r1#1 . For both the transitions r1#2
and r1#3 the event p3 is used as both transitions have no transitions associated with T ∗S and
associate p3#1 with T ∗PS . In Algorithm 16 try method calls of the three used events are visible.
These are only called when the appropriate transition is enabled.

After the transition r1#2 has �red the state ′s5 ′ becomes active. The r1#2 transition has
no transitions associated with T ∗S . So if we would have used the OIL run loop scheduler we would
have to fall back to it �lled with the try methods for the events p1 , p2 and p3 . However, we are
using the recursive scheduler so we only need to schedule the events used for the transition r1#2 ;
this is only the event p3 . Now there are two options the p3 event can be produced or not. When
the event can not be produced the run to completion semantics are guaranteed as all transitions
on the labels of the remaining proactive events are associated with T ∗NS of r1#1 and can therefore
never �re and result in the production of an event. The other option is that the p3 event can be
produced; now the local scheduler of r1 is abandoned and replaced by the local scheduler of p3 .
This local scheduler has no events as no transitions are associated with either T ∗S , T

∗
PS or T ∗U of

p3#1 .
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Algorithm 16: Pseudocode for a reactive event with recursive scheduling

1 Function r1:

2 _t_enabled1 := state = 1
3 _t_enabled2 := state = 3
4 _t_enabled3 := state = 5
5

6 /* Checking precondition r1 */

7 ...
8 /* Update instance variables r1 */

9 ...
10 /* Checking postcondition r1 */

11 ...
12 /* Handled event r1 */

13

14 _triggered := false
15 _triggered := (_triggered or (_t_enabled1 and TRY_EVENT_P1 ()))
16 _triggered := (_triggered or (_t_enabled1 and TRY_EVENT_P2 ()))
17 (_triggered or ((_t_enabled2 or _t_enabled3 ) and TRY_EVENT_P3 ()))

6.4 Prioritizing events

When either the OIL run loop scheduler or recursive OIL scheduler is generated each try method
call is placed in a speci�c scheduling order, in Algorithm 16 the scheduling order p1 , p2 followed
by p3 is visible. This scheduling order determines which try method is called �rst when multiple
have to be called to ensure the run-to-completion semantics.

To aid the explanation of how the scheduling order can be generated the following example is
used.

Figure 19: OIL example recursive scheduling

Example 6.4 For this example we focus on the causal relations from the transitions r1#1 and
r1#2 . The transitions p1#1 and p2#1 are associated with T ∗PS of r1#1 . Next, the p1#2 and
p3#1 transitions are associated with T ∗PS of r1#2 . The transition p4#1 is associated with T ∗U
of r1#1 . In this example the transition are de�ned in the following order in the OIL speci�cation
p4#1, p3#1, p2#1, p1#1, p1#2, r1#1 and r1#2.
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The causal relation gathering approaches gathered transitions associated with T ∗S , T
∗
PS , and T

∗
U .

Each of these functions should have its own priority for creating the scheduling order. Transitions
associated with T ∗S can always �re after the preceding transition so events on their labels should
have a high priority. The gathering approaches could not determine if transitions associated
with T ∗PS can always be �red after the preceding transition. However, the gathering approaches
determined that these transitions are more likely to �re than transitions associated with T ∗U .
Events on their labels therefore deserve priority over events on the labels of transitions associated
with T ∗U . It is possible to create an event order using this prioritization for each transition.

The event orders for the OIL run loop scheduler are �rst �lled with the transitions associated
with T ∗S followed by the transition associated with T ∗PS , followed by the transitions associated with
T ∗U . The recursive OIL run loop scheduler will also use the same prioritization but note that only
one event will be in the event order if the preceding transition has a transition associated with
T ∗S , see Chapter 6.3.

These event orders have to be combined for all transitions to one scheduling order for the OIL
run loop scheduler. For the recursive OIL scheduler it is only needed to combine the event orders
from transitions labeled with the same event. During testing these scheduling orders are only
generated for the recursive OIL scheduler as the scheduling orders retain more meaning when they
are the result of fewer combined event orders.

As a result of the found causal relations the event order of r1#1 looks as follows; p1 , p2
followed by p4 as both p1#1 and p2#1 are associated with T ∗PS of r1#1 and p4#1 is associated
with T ∗U of r1#1 . The event order for r1#2 is p1 followed by p3 as both are associated with
T ∗PS of r1#2 . These two event orders have to be combined to get one scheduling order that can
be used for ordering the events in the recursive OIL scheduler.

Keep order from OIL speci�cation This approach makes users of the OIL language respon-
sible for determining an ideal scheduling order. The original OIL speci�cation had transitions
de�ned in a speci�c order. The events on the transitions in this speci�cation ordering can be used
to order the scheduling order. Events are only added to the scheduling order if they are located
in one of the combined event orders.

So the scheduling order looks as follows; p4 , p3 , p2 and p1 as it was stated that the transitions
are de�ned in the speci�cation order p4#1, p3#1, p2#1, p1#1, p1#2, r1#1 and r1#2.

Round-robin The next prioritization strategy that is considered is the round-robin prioritiza-
tion strategy. To construct the scheduling order it �rst takes the �rst event of the event order
of the �rst transition in the speci�cation order. Afterward, it takes the �rst event of the event
order of the second transition in the speci�cation order. When the �rst event of each event order
is taken the second event of the event orders is taken and so on. Each event is only needed once
so whenever an entry already exists in the scheduling order it is not appended.

So the events in the scheduling order of r1 are acquired as follows. First, the event p1 is taken
as it is the �rst event in the event order of the �rst transition in the speci�cation order (r1#1 ).
Next, the event p1 is taken as it is the �rst event of the event order of the second transition in
the speci�cation order (r1#2 ). Note that this event is already taken so it is not appended to the
scheduling order. Now the event p2 is taken as it is the second event in the event order of the �rst
transition in the speci�cation order. Followed by p3 as it is the second event in the event order of
the second transition in the speci�cation order. The scheduling order �nishes with the event p4
as it is the third event in the event order of the �rst transition in the speci�cation order. So the
events in the scheduling order of r1 are ordered as follows; p1 , p2 , p3 followed by p4 .
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Calculate score Another prioritization strategy is to calculate a score for each event from the
event orders. The score should take into account that an event is on the label of transitions
associated with di�erent combinations of T ∗S , T

∗
PS and T ∗U .

This is accomplished with the help of the following formula for determining the score of an
event in a single event order. The position of an event in the event order is referred to as the index
and starts counting from one for this formula. The scores are added up for all the events in the
event orders that are combined. Afterward, the scores are ordered from high to low to acquire a
single scheduling order.

1/(EventsInEventOrder ∗ IndexInEventOrder)

Using this formula priority is given to three aspects of the combined event orders. First, events
in short event orders are given priority. These schedules are the result of multiple transitions
associated with T ∗NS or a transition associated with T ∗S in the case of the recursive scheduler.
These causal relations guarantee that speci�c transitions can always �re or not and should in�uence
the score. Next, the index in the event order in�uences the priority. The events resulting from
transitions associated with T ∗S are placed earlier in the event orders and by using the index in the
event order priority is introduced to these events. This index is also used to introduce priority
for events on the labels of transitions associated with T ∗PS over events on the labels of transitions
associated with T ∗U . At last, whenever an event occurs in multiple event orders its priority increases.
This is relevant as multiple transitions can be enabled for which causal relations were found. If a
transition is located in multiple event orders it is more likely that one of the enabled transitions
results in the production of the event so its priority should increase.

The in�uence of these three aspects can be scaled individually in the calculated score by
introducing a factor in front of the variable EventsInEventOrder or IndexInEventOrder or by
introducing a factor after the scores of the event orders are summed up. This last factor should
always depend on the number of times an event is located in one of the combined event orders.
Some tests were conducted but in the end no factors were introduced as this gave the best results.

So looking at the example each event gets the following score.

Event Score for r1#1 Score for r1#2 Total score
p1 1/(3*1) 1/(2*1) 5/6
p2 0 1/(2*2) 1/4
p3 1/(3*2) 0 1/6
p4 1/(3*3) 0 1/9

Table 1: Calculated scores for prioritization

So when these scores are ordered the scheduling order becomes; p1 , p2 , p3 followed by p4 .
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7 Altering OIL speci�cations

In the previous chapters, a few strategies were discussed to improve the scheduling of OIL speci-
�cations. This chapter focuses on altering OIL speci�cations to make them easier to schedule.

7.1 Mealy machine

A mealy machine can be transformed into an OIL speci�cation. These OIL speci�cations are set
up in such a way that each reactive event is always followed by a proactive event. This set of OIL
speci�cations does also not contain any proactive events that are not preceded by a reactive event.
The transitions of proactive events are connected directly to the transitions from the reactive event
via a single state. These OIL speci�cations also only have one region and the events are located
in at most one concern. Next, transitions of these events do not have a guard.

An example of such an OIL speci�cation can be found below.

Figure 20: OIL example mealy machine

Note that the states connecting reactive and proactive transition indicated with the smaller
ovals are all unstable areas as we have seen in Chapter 5.6. The syntax analysis looking for implied
transitions �nds all causal relations correctly for the OIL speci�cations transformed from a mealy
machine. This is because there is at most one concern and no guards so there are no transitions
associated with T syntax

PS . This speci�cation also only has one region resulting in the syntax analysis
on implied transition only having to look for the connecting state between transitions. This results
in the correct detection of transitions associated with both T syntax

S and T syntax
NS which results in

the scheduling being perfect; the number of tried events is equal to the number of produced events.
Canon Production Printing B.V. already uses tooling that generates these mealy machines.

Testing with OIL speci�cations transformed from these mealy machines resulted in perfect schedul-
ing.
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7.2 LTS

OIL speci�cations can contain guards, assignments, and synchronization between concerns that
make analysis hard. It is possible to remove these by generating an LTS from an OIL speci�cation.
In this case, every possible LTS state of the OIL speci�cation is de�ned together with all LTS
transitions between them. The OIL tooling is already capable of generating mCRL2[2] speci�-
cations from OIL speci�cations. The mCRL2 tooling can linearise these mCRL2 speci�cations
and generate an LTS from them. So a transformation strategy could be introduced to transform
these LTSs back to OIL speci�cations. This can be done by creating a single region and placing
OIL states for each LTS state in this region. Next, all LTS transitions can be used to create
OIL transitions connecting the OIL states. These OIL transitions are all labeled with the same
concern. This transformation strategy would make the OIL speci�cation simpler to analyze as
guards, assignments, and multiple concerns are removed and all arguments are de�ned.

Below you can see an example of an OIL speci�cation that is hard to schedule as a result of
the assignments and guards that are used. This speci�cation is also hard to schedule as there can
be multiple regions active at the same time.

Figure 21: OIL example hard to schedule
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The previous OIL speci�cation looks as follows after it has been transformed to an LTS and
this LTS is used to generate a new OIL speci�cation.

Figure 22: OIL example created from LTS

Note that this generated OIL speci�cation does not have any guards, assignments, has only
one region, has at most one concern, and all arguments are de�ned.

The syntax analysis on implied transitions can do a perfect job on these generated OIL speci-
�cations. This is because there is at most one concern and no guards so there are no transitions
associated with T syntax

PS . The speci�cation also only has one region resulting in the syntax analysis
on implied transition only having to look for the connecting state between transitions. This results
in the correct detection of transitions associated with both T syntax

S and T syntax
NS which results in

the scheduling always being perfect; the number of tried events is equal to the number of pro-
duced event. However, there is a big downside to this transformation strategy; the generated OIL
speci�cations can become very big.

Below you can see a list of the used test OIL speci�cations with some of their properties. Vi-
sualizations of these speci�cations can be found in Appendix A.4. The EPC case is not visualized.

� Co�ee: An OIL speci�cation that uses a few instance variables to keep track of properties
of a co�ee machine. In this OIL speci�cation, it is possible to make a selection of one of
three consumables; water, co�ee, and espresso. These consumables each require di�erent
amounts of water and beans which can always be re�lled. The cost of each consumable is
also di�erent and can only be paid using 50 cent or 1 euro coins. The OIL speci�cation will
always return the correct amount of change if too much is paid.

� Game: An OIL speci�cation with many di�erent proactive events used over di�erent con-
cerns. In this OIL speci�cation, a game is modeled in which a character can be in a few
di�erent states. The character can be laying, standing, crouching, and sitting. Only when
the character is standing it can also start walking or running and it is possible to eat but
this is only the case when the character is not walking or running.

� EPC: An OIL speci�cation that models a software component used in production.

These test OIL speci�cations have the following properties.

Speci�cation #OIL Areas #OIL Transitions #OIL instance variables
Co�ee 14 22 8
Game 21 24 5
EPC 26 22 8

Table 2: OIL speci�cations information
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In the next table properties of the LTSs generated by mCRL2 can be seen for these test OIL
speci�cations. To acquire the LTS speci�cations weak trace equivalence was used to reduce the
number of states and transitions.

Speci�cation #LTS States #LTS Transitions LTS generation time [s]
Co�ee 2564 5729 2.745
Game 10 17 0.005
EPC 1172 3201 2.105

Table 3: LTSs information

The Co�ee and EPC speci�cations have a lot of states and transitions when transformed to
an LTS compared to the number of states and transitions that the original OIL speci�cations
had. This results in very big OIL speci�cations after the LTSs are transformed back to OIL
speci�cations; the co�ee example has 8331 lines that take around four seconds to generate. The
Spoofax tooling struggles with these big �le sizes and it takes around seven minutes to generate
code for it.

Whenever an event is handled the generated code starts by determining which transitions are
enabled labeled with this event. So, the number of computations does increase when the number
of transitions increases labeled with an event. In the co�ee example, there is an event that is on
the label of 905 transitions which results in 905 checks every time this event is handled.

This transformation strategy has the bene�t that the proposed gathering approaches collect
enough causal relations to do the scheduling perfectly. During testing, it was however only really
useful for speci�c OIL speci�cations like Game, which has a minimal number of states and transi-
tions in its LTS. So to generalize this transformation strategy is useful for speci�cations that have
less than 50 transitions in the generated OIL speci�cation. Using this transformation strategy on
bigger speci�cations will quickly result in very ine�ective code.

There are however code structures for generating faster code that can be generated from OIL
speci�cations having one region, no guards, have no assignment, and at most one concern. These
properties ensure that only one transition can be �red at a time and that if the source area of a
transition is active the transition is always enabled. A code structure called the state functions
struct pattern could be used in this case to be able to generate e�ective code even in the case when
an OIL speci�cation has a lot of transitions. This code structure and some additional templates
which may be helpful for generating code are discussed in [12][13][14]. However, no implementation
was created for any of these alternate code structures as big rewrites of the code generation process
were needed.
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8 Veri�cation

Three veri�cation approaches are used to verify parts of the additions to the code generator. First,
the formal de�nitions are used to prove all lemmas that were stated for the di�erent causal relation
gathering approaches, see Appendix A.3. Proving that the causal relation gathering approaches
always collect transitions associated with TS and TNS gives additional con�dence in the used
causal relation gathering approaches.

For each implemented gathering approach postconditions are always checked to verify part of
the implementation. These checks make sure that the gathered transitions associated with T ∗S ,
T ∗NS , T

∗
PS and T ∗U partition all the proactive transitions correctly.

Next, a tool called JTorX[15] is used to verify the generated code for a selection of OIL
speci�cations.

8.1 JTorX

Mark Frenken[6] was responsible for creating the initial version of the code generator for the OIL
tooling[6]. Here a tool was used called JTorX to verify parts of the code generator. This tool
uses an LTS of a model and an executable that implements this model to do the veri�cation. By
inputting allowed events from the LTS and comparing outgoing events to the LTS JTorX tests
that the executable has the same behavior as the LTS. This veri�cation however does not give
guarantees, it only inputs a �nite number of events and compares the output. It does not prove
that the LTS and the executable have exactly the same behavior. This veri�cation approach is
reused to see if the altered parts in the code generator still function correctly. The LTS of an OIL
speci�cation can be acquired by generating an mCRL2 speci�cation and using the mCRL2 tooling
to generate an LTS from it.

The scheduler decides which proactive event is scheduled so not all states of the LTS can always
be reached. This can happen when for example a speci�c proactive event has a higher priority
over another when both may be produced. Therefore the coverage detection of JTorX can not
always detect if all possible behavior of the executable has been explored. It is however certainly
possible to let it run for a while and see how many states it can verify. Three runs are used in
the case that the coverage detection of JTorX could not detect that all behavior was covered in
80,000 execution steps.

The code generator is veri�ed for three test OIL speci�cations; co�ee, game, and EPC. A
description of each speci�cation can be found in Chapter 7.2. Visualizations of these speci�cations
can be found in Appendix A.4. The EPC case is not visualized. The coverage of JTorX for these
test OIL speci�cations is listed next in Table 4.

Test #Exec steps #LTS states #Cov states #LTS transitions #Cov transitions
Co�ee (3x) 80000 2564 1376 5729 2697
Game 32 10 10 17 17
EPC (3x) 80000 1172 750 3201 2231

Table 4: Coverage information
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Only the transitions associated with TS and TNS do in�uence which events are tried by the
scheduler. There are however only a few ways that these causal relations result in di�erent events
being scheduled by the scheduling strategies.

� All transitions from an event are always associated with either TS or TNS .

� All transitions from an event are not always associated with either TS or TNS .

� A transition in an event has a transition associated with TS .

� A transition in an event has no transitions associated with TS but has a transition associated
with TNS .

� A transition in an event has all proactive transitions associated with TNS .

� A transition in an event has no transitions associated with either TS or TNS .

All these cases are covered by the three test OIL speci�cations tested with JTorX. The ver-
i�cation is repeated for both the recursive OIL scheduler and OIL run loop scheduler with all
gathering approaches enabled. See Chapter 6 for more information on the recursive OIL scheduler
and the OIL run loop scheduler.

The JTorX tooling did not �nd any behavior in the executables that was not allowed by the
LTSs. However, this veri�cation approach gives no guarantees. First, it is possible that the model-
based testing is terminated too soon; it could be possible that the executables have wrong behavior
after 100,000 execution steps. Next, the three selected test cases do not cover all possible behavior
that can be speci�ed with OIL. The generated code for the three OIL speci�cations can be correct
but this does not say anything about OIL speci�cations that use behavior that is not covered by
these speci�cations.

While the test OIL speci�cations did not cover all possible behavior that can be speci�ed
using OIL they did cover all possible scheduling alternations that can be introduced by the new
scheduling strategies. So because of these tests and the proves delivered for the causal relations it
is currently believed that the altered code generator always produces the correct code.
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9 Results

In this chapter, the results of a few test cases with di�erent schedulers are discussed. The number of
tried events is compared to the total number of produced events. Improvements would preferably
avoid tries that have no possibility of producing. For a perfect scheduler, this means that the
number of tried events is equal to the number of produced events.

A few properties of each test are listed in tables throughout this chapter. In the �rst column,
the name of the test is listed indicating how the code was generated. In the following column, the
speci�c trace is listed, this is either a handpicked or randomly generated trace, see Chapter 9.1.
Next, the number of tried events is listed, these are the number of times a try method is called.
The relative improvement is listed after each number relative to the naive scheduler. The number
of the produced events is listed in the next column, these numbers do only change when a di�erent
trace or OIL speci�cation is used. As con�uent proactivity ensures that for valid OIL speci�cations
each scheduling decision always eventually results in the production of the same proactive events.
The last two columns list the time it takes to execute the generated code and the time it takes to
generate the code itself. The execution times are acquired by running the test cases 10,000 times
and averaging the measured times. Measured execution times smaller than 0.0001 seconds are still
not very accurate as other programs running at the same time de�nitely in�uenced the results.
The relative improvement of the execution times is also listed after each number relative to the
execution time from the generated code using the naive scheduler. All tables with results can be
found in Appendix A.1. Interesting parts of these tables will be copied throughout this chapter.

9.1 Selected test traces

All the optimizations aim to reduce the number of tries that are needed to produce the proactive
events. A few test OIL speci�cations are used to see the e�ectiveness of these optimizations.
These are the OIL speci�cations Co�ee, Game, and EPC. A description of each speci�cation can
be found in Chapter 7.2. Visualizations of these speci�cations can be found in Appendix A.4. The
EPC case is not visualized.

A speci�c test case has a speci�c trace of events through these OIL speci�cations. These can
be selected manually but may result in biased results. Therefore the choice is made to have two
test traces per tested OIL speci�cation; the �rst is a manually selected trace that mirrors normal
usage and the second is a selection of random traces.

The used random traces are constructed by using 80 di�erent traces that are looped through
the OIL speci�cation, each event in these traces is selected randomly from the enabled events. In
Table 5, an overview can be seen of the number of events in each test case. With a few small tests
it was con�rmed that all these traces covered all transitions from the test OIL speci�cations; each
OIL transition is �red at least once during one of the traces.

Test case #Reactive events #Proactive events #Total events
Co�ee handpicked 15 9 24
Co�ee random 730 240 970
Game handpicked 8 22 30
Game random 638 890 1528
EPC handpicked 14 28 42
EPC random 1669 2423 4092

Table 5: Amount events in selected traces

It is important to understand that these test OIL speci�cations do not cover all behavior
that can be speci�ed using OIL. However, they cover real-life examples and behavior for which
the gathering approaches struggle as these speci�cations use synchronization between concerns,
guards, and assignments. So conclusions drawn from these cases are de�nitely insightful but take
into account that these conclusions may not be true for all OIL speci�cations.
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9.2 Di�erent gathering approaches and scheduling strategies

First, di�erent combinations of causal relation gathering approaches are enabled together with
a �xed set of scheduling strategies. The used schedulers are the OIL run loop scheduler with
all its proposed improvements and the recursive OIL scheduler both with round-robin priority.
The name of the test case indicates which gathering approaches are used. No analysis means
no gathering approach is used for approximating the causal relations and the code is generated
without these relations. Note that in the cases where the concern analysis is disabled the restriction
to only analyze transitions with events from at most one concern is used. The basic scheduling
improvement strategies are always applied except for the test cases using the original scheduler.
Next, no compiler optimization is enabled during the compilation of the generated code using the
-O0 �ag.

The results of all the test cases can be found in Appendix A.1.1 for the OIL run loop scheduler
and in Appendix A.1.2 for the recursive OIL scheduler. In this section, the results of the EPC
test speci�cation will be used to discuss the di�erent gathering approaches.

No analysis First, no causal relation gathering approaches are used during the generation of
the code.

Test Case #Tried #Prod Exec time[s] Gen time[s]
Naive Handpicked 413 28 < 0.0001 0.695
No analysis Handpicked 315 (-24%) 28 < 0.0001 0.766
Naive Random 42125 2423 0.0064 0.695
No analysis Random 39449 (-6%) 2423 0.0055 (-14%) 0.766

Table 6: EPC result overview OIL run loop scheduler

Test Case #Tried #Prod Exec time[s] Gen time[s]
Naive Handpicked 413 28 < 0.0001 0.695
No analysis Handpicked 413 (-0%) 28 < 0.0001 0.760
Naive Random 42125 2423 0.0064 0.695
No analysis Random 42125 (-0%) 2423 0.0064 (-0%) 0.760

Table 7: EPC result overview recursive OIL scheduler

The basic scheduling improvement strategies described in Chapter 4 result in an improvement
that is visible during the test cases using the OIL run loop scheduler for the EPC case. The OIL
run loop scheduler is still always used, but fewer entries are added to this scheduler.

Note that the OIL run loop scheduler without analysis performs better for all cases in compar-
ison to the recursive OIL scheduler without analysis. This is mainly the result of another tactic
that is used to iterate through the scheduling orders. The OIL run loop scheduler goes through
each event once before starting at the start again of its scheduling order. The recursive OIL
scheduler generated without any causal relations resets to the start of the scheduling order any
time an event is produced. Both are correct but for the test speci�cations, it is more bene�cial to
go through all events before starting over.

Good The basic scheduling improvement strategies reduce the number of tried events needed
for scheduling using the OIL run loop scheduler; -24%. It does this without increasing the time it
takes for generating the code.

Bad N/a
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Syntax analysis on implied transitions Next, syntax analysis on implied transitions is used
to generate code for the test cases, see Chapter 5.3 for more information on the syntax analysis
on implied transitions.

Test Case #Tried #Prod Exec time[s] Gen time[s]
Naive Handpicked 413 28 < 0.0001 0.695
Syntax Handpicked 148 (-64%) 28 < 0.0001 0.792
Naive Random 42125 2423 0.0064 0.695
Syntax Random 14505 (-65%) 2423 0.0024 (-62%) 0.792

Table 8: EPC result overview OIL run loop scheduler

Test Case #Tried #Prod Exec time[s] Gen time[s]
Naive Handpicked 413 28 < 0.0001 0.695
Syntax Handpicked 122 (-70%) 28 < 0.0001 0.748
Naive Random 42125 2423 0.0064 0.695
Syntax Random 11454 (-73%) 2423 0.0021 (-67%) 0.748

Table 9: EPC result overview recursive OIL scheduler

The OIL speci�cation EPC still has all proactive events in the OIL run loop scheduler while
not all of them are necessary, the syntax analysis on implied transitions unfortunately can not
detect su�cient causal relations to remove any of them. In a few places, the syntax analysis
on implied transitions found enough causal relations to be sure that successor events could be
scheduled directly. In some other places the OIL run loop scheduler was not needed anymore and
the call to the OIL run loop scheduler was removed.

Using only syntax analysis on implied transitions is also the moment the recursive OIL scheduler
starts to shine. It can already make bigger improvements with the same number of causal relations
available.

Good The number of tried events is reduced further in comparison to using no analysis to -70%
and -73% for the recursive OIL scheduler. The syntax analysis on implied transitions does this
without noticeably slowing down the code generation; the results show a very similar generation
time of around 0.7 seconds.

Bad N/a
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SMT analysis on implied transitions Next, the SMT analysis on implied transitions is taken
a closer look at, see Chapter 5.4 for more information on the SMT analysis on implied transitions.

Test Case #Tried #Prod Exec time[s] Gen time[s]
Naive Handpicked 413 28 < 0.0001 0.695
SMT Handpicked 148 (-64%) 28 < 0.0001 4.533
Syntax, SMT, Concern Handpicked 148 (-64%) 28 < 0.0001 2.446
Naive Random 42125 2423 0.0064 0.695
SMT Random 14505 (-65%) 2423 0.0024 (-62%) 4.533
Syntax, SMT, Concern Random 14505 (-65%) 2423 0.0024 (-62%) 2.446

Table 10: EPC result overview OIL run loop scheduler

Test Case #Tried #Prod Exec time[s] Gen time[s]
Naive Handpicked 413 28 < 0.0001 0.695
SMT Handpicked 122 (-70%) 28 < 0.0001 4.611
Syntax, SMT, Concern Handpicked 122 (-70%) 28 < 0.0001 2.601
Naive Random 42125 2423 0.0064 0.695
SMT Random 11454 (-73%) 2423 0.0021 (-67%) 4.611
Syntax, SMT, Concern Random 11454 (-73%) 2423 0.0021 (-67%) 2.601

Table 11: EPC result overview recursive OIL scheduler

While the SMT analysis on implied transitions does �nd more causal relations, it does not
result in changes in the results. The SMT analysis on implied transitions is mostly better when
OIL speci�cations use data, the tested OIL speci�cations however to do not really use a lot of
data. So in the end similar results to the syntax analysis on implied transitions are achieved.

When only the SMT analysis on implied transitions is enabled the code generation process
takes signi�cantly longer. Instead of a generation time of around 0.7 seconds, a single generation
time could now take up to 4.6 seconds. This should not be a problem but is certainly something
to take into account when selecting the gathering approaches during the generation of code. The
combination of the syntax and SMT analysis on implied transitions reduces the time needed to
analyze an OIL speci�cation while still �nding all the same causal relations. This is because the
SMT analysis on implied transitions is only used on transitions for which the syntax analysis on
implied transitions could not �nd any causal relations.

Good The SMT analysis on implied transitions can interpret more complex transitions as
expressions can be taken into account. However, this is not really visible in the results as the SMT
analysis on implied transitions is only able to match the results of the syntax analysis on implied
transitions.

Bad The SMT analysis on implied transitions takes signi�cantly longer. The results show
that the generation time becomes as long as 4.6 seconds when only the SMT analysis on implied
transitions is used.
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Concern analysis The concern analysis is discussed next, more information for the concern
analysis can be found in Chapter 5.5.

Test Case #Tried #Prod Exec time[s] Gen time[s]
Syntax Handpicked 148 (-64%) 28 < 0.0001 0.792
SMT Handpicked 148 (-64%) 28 < 0.0001 4.533
Syntax, Concern Handpicked 148 (-64%) 28 < 0.0001 0.744
Syntax, SMT, Concern Handpicked 148 (-64%) 28 < 0.0001 2.446
Syntax Random 14505 (-65%) 2423 0.0024 (-62%) 0.792
SMT Random 14505 (-65%) 2423 0.0024 (-62%) 4.533
Syntax, Concern Random 14505 (-65%) 2423 0.0024 (-62%) 0.744
Syntax, SMT, Concern Random 14505 (-65%) 2423 0.0024 (-62%) 2.446

Table 12: EPC result overview OIL run loop scheduler

Test Case #Tried #Prod Exec time[s] Gen time[s]
Syntax Handpicked 122 (-70%) 28 < 0.0001 0.748
SMT Handpicked 122 (-70%) 28 < 0.0001 4.611
Syntax, Concern Handpicked 122 (-70%) 28 < 0.0001 0.712
Syntax, SMT, Concern Handpicked 122 (-70%) 28 < 0.0001 2.601
Syntax Random 11454 (-73%) 2423 0.0021 (-67%) 0.748
SMT Random 11454 (-73%) 2423 0.0021 (-67%) 0.611
Syntax, Concern Random 11454 (-73%) 2423 0.0021 (-67%) 0.712
Syntax, SMT, Concern Random 11454 (-73%) 2423 0.0021 (-67%) 2.601

Table 13: EPC result overview recursive OIL scheduler

The concern analysis does not increase the code generation time in any signi�cant way. It
however does �nd some additional causal relations in for example the EPC speci�cation. Unfor-
tunately, this does not result in any improvements in the achieved results. The additional causal
relations do not enable any additional scheduling strategies.

Good The concern analysis is fast and does �nd additional causal relations.
Bad In the tested speci�cations no improvements were acquired when the concern analysis

was enabled.
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Unstable area analysis The following table shows the results for the unstable area analysis,
more information from the unstable analysis can be found in5.6.

Test Case #Tried #Prod Exec time[s] Gen time[s]
Syntax Handpicked 148 (-64%) 28 < 0.0001 0.792
Syntax, SMT, Concern Handpicked 148 (-64%) 28 < 0.0001 2.446
Syntax, Unstable Handpicked 107 (-74%) 28 < 0.0001 0.610
All Handpicked 107 (-74%) 28 < 0.0001 2.328
Syntax Random 14505 (-65%) 2423 0.0024 (-62%) 0.792
Syntax, SMT, Concern Random 14505 (-65%) 2423 0.0024 (-62%) 2.446
Syntax, Unstable Random 10564 (-74%) 2423 0.0020 (-69%) 0.610
All Random 10564 (-74%) 2423 0.0020 (-69%) 2.328

Table 14: EPC result overview OIL run loop scheduler

Test Case #Tried #Prod Exec time[s] Gen time[s]
Syntax Handpicked 122 (-70%) 28 < 0.0001 0.748
Syntax, SMT, Concern Handpicked 122 (-70%) 28 < 0.0001 2.601
Syntax, Unstable Handpicked 96 (-76%) 28 < 0.0001 0.791
All Handpicked 96 (-76%) 28 < 0.0001 2.567
Syntax Random 11454 (-73%) 2423 0.0021 (-67%) 0.748
Syntax, SMT, Concern Random 11454 (-73%) 2423 0.0021 (-67%) 2.601
Syntax, Unstable Random 8937 (-79%) 2423 0.0019 (-70%) 0.791
All Random 8937 (-79%) 2423 0.0019 (-70%) 2.567

Table 15: EPC result overview recursive OIL scheduler

The unstable area analysis does not increase the code generation time in any meaningful way.
It however does increase the number of found causal relations which also reduces the number of
tries. The recursive OIL scheduler still keeps its edge when these additional causal relations are
supplied.

Good The unstable area analysis is fast and does �nd additional causal relations. Looking at
the results the number of tried events for the EPC speci�cation can be reduced with -76 and -79%
for the recursive scheduler.

Bad N/a

OIL run loop scheduler The OIL run loop scheduler seems to be the better choice in com-
parison to the recursive OIL scheduler when no causal relations are found. As stated earlier this
is mainly the result of a di�erent tactic that is used to iterate through the scheduling orders.

Good Achieves better results when no causal relations are gathered.
Bad N/a

Recursive OIL scheduler The recursive OIL scheduler is the more e�ective choice in compar-
ison to the OIL run loop scheduler when causal relations are gathered. In every tested case where
causal relations are gathered less try event method calls are needed to do the scheduling whenever
the recursive OIL scheduler is used.

Good Achieves better results when causal relations are gathered.
Bad N/a
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9.3 Di�erent prioritization

In this chapter, the di�erent prioritization strategies discussed in Chapter 6.4 are tested. These
test cases are all conducted on the recursive OIL scheduler with all causal relation gathering
approaches enabled. Next, no compiler optimization is enabled during the compilation of the
generated code using the -O0 �ag. The name of the test case indicates exactly which priority
strategy is used. The results for the Co�ee speci�cation look as follows. See Appendix A.1.3 for
all the tables with results.

Test Case #Tried #Prod Exec time[s] Gen time[s]
Naive Handpicked 127 9 < 0.0001 0.710
Keep order Handpicked 40 (-69%) 9 < 0.0001 2.746
Round-robin Handpicked 58 (-54% 9 < 0.0001 2.615
Calculate score Handpicked 40 (-69%) 9 < 0.0001 2.404
Naive Random 5726 240 0.0034 0.710
Keep order Random 2082 (-64%) 240 0.0009 (-74%) 2.746
Round-robin Random 2892 (-49%) 240 0.0013 (-62%) 2.615
Calculate score Random 2082 (-64%) 240 0.0009 (-74%) 2.404

Table 16: Co�ee result overview prioritizing events

Keep order from OIL speci�cation The keep order prioritization strategy can achieve the
best results together with the prioritization strategy that calculated a score. However, this result is
a bit arti�cial as the users of the OIL language are responsible for determining an ideal scheduling
order. The results can easily be ruined by altering the order of transitions in the original OIL
speci�cation.

Good The prioritization can give good results. It achieves a reduction of tried events of -69%
and -64% with the gathered causal relations.

Bad The users of the OIL language are responsible for determining an ideal scheduling or-
der. The results can easily be ruined by changing the order of transitions in the original OIL
speci�cation.

Round-robin Round-robin seems like the worst prioritization strategy. In most cases, it seems
that the scheduling order is not really important for the number of tries. This is visible in the table
for both the Game and EPC case as nearly everywhere the same results are acquired with all the
three prioritization strategies, see Appendix A.1.3. However, there are di�erences visible in the
Co�ee OIL speci�cation; in this speci�cation the round-robin prioritization strategy consistently
gives the worst results. This is because the round-robin prioritization strategy results in transitions
having a higher priority than they do deserve. Events that are listed in the �rst event order that
is combined have a higher priority using this prioritization strategy. The order of combined event
orders has no meaning, it should therefore not have any in�uence.

Good N/a
Bad Gives priority to events that do not deserve it. This results in only a reduction of -54%

and -49% of tried events; the lowest reduction in tried events in these test cases.

Calculate score This is the best prioritization strategy that is tested to reduce the number of
tries. It also has the bene�t that it does not depend on the order of transitions in the original OIL
speci�cation. There do however exist edge cases where multiple transitions are enabled in which
an event on the label of a transition associated with T ∗PS is tried before the event on the label of
a transition associated with TS .

Good Gives good consistent results. It achieves a reduction of tried events of -69% and -64%
with the gathered causal relations.

Bad There do exist edge cases where multiple transitions �re at once in which a non-ideal
scheduling order is used.
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9.4 Di�erent compiler optimizations

In this chapter, the results of a few test cases are listed that focus on the impact of the compiler
optimizations. It could be possible that optimizations made to the generated code could already
be introduced by the compiler. Therefore the generated code is also compiled using the O2 �ag.
The O2 �ag is chosen because its the highest optimization level of the compiler that does not
disregard the size of the generated code like the O3 �ag, which might result in increased code size.
By comparing the results from the O0 and O2 �ags the impact of the compiler can be seen. The
test cases for the OIL run loop scheduler and the recursive OIL scheduler are both used with all
gathering approaches enabled. The name of the test indicates which scheduler is used together
with the O level that is used for compiling the code. The tables with all results for these test cases
can be found in Appendix A.1.4. The table with the results from the Game speci�cation can be
found below.

Test Case #Tried #Prod Exec time[s] Gen time[s]
Naive O0 Random 8518 890 0.0026 0.634
Naive O2 Random 8518 890 0.0007 (-73%) 0.634
Improved run loop O0 Random 2166 (-75%) 890 0.0008 (-69%) 3.436
Improved run loop O2 Random 2166 (-75%) 890 0.0002 (-92%) 3.436
Recursive O0 Random 2022 (-76%) 890 0.0008 (-69%) 2.844
Recursive O2 Random 2022 (-76%) 890 0.0002 (-92%) 2.844

Table 17: Game result overview compiler optimizations

First, note that the number of tries is not altered when di�erent optimization levels are chosen.
It is also visible that in all test cases a lot of performance is gained when the O2 optimization
level is used; for example -73% in execution time for the original generated code. Additionally,
this performance gain seems to be independent of the performance gains that were accomplished
with the scheduling strategies. It may be possible that di�erent optimizations are used but the
O2 level consistently improves the execution time with a factor of around 4.

9.5 Overall remarks

In the end, all the gathering approaches can �nd a lot of causal relations in the OIL speci�cations,
it seems that the recursive OIL scheduler is most e�ective in translating these causal relations into
generated code compared to the OIL run loop scheduler. It is however important that prioritization
strategies are used during scheduling without using the order of transitions in the original OIL
speci�cation as these have no meaning. The further usage of the round-robin and keep order
prioritization strategy is discouraged as calculating a score for prioritization gives the best results.

Comparing the recursive OIL scheduler with all gathering approaches enabled to the naive
scheduler gives an idea of the biggest improvements that could be achieved. The number of
tried events is reduced between 64% and 81%, both numbers can be found in Appendix A.1.3.
This reduction in the number of tried events also signi�cantly in�uences the execution time;
improvements in execution speed varied between a factor of three and four. In the Appendix A.2
a few charts can be found that plot the execution time as the number of tries changes for each
tested OIL speci�cation. These graphs show that the execution times de�nitely get faster when
fewer tries have to be computed. As stated earlier the measurements for the execution times
are however not really accurate. In any way, the proposed scheduling strategies improved the
execution time for all the test cases.

Further testing also showed that the performance gain acquired by the compiler optimizations
was independent of the performance gain of the proposed scheduling strategies. Similar perfor-
mance gains could be achieved by the compiler on code generated with the naive scheduler and
the improved schedulers.
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10 Conclusions and future work

In this chapter, the conclusions and future work are discussed.

10.1 Conclusions

We have shown how the scheduling can be improved for code generated from OIL speci�cations.
These improvements result in fewer computations being done during runtime for the scheduling
which improves the overall performance of the generated code. For answering Research question
RQ1 three main strategies were used.

First, a few basic scheduling improvement strategies can be used without gathering any causal
relations from the OIL speci�cation; for example, tracking the last produced event.

However, more improvements can be made to the scheduler if causal relations are gathered.
Four functions are used to associate transitions with speci�c properties to all transitions of an
OIL speci�cation (RQ1.1). The T ∗S function is used to associate transitions that are always en-
abled after a preceding transition and the T ∗NS function is used to associate transitions that are
never enabled after a preceding transition. The transitions associated with these functions are
needed to be sure that alternations in the scheduler are allowed while still guaranteeing the run-
to-completion semantics. Additionally, transitions associated with the T ∗PS and T ∗U functions are
used to introduce priority between events in the scheduler.

The causal relations can be gathered with the use of syntax analysis on the desugared abstract
syntax tree but also approaches that use an SMT solver are useful for �nding the causal relations.
While the SMT solver can evaluate expressions it comes at the cost of being signi�cantly slower.
Additionally, two gathering approaches are used to acquire even more causal relations. One focuses
on concerns to be able to not be limited by the number of concerns a speci�c event is located in.
Another gathering approach focuses on unstable areas. These are areas in an OIL speci�cation
for which the already collected causal relations are enough to do the scheduling when these areas
become active.

Using these causal relations it was possible to improve the OIL run loop scheduler and introduce
a new scheduler. Improvements can be introduced that complement the OIL run loop scheduler
and entries can be removed from the OIL run loop scheduler when speci�c constraints are met.
Additionally, a recursive scheduler can be introduced that is able to act as a local scheduler for
each handled event. All these scheduling strategies result in perfect scheduling for simple OIL
speci�cations and improve the scheduling for more complex OIL speci�cations.

At last, another strategy was looked into to improve the scheduling that altered the OIL
speci�cations. Transforming an OIL speci�cation to its LTS counterpart made scheduling easier
but came with the cost of an excessive amount of transitions in some cases. This could however
certainly be a good solution for OIL speci�cations with an LTS containing few transitions. These
generated OIL speci�cations also have speci�c properties that can certainly still be exploited when
code is generated for them.

To answer Research question RQ1.2 and to gain trust that the code generator produces correct
code lemmas for the causal relation gathering approaches were proven, checks were introduced in
the implementation of the code generator and the generated code of a few test OIL speci�cations
was veri�ed using JTorX.

For answering Research question RQ2 some tests were conducted. The results show a reduction
of tries needed to do the scheduling of around 64% up to 81%. This makes the code approximately
three to four times faster. The selected test cases were selected to cover real-life examples and
behavior that is hard to analyze by to proposed causal relation gathering approaches. It is therefore
expected that most OIL speci�cations have similar or even better results. However, this selection
does not cover all OIL speci�cations, so these results may not be true for all OIL speci�cations.

In the end, signi�cant improvements can be introduced to the scheduler in the generated code
of OIL speci�cations. However, there are certainly still ways to improve the scheduling even
further.
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10.2 Future work

Multiple approaches can still be used to improve the scheduling further. These improvements can
be used to �nd even more causal relations between transitions. There is also still room to improve
the generated code itself.

There could be transitions in OIL speci�cations that are labeled with a proactive event that
loop to the area they left from and have a guard. Their events can be scheduled di�erently by
trying them until the guard of the transition does not hold anymore, see Chapter 4.

The de�nitions for TS and TNS could be restricted to only allow reachable transitions to be
used. Currently, it is not clear how reachability can be detected by the gathering approaches.
There is no bene�t in scheduling events from unreachable transitions so if they can be detected
properly they should not be taken into account, see Chapter 5.

The gathering approaches are able to �nd causal relations. The generated code always com-
putes which transitions are enabled when an event is handled. The causal relations can be used
to skip computations needed to check if a transition is enabled or not.

An OIL speci�cation generated from an LTS is easy to analyze by the causal relation gathering
approaches. However, the transformation strategy transforming an OIL speci�cation to an LTS
and back to an OIL speci�cation is limited as code generated from these OIL speci�cations is
not very e�ective when a generated OIL speci�cation has a lot of transitions. So it could be
tried to create a code generator for OIL speci�cations that are generated from LTSs. These OIL
speci�cations have speci�c properties that can certainly be helpful, see Chapter 7.2.

During the veri�cation, JTorX was used to verify the generated code. The generated code had
to be altered a bit to interface with JTorx. Ideally, this process should be an option during code
generation. This would make it possible to verify generated code more easily.

The recursive OIL scheduler uses recursion which can lead to stack over�ow errors when a
lot of proactive events are produced after each other. The scheduling is done at the end of each
generated method so it should be possible to alter the generated code slightly to introduce tail
recursion. A prototype has been implemented that accomplishes this.

Currently, unstable areas are restricted to not be parent areas of any other area. It is not
entirely clear if this restriction is necessary. This restriction can be revisited to possibly loosen
the restrictions for unstable areas, see Chapter 5.6.

For the detection of unstable areas, only an approach is implemented that uses syntax analysis
on the desugared abstract syntax tree. An SMT solver can be used to increase the number of
found unstable areas. Conceptually this approach is very similar but the use of the SMT solver
should increase the number of causal relations that can be found. In the �gure below an unstable
area ′s2 ′ can be spotted. Either the transition labeled with the p1 or p2 event is always enabled.
Possibly these kinds of areas can be detected using an SMT solver. Note that this construction
can be found in the Example 2.4 and the Co�ee OIL speci�cation that was used for testing.

Figure 23: OIL example unstable area SMT analysis
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The dual of an unstable area is a stable area. This is an area that if entered is never left; the
area stays always active. One of the conditions of a stable area is that its parent area is also a
stable area. If such a stable area is a region it may be possible to schedule proactive events from
transitions that leave the initial state of this region directly after the event from the transition
that entered the region. There is the suspicion that this is possible as the transition entering the
region always has the same behavior after it has �red; the behavior after the initial state. Always
scheduling the events from these transitions could also relax the restriction on unstable areas not
being initial states. This restriction was introduced to make sure events from transitions leaving
the initial state were always scheduled correctly. The scheduling of these events can now also be
done using these stable areas.

Unstable areas have a requirement that they can not be initial states. This limits the number
of unstable areas that can be found. However, it may be possible to alter OIL speci�cations to
have some kind of lasso behavior. So �rst some initial behavior followed by a loop. By separating
the initial behavior with the loop it may be possible to point out more unstable areas in this loop.
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A Appendix

A.1 Test case results

In this chapter, all results are listed from all the test cases.

A.1.1 Results OIL run loop scheduler

In the table below an overview can be found of the results from the di�erent combinations of
causal relation gathering approaches used together with the OIL run loop scheduler.

Take into account that the execution times are not accurate. They can be used to get an idea
of the impact of causal relation gathering approaches but di�erences smaller than 0.0001 seconds
should be considered irrelevant.

Test Case #Tried #Prod Exec time[s] Gen time[s]
Naive Handpicked 127 9 < 0.0001 0.710
No analysis Handpicked 72 (-43%) 9 < 0.0001 0.732
Syntax Handpicked 72 (-43%) 9 < 0.0001 0.693
SMT Handpicked 72 (-43%) 9 < 0.0001 5.509
Syntax, Concern Handpicked 70 (-45%) 9 < 0.0001 0.654
Syntax, SMT, Concern Handpicked 70 (-45%) 9 < 0.0001 2.947
Syntax, Unstable Handpicked 70 (-45%) 9 < 0.0001 0.694
All Handpicked 70 (-45%) 9 < 0.0001 2.464
Naive Random 5726 240 0.0034 0.710
No analysis Random 3240 (-43%) 240 0.0015 (-56%) 0.732
Syntax Random 3240 (-43%) 240 0.0015 (-56%) 0.693
SMT Random 3240 (-43%) 240 0.0015 (-56%) 5.509
Syntax, Concern Random 3216 (-44%) 240 0.0015 (-56%) 0.654
Syntax, SMT, Concern Random 3216 (-44%) 240 0.0015 (-56%) 2.947
Syntax, Unstable Random 3216 (-44%) 240 0.0015 (-56%) 0.694
All Random 3216 (-44%) 240 0.0015 (-56%) 2.464

Table 18: Co�ee result overview OIL run loop scheduler

Test Case #Tried #Prod Exec time[s] Gen time[s]
Naive Handpicked 179 22 < 0.0001 0.634
No analysis Handpicked 104 (-42%) 22 < 0.0001 0.702
Syntax Handpicked 89 (-50%) 22 < 0.0001 0.721
SMT Handpicked 89 (-50%) 22 < 0.0001 5.257
Syntax, Concern Handpicked 89 (-50%) 22 < 0.0001 0.658
Syntax, SMT, Concern Handpicked 89 (-50%) 22 < 0.0001 3.516
Syntax, Unstable Handpicked 38 (-78%) 22 < 0.0001 0.638
All Handpicked 38 (-78%) 22 < 0.0001 3.436
Naive Random 8518 890 0.0026 0.634
No analysis Random 6831 (-20%) 890 0.0020 (-23%) 0.702
Syntax Random 5341 (-37%) 890 0.0015 (-42%) 0.721
SMT Random 5341 (-37%) 890 0.0015 (-42%) 5.257
Syntax, Concern Random 5341 (-37%) 890 0.0015 (-42%) 0.658
Syntax, SMT, Concern Random 5341 (-37%) 890 0.0015 (-42%) 3.516
Syntax, Unstable Random 2166 (-75%) 890 0.0008 (-69%) 0.638
All Random 2166 (-75%) 890 0.0008 (-69%) 3.436

Table 19: Game result overview OIL run loop scheduler
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Test Case #Tried #Prod Exec time[s] Gen time[s]
Naive Handpicked 413 28 < 0.0001 0.695
No analysis Handpicked 315 (-24%) 28 < 0.0001 0.766
Syntax Handpicked 148 (-64%) 28 < 0.0001 0.792
SMT Handpicked 148 (-64%) 28 < 0.0001 4.533
Syntax, Concern Handpicked 148 (-64%) 28 < 0.0001 0.744
Syntax, SMT, Concern Handpicked 148 (-64%) 28 < 0.0001 2.446
Syntax, Unstable Handpicked 107 (-74%) 28 < 0.0001 0.610
All Handpicked 107 (-74%) 28 < 0.0001 2.328
Naive Random 42125 2423 0.0064 0.695
No analysis Random 39449 (-6%) 2423 0.0055 (-14%) 0.766
Syntax Random 14505 (-65%) 2423 0.0024 (-62%) 0.792
SMT Random 14505 (-65%) 2423 0.0024 (-62%) 4.533
Syntax, Concern Random 14505 (-65%) 2423 0.0024 (-62%) 0.744
Syntax, SMT, Concern Random 14505 (-65%) 2423 0.0024 (-62%) 2.446
Syntax, Unstable Random 10564 (-74%) 2423 0.0020 (-69%) 0.610
All Random 10564 (-74%) 2423 0.0020 (-69%) 2.328

Table 20: EPC result overview OIL run loop scheduler
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A.1.2 Results recursive OIL scheduler

In the tables below an overview can be found of the results from the di�erent combinations of
causal relation gathering approaches together with the recursive OIL scheduler.

The execution times are again not accurate. Take into account that small di�erences are not
always the result of the generated code.

Test Case #Tried #Prod Exec time[s] Gen time[s]
Naive Handpicked 127 9 < 0.0001 0.710
No analysis Handpicked 82 (-35%) 9 < 0.0001 0.764
Syntax Handpicked 68 (-46%) 9 < 0.0001 0.725
SMT Handpicked 73 (-43%) 9 < 0.0001 5.622
Syntax, Concern Handpicked 71 (-44%) 9 < 0.0001 0.752
Syntax, SMT, Concern Handpicked 58 (-54%) 9 < 0.0001 2.768
Syntax, Unstable Handpicked 67 (-47%) 9 < 0.0001 0.730
All Handpicked 58 (-54%) 9 < 0.0001 2.615
Naive Random 5726 240 0.0034 0.710
No analysis Random 3536 (-38%) 240 0.0017 (-50%) 0.764
Syntax Random 3188 (-44%) 240 0.0015 (-56%) 0.725
SMT Random 3292 (-43%) 240 0.0015 (-56%) 5.622
Syntax, Concern Random 3188 (-44%) 240 0.0015 (-56%) 0.752
Syntax, SMT, Concern Random 2892 (-49%) 240 0.0013 (-62%) 2.768
Syntax, Unstable Random 3132 (-45%) 240 0.0015 (-56%) 0.730
All Random 2892 (-49%) 240 0.0013 (-62%) 2.615

Table 21: Co�ee result overview recursive OIL scheduler

Test Case #Tried #Prod Exec time[s] Gen time[s]
Naive Handpicked 179 22 < 0.0001 0.634
No analysis Handpicked 179 (-0%) 22 < 0.0001 0.789
Syntax Handpicked 67 (-63%) 22 < 0.0001 0.681
SMT Handpicked 67 (-63%) 22 < 0.0001 5.243
Syntax, Concern Handpicked 67 (-63%) 22 < 0.0001 0.694
Syntax, SMT, Concern Handpicked 67 (-63%) 22 < 0.0001 3.245
Syntax, Unstable Handpicked 34 (-81%) 22 < 0.0001 0.805
All Handpicked 34 (-81%) 22 < 0.0001 3.051
Naive Random 8518 890 0.0026 0.634
No analysis Random 8518 (-0%) 890 0.0026 (-0%) 0.789
Syntax Random 4201 (-51%) 890 0.0012 (-54%) 0.681
SMT Random 4201 (-51%) 890 0.0012 (-54%) 5.243
Syntax, Concern Random 4201 (-51%) 890 0.0012 (-54%) 0.694
Syntax, SMT, Concern Random 4201 (-51%) 890 0.0012 (-54%) 3.245
Syntax, Unstable Random 2022 (-76%) 890 0.0008 (-69%) 0.805
All Random 2022 (-76%) 890 0.0008 (-69%) 3.051

Table 22: Game result overview recursive OIL scheduler
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Test Case #Tried #Prod Exec time[s] Gen time[s]
Naive Handpicked 413 28 < 0.0001 0.695
No analysis Handpicked 413 (-0%) 28 < 0.0001 0.760
Syntax Handpicked 122 (-70%) 28 < 0.0001 0.748
SMT Handpicked 122 (-70%) 28 < 0.0001 4.611
Syntax, Concern Handpicked 122 (-70%) 28 < 0.0001 0.712
Syntax, SMT, Concern Handpicked 122 (-70%) 28 < 0.0001 2.601
Syntax, Unstable Handpicked 96 (-76%) 28 < 0.0001 0.791
All Handpicked 96 (-76%) 28 < 0.0001 2.567
Naive Random 42125 2423 0.0064 0.695
No analysis Random 42125 (-0%) 2423 0.0064 (-0%) 0.760
Syntax Random 11454 (-73%) 2423 0.0021 (-67%) 0.748
SMT Random 11454 (-73%) 2423 0.0021 (-67%) 4.611
Syntax, Concern Random 11454 (-73%) 2423 0.0021 (-67%) 0.712
Syntax, SMT, Concern Random 11454 (-73%) 2423 0.0021 (-67%) 2.601
Syntax, Unstable Random 8937 (-79%) 2423 0.0019 (-70%) 0.791
All Random 8937 (-79%) 2423 0.0019 (-70%) 2.567

Table 23: EPC result overview recursive OIL scheduler

75



A.1.3 Results prioritizing events

In the tables below the results can be found for di�erent prioritization strategies for all the test
cases. The recursive OIL scheduler with all causal relation gathering approaches enabled is used
for these test cases.

Test Case #Tried #Prod Exec time[s] Gen time[s]
Naive Handpicked 127 9 < 0.0001 0.710
Keep order Handpicked 40 (-69%) 9 < 0.0001 2.746
Round-robin Handpicked 58 (-54%) 9 < 0.0001 2.615
Calculate score Handpicked 40 (-69%) 9 < 0.0001 2.404
Naive Random 5726 240 0.0034 0.710
Keep order Random 2082 (-64%) 240 0.0009 (-74%) 2.746
Round-robin Random 2892 (-49%) 240 0.0013 (-62%) 2.615
Calculate score Random 2082 (-64%) 240 0.0009 (-74%) 2.404

Table 24: Co�ee result overview prioritizing events

Test Case #Tried #Prod Exec time[s] Gen time[s]
Naive Handpicked 179 22 < 0.0001 0.634
Keep order Handpicked 34 (-81%) 22 < 0.0001 3.051
Round-robin Handpicked 34 (-81%) 22 < 0.0001 2.975
Calculate score Handpicked 34 (-81%) 22 < 0.0001 3.051
Naive Random 8518 890 0.0026 0.634
Keep order Random 2022 (-76%) 890 0.0008 (-69%) 3.051
Round-robin Random 2022 (-76%) 890 0.0008 (-69%) 2.975
Calculate score Random 2022 (-76%) 890 0.0008 (-69%) 2.844

Table 25: Game result overview prioritizing events

Test Case #Tried #Prod Exec time[s] Gen time[s]
Naive Handpicked 413 28 < 0.0001 0.695
Keep order Handpicked 95 (-77%) 28 < 0.0001 2.498
Round-robin Handpicked 96 (-76%) 28 < 0.0001 2.567
Calculate score Handpicked 95 (-77%) 28 < 0.0001 2.456
Naive Random 42125 2423 0.0064 0.695
Keep order Random 8937 (-79%) 2423 0.0019 (-70%) 2.489
Round-robin Random 8937 (-79%) 2423 0.0019 (-70%) 2.567
Calculate score Random 8937 (-79%) 2423 0.0019 (-70%) 2.456

Table 26: EPC result overview prioritizing events

76



A.1.4 Results compiler optimizations

In the tables below the results can be found for the test cases with di�erent compiler optimization
levels enabled.

Test Case #Tried #Prod Exec time[s] Gen time[s]
Naive O0 Random 5726 240 0.0034 0.710
Naive O2 Random 5726 240 0.0014 (-59%) 0.710
Improved run loop O0 Random 3216 (-44%) 240 0.0015 (-56%) 2.464
Improved run loop O2 Random 3216 (-44%) 240 0.0004 (-88%) 2.464
Recursive O0 Random 2082 (-64%) 240 0.0009 (-74%) 2.404
Recursive 02 Random 2082 (-64%) 240 0.0003 (-91%) 2.404

Table 27: Co�ee result overview compiler optimizations

Test Case #Tried #Prod Exec time[s] Gen time[s]
Naive O0 Random 8518 890 0.0026 0.634
Naive O2 Random 8518 890 0.0007 (-73%) 0.634
Improved run loop O0 Random 2166 (-75%) 890 0.0008 (-69%) 3.436
Improved run loop O2 Random 2166 (-75%) 890 0.0002 (-92%) 3.436
Recursive O0 Random 2022 (-76%) 890 0.0008 (-69%) 2.844
Recursive O2 Random 2022 (-76%) 890 0.0002 (-92%) 2.844

Table 28: Game result overview compiler optimizations

Test Case #Tried #Prod Exec time[s] Gen time[s]
Naive O0 Random 42125 2423 0.0064 0.695
Naive O2 Random 42125 2423 0.0021 (-67%) 0.695
Improved run loop O0 Random 10564 (-74%) 2423 0.0020 (-69%) 2.328
Improved run loop O2 Random 10564 (-74%) 2423 0.0006 (-91%) 2.328
Recursive O0 Random 8937 (-79%) 2423 0.0019 (-70%) 2.456
Recursive O2 Random 8937 (-79%) 2423 0.0004 (-94%) 2.456

Table 29: EPC result overview compiler optimizations
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A.2 Charts comparing execution time and amount tries

Figure 24: Chart results from Co�ee

Figure 25: Chart results from Game

Figure 26: Chart results from EPC
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A.3 Proofs

In this chapter, a closer look is taken at the di�erent formal de�nitions that were supplied earlier.
These are used to prove the lemmas for the gathering approaches. This is done for both the
transitions associated with TS and TNS . It is also proven that transitions associated with both
T ∗S and T ∗NS do not overlap with transitions associated with T ∗PS .

A.3.1 Syntax analysis implied transitions

Successor transitions Earlier a de�nition was supplied for TS ; De�nition 1.
Let t = (so, gu, e,ARG, AG, ta, ar) and t′ = (so′, gu′, e′,ARG′, AG′, ta′, ar′).

TS(t) = {t′ ∈ TP |∀s∈S,s′∈S,p∈VPAR(e)((s
e(p)−−→ s′ ∧ JPRC(t)K(s ∪ p)) =⇒

(∃s′′∈S FO,p′∈VPAR(e′)(s′
e′(p′)−−−→ s′′ ∧ JPRC(t′)K(s′ ∪ p′))))}

The gathered transitions associated with T syntax
S are de�ned as follows; De�nition 3.

T syntax
S ((so, gu, e,ARG, AG, ta, ar)) = {(so′, gu′, e′,ARG′, AG′, ta′, ar′) ∈ TP |

ta v∗ so′ ∧ gu′ = true ∧#(CO(Te′)) ≤ 1∧}

With this information, we need to show that Lemma 1 always holds.

∀t∈TTS(t) ⊇ T syntax
S (t)

This is logically the same as the following implication.

∀(t′,t)∈(Tp×T )((ta v∗ so′ ∧ gu′ = true ∧#(CO(Te′)) ≤ 1 =⇒

(∀s∈S,s′∈S,p∈VPAR(e)((s
e(p)−−→ s′ ∧ JPRC(t)K(s ∪ p)) =⇒

(∃s′′∈S FO,p′∈VPAR(e′)(s′
e′(p′)−−−→ s′′ ∧ JPRC(t′)K(s′ ∪ p′))))))

Assume we have two transitions t and t′. The syntax analysis found t′ ∈ T syntax
S (t). The syntax

analysis ensures the following three properties do hold; ta v∗ so′ , gu′ = true and #(CO(Te′)) ≤ 1.
These are placed in conjunction so they hold individually. Next it is known t′ ∈ TP . With this
information, the following needs to be shown to prove that t′ ∈ TS(t).

∀s∈S,s′∈S,p∈VPAR(e)((s
e(p)−−→ s′ ∧ JPRC(t)K(s ∪ p)) =⇒

(∃s′′∈S FO,p′∈VPAR(e′)(s′
e′(p′)−−−→ s′′ ∧ JPRC(t′)K(s′ ∪ p′))))

To accomplish this the arbitrary states s ∈ S, s′ ∈ S and parameter evaluation is taken

p ∈ V
PAR(e) and we assume s

e(p)−−→ s′ and JPRC(t)K(s ∪ p) holds. Now we need to show the
following.

∃s′′∈S FO,p′∈VPAR(e′)(s′
e′(p′)−−−→ s′′ ∧ JPRC(t′)K(s′ ∪ p′))
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Now the arguments of transition t′ are taken for the parameter evaluation p′. The de�ned
expressions are acquired using the partial function ARG′(PAR(e′)). We also pick an s′′ ∈ S FO.

Now we need to show the following.

s′
e′(p′)−−−→ s′′ ∧ JPRC(t′)K(s′ ∪ p′)

The next step can be made by looking at the acceptor semantics of a transition in the OIL
speci�cation using IOLTS. We know that s′ is not the failure state as S does not include this

state. It follows from the acceptor semantics that s′
e′(p′)−−−→ ⇐⇒ JCC(e′)K(s′ ∪ p′). Where the

evaluations from both the state and the parameters are combined to v′ with v′ = p′ ∪ s′.

JCC(e′) ∧ PRC(t′)Kv′

Which is equal to the following

J
∧

c′∈CO(Te′ )

∨
t′′∈Te′,c′

PRC(t′′) ∧ PRC(t′)Kv′

The syntax analysis ensured #(CO(Te′)) ≤ 1. So there are two cases, either there are no
concerns on the labels of transitions labeled with the event e′. In this case, the conjunction over
the concerns holds and we still need to show that the precondition of t′ holds. In the other case,
there is only one concern on the labels of transitions labeled with the event e′. In this case, we
need to show that the disjunction of preconditions holds. However we already need to show that
the precondition of t′ holds and we know that t′ ∈ Te′,c′ . So we need to show.

JPRC(t′)Kv′

This is equal to the following.

JAC(so′) ∧ gu′
∧
{p = ARG′(p)|p ∈ dom(ARG′)}Kv′

We already know that gu′ = true and we know that for each de�ned parameter p = ARG′(p)
holds as we picked p′ with this in mind. So we need to show.

JAC(so′)Kv′

The selected transitions of the syntax analysis ensure ta v∗ so′. This v∗ relation is used by
AC as can be seen in Chapter 2.2. The v∗ relation is transitive so the sets of boolean expressions
used by AC(so′) is always a subset of the sets gathered for AC(ta). So JAC(ta) =⇒ AC(so′)Kv′.
Now we need to show.

JAC(ta)Kv′

It was assumed earlier that s
e(p)−−→ s′ holds. Looking at the acceptor semantics and taking

into account that s′ is not the failure state as it was selected from S we can assume the following;
JPOC(T v

e )Kvv[U(Tv
e )] and s

′ = v[U(T v
e )] holds where v = s∪ p. We know that t ∈ T v

e as we saw that
JPRC(t)Kv holds. So we know that JPOC(t)Kvs′ holds. These postconditions for t look as follows;
JAC(ta) ∧ arKvs′ . The area condition does not use old variables so we know that JAC(ta)Ks′ holds.
At last we know that the evaluations in v′ include the evaluations in s′ therefore JAC(ta)Kv′ has
to hold and the syntax analysis only collects transitions located in TS .

Therefore Lemma 1 holds.
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No successor transitions The following de�nition was supplied for TNS ; see De�nition 2.
Let t = (so, gu, e,ARG, AG, ta, ar) and t′ = (so′, gu′, e′,ARG′, AG′, ta′, ar′).

TNS(t) = {t′ ∈ TP |∀s∈S,s′∈S,p∈VPAR(e)((s
e(p)−−→ s′ ∧ JPRC(t)K(s ∪ p)) =⇒

¬(∃s′′∈S FO,p′∈VPAR(e′)(s′
e′(p′)−−−→ s′′ ∧ JPRC(t′)K(s′ ∪ p′))))}

The gathered transitions associated with T syntax
NS are de�ned as follows; see De�nition 4.

T syntax
NS ((so, gu, e,ARG, AG, ta, ar)) = {(so′, gu′, e′,ARG′, AG′, ta′, ar′) ∈ TP |

∃state∈AS(ta)(∃state′∈AS(so′)(

RE(state) = RE(state′) ∧ ¬(EXP(state) = EXP(state′)))}

With this information, we need to show that Lemma 2 always holds.

∀t∈TTNS(t) ⊇ T syntax
NS (t)

This is logically the same as the following implication.

∀((so′,gu′,e′,ARG′,AG′,ta′,ar′),(so,gu,e,ARG,AG,ta,ar))∈(Tp×T )

((∃state∈AS(ta)(∃state′∈AS(so′)(

RE(state) = RE(state′) ∧ ¬(EXP(state) = EXP(state′))))) =⇒

(∀s∈S,s′∈S,p∈VPAR(e)((s
e(p)−−→ s′ ∧ JPRC(t)K(s ∪ p)) =⇒

¬(∃s′′∈S FO,p′∈VPAR(e′)(s′
e′(p′)−−−→ s′′ ∧ JPRC(t′)K(s′ ∪ p′)))))

Assume we have two transitions t and t′. The syntax analyis found t′ ∈ T syntax
NS (t). The

syntax analysis ensures ∃state∈AS(ta)(∃state′∈AS(so′)(RE(state) = RE(state′) ∧ ¬(EXP(state) =
EXP(state′))) holds. Next it is known t′ ∈ TP . With this information, the following needs to be
shown to prove that t′ ∈ TNS(t).

∀s∈S,s′∈S,p∈VPAR(e)((s
e(p)−−→ s′ ∧ JPRC(t)K(s ∪ p)) =⇒

¬(∃s′′∈S FO,p′∈VPAR(e′)(s′
e′(p′)−−−→ s′′ ∧ JPRC(t′)K(s′ ∪ p′))))

To accomplish this arbitrary states s ∈ S, s′ ∈ S and parameter evaluation is taken p ∈ VPAR(e)

and we assume s
e(p)−−→ s′ and JPRC(t)K(s ∪ p) holds. Now we need to show the following.

¬(∃s′′∈S FO,p′∈VPAR(e′)(s′
e′(p′)−−−→ s′′ ∧ JPRC(t′)K(s′ ∪ p′)))

This is logically the same as the following.

∀s′′∈S FO,p′∈VPAR(e′)(¬(s′
e′(p′)−−−→ s′′ ∧ JPRC(t′)K(s′ ∪ p′))))
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Now we take an arbitrary parameter evaluation p′ ∈ V
PAR(e) and state s′′ ∈ S FO. The

evaluations from both the state and the parameters are combined to v′ with v′ = p′ ∪ s′.

¬(s′ e′(p′)−−−→ s′′ ∧ JPRC(t′)Kv′)

The next step can be made by looking at the acceptor semantics of a transition in the OIL
speci�cation using IOLTS. We know that s′ is not the failure state as S does not include this

state. It follows from the acceptor semantics that s′
e′(p′)−−−→ ⇐⇒ JCC(e′)K(s′ ∪ p′). Where the

evaluations from both the state and the parameters are combined to v′ with v′ = p′ ∪ s′.

¬(JCC(e′) ∧ PRC(t′)Kv′)

Which is equal to the following.

¬(J
∧

c∈CO(Te)

∨
t′′∈Te,c

PRC(t′′) ∧ PRC(t′)Kv′)

To show this it is su�cient to show that the following does hold.

¬(JPRC(t′)Kv′)

The syntax analysis �nds mismatches in instance variables and values they have to have for
a speci�c area. The function AC returns a boolean expression that if evaluated shows if an
area is active. As there is a mismatch in values for a speci�c instance variable we know that
∀v∈VX (JAC(ta) =⇒ ¬AC(so′)Kv. It also means that this implication can be expanded to the
preconditions; ∀v∈VX (JAC(ta) =⇒ ¬PRC(t′)Kv. This is allowed because AC(so′) is a requirement
for PRC(t′) to hold. This implication can be used in our proof so we only have to show the area
condition has to hold.

JAC(ta)Kv′

It was assumed earlier that s
e(p)−−→ s′ holds. Looking at the acceptor semantics and taking

into account that s′ is not the failure state as it was selected from S we can assume the following;
JPOC(T v

e )Kvv[U(Tv
e )] and s

′ = v[U(T v
e )] holds where v = s∪ p. We know that t ∈ T v

e as we saw that
JPRC(t)Kv holds. So we know that JPOC(t)Kvs′ holds. These postconditions for t look as follows;
JAC(ta) ∧ arKvs′ . The area condition does not use old variables so we know that JAC(ta)Ks′. At
last we know that the evaluations in v′ include the evaluations in s′ therefore JAC(ta)Kv′ has to
hold and the syntax analysis only collects transitions located in TNS .

Therefore Lemma 2 holds.
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No overlap in transition sets The next thing we have to show is that there is no overlap
between the transitions associated with TS , TNS , and TPS . This is denoted with the Lemma 3
and 4.

∀t∈TT syntax
S (t) ∩ T syntax

PS (t) = ∅

∀t∈TT syntax
NS (t) ∩ T syntax

PS (t) = ∅

In the syntax analysis on implied transitions, the di�erent functions were de�ned as follows in
De�nition 3, 4 and 5.

T syntax
S ((so, gu, e,ARG, AG, ta, ar)) = {(so′, gu′, e′,ARG′, AG′, ta′, ar′) ∈ TP |

ta v∗ so′ ∧ gu′ = true ∧#(CO(Te′)) ≤ 1}

T syntax
NS ((so, gu, e,ARG, AG, ta, ar)) = {(so′, gu′, e′,ARG′, AG′, ta′, ar′) ∈ TP

∃(targetRegion,targetV alue)∈RC(ta)(

∃(sourceRegion,sourceV alue)∈RC(so′)(

(targetRegion = sourceRegion) ∧ ¬(targetV alue = sourceV alue)))}

T syntax
PS ((so, gu, e,ARG, AG, ta, ar)) = {(so′, gu′, e′,ARG′, AG′, ta′, ar′) ∈ TP |

ta v∗ so′ ∧ ¬(gu′ = true ∧#(CO(Te′)) ≤ 1)}

So we need to show that there is no overlap between the associated transitions. First, we
show transitions associated with T syntax

S and T syntax
PS do not overlap. This is because either

gu′ = true∧#(CO(Te′)) ≤ 1 holds or does not hold. If this part holds the transition is associated
with T syntax

S and if it does not hold the transition is associated with T syntax
PS . Therefore the

associated transitions do not overlap and Lemma 3 holds.
Next, we show that transitions associated with T syntax

NS and T syntax
PS do not overlap. The

syntax analysis for T syntax
NS �nds mismatches in instance variables and values they have to have

for a speci�c area. The function AC returns a boolean expression that if evaluated shows if an
area is active. As there is a mismatch in values for a speci�c instance variable we know that
∀v∈VX (JAC(ta) =⇒ ¬AC(so′)Kv). The formal de�nition of AC shows that if an area is active
all its ancestor areas also have to be active. The ta area is never active at the same time as the
so′ area. This means that ta v∗ so′ never holds for these transitions. Note that T syntax

PS requires
this ta v∗ so′ relation to hold. Therefore the associated transitions do not overlap and Lemma 4
holds.
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A.3.2 SMT analysis implied transitions

Successor transitions The following de�nition was supplied for TS ; see De�nition 1.
Let t = (so, gu, e,ARG, AG, ta, ar) and t′ = (so′, gu′, e′,ARG′, AG′, ta′, ar′).

TS(t) = {t′ ∈ TP |∀s∈S,s′∈S,p∈VPAR(e)((s
e(p)−−→ s′ ∧ JPRC(t)K(s ∪ p)) =⇒

(∃s′′∈S FO,p′∈VPAR(e′)(s′
e′(p′)−−−→ s′′ ∧ JPRC(t′)K(s′ ∪ p′))))}

The gathered transitions for T smt
S are de�ned as follows; see De�nition 6.

T smt
S (t) = {t′ ∈ TP |ϕS(t, t

′)is unsatis�able ∧#(CO(Te′)) ≤ 1}

With this information, we need to show that Lemma 5 always holds.

∀t∈TTS(t) ⊇ T smt
S (t)

This is logically the same as the following implication.

∀((so′,gu′,e′,ARG′,AG′,ta′,ar′),(so,gu,e,ARG,AG,ta,ar))∈(T×Tp)

((ϕS((so, gu, e,ARG, AG, ta, ar), (so′, gu′, e′,ARG′, AG′, ta′, ar′))is unsatis�able)
∧#(CO(Te′)) ≤ 1) =⇒

(∀s∈S,s′∈S,p∈VPAR(e)((s
e(p)−−→ s′ ∧ JPRC(t)K(s ∪ p)) =⇒

(∃s′′∈S FO,p′∈VPAR(e′)(s′
e′(p′)−−−→ s′′ ∧ JPRC(t′)K(s′ ∪ p′)))))

The satis�ability check can be denoted using an existential quanti�er together with the semantic
brackets to mirror the behavior of the SMT solver. The evaluation u is used which has both
evaluations for the old and present instance state. The solver returns satis�able when there exists
a combination of values for the variables that make the satis�ability problem hold. So negating
this denotes that a problem is not satis�able.

∀((so′,gu′,e′,ARG′,AG′,ta′,ar′),(so,gu,e,ARG,AG,ta,ar))∈(T×Tp)

((¬∃u∈VX (JAC(ta) ∧ ar ∧ σold(AC(so) ∧ gu) ∧Assign(AG) ∧ ¬(AC(so′) ∧ gu′)Ku)∧
#(CO(Te′)) ≤ 1)) =⇒

(∀s∈S(∀s∈S,s′∈S,p∈VPAR(e)((s
e(p)−−→ s′ ∧ JPRC(t)K(s ∪ p)) =⇒

(∃s′′∈S FO,p′∈VPAR(e′)(s′
e′(p′)−−−→ s′′ ∧ JPRC(t′)K(s′ ∪ p′)))))

In the next step, we can now also pick an evaluation v that only contains the evaluations from
u in the old instance state and refer to the present instance state by using the evaluation v[U(T v

e )].
The σ function is removed and the evaluations are used from the old instance state v. The assert
can refer to both values from the old instance state and the present one. Therefore a double
evaluation is used to also include the old variables. So we end up with the following.
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∀((so′,gu′,e′,ARG′,AG′,ta′,ar′),(so,gu,e,ARG,AG,ta,ar))∈(T×Tp)

((¬∃v∈VX ((JAC(ta) ∧ arKvv[U(Tv
e )] ∧ JAC(so) ∧ guKv) ∧ ¬(JAC(so′) ∧ gu′Kv[U(T v

e )]))∧

#(CO(Te′)) ≤ 1) =⇒

(∀s∈S,s′∈S,p∈VPAR(e)((s
e(p)−−→ s′ ∧ JPRC(t)K(s ∪ p)) =⇒

(∃s′′∈S FO,p′∈VPAR(e′)(s′
e′(p′)−−−→ s′′ ∧ JPRC(t′)K(s′ ∪ p′)))))

The negated existential quanti�er can be rewritten to a universal quanti�er with a negation in
it. Next, this conjunction can then be rewritten to an implication as these are logically the same.
Note that there is already a negation located on the right-hand side of the conjunction.

∀((so′,gu′,e′,ARG′,AG′,ta′,ar′),(so,gu,e,ARG,AG,ta,ar))∈(T×Tp)

((∀v∈VX (JAC(ta) ∧ arKvv[U(Tv
e )] ∧ JAC(so) ∧ guKv =⇒ JAC(so′) ∧ gu′Kv[U(T v

e )])∧

#(CO(Te′)) ≤ 1) =⇒

(∀s∈S(∀s∈S,s′∈S,p∈VPAR(e)((s
e(p)−−→ s′ ∧ JPRC(t)K(s ∪ p)) =⇒

(∃s′′∈S FO,p′∈VPAR(e′)(s′
e′(p′)−−−→ s′′ ∧ JPRC(t′)K(s′ ∪ p′)))))

Assume we have two transitions t and t′. The SMT analyis found t′ ∈ T smt
S (t). The SMT analysis

only �nds causal relations for which t implies the following properties for t′; for all v ∈ V
X the

following holds JAC(so′) ∧ gu′Kv[U(T v
e )]. Next it ensures #(CO(Te′)) ≤ 1 and t ∈ TP . With this

information the following needs to be shown to prove that t′ ∈ TS(t).

∀s∈S,s′∈S,p∈VPAR(e)((s
e(p)−−→ s′ ∧ JPRC(t)K(s ∪ p)) =⇒

(∃s′′∈S FO,p′∈VPAR(e′)(s′
e′(p′)−−−→ s′′ ∧ JPRC(t′)K(s′ ∪ p′))))

To accomplish this an arbitrary state s ∈ S, s′ ∈ S and parameter evaluation is taken p ∈ VPAR(e)

and we assume s
e(p)−−→ s′ and JPRC(t)Kw holds where w = (s ∪ p). Now we need to show the

following.

∃s′′∈S FO,p′∈VPAR(e′)(s′
e′(p′)−−−→ s′′ ∧ JPRC(t′)K(s′ ∪ p′))

Now the arguments of transition t′ are taken for the parameter evaluation p′. The de�ned
expressions are acquired using the partial function ARG′(PAR(e′)). We also pick an s′′ ∈ S FO.

Now we need to show the following.

s′
e′(p′)−−−→ s′′ ∧ JPRC(t′)K(s′ ∪ p′)

The next step can be made by looking at the acceptor semantics of a transition in the OIL
speci�cation using IOLTS. We know that s′ is not the failure state as S does not include this

state. It follows from the acceptor semantics that s′
e′(p′)−−−→ ⇐⇒ JCC(e′)K(s′ ∪ p′). Where the

evaluations from both the state and the parameters are combined to w′ with w′ = p′ ∪ s′.

JCC(e′) ∧ PRC(t′)Kw′
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Which is equal to the following

J
∧

c∈CO(Te)

∨
t′′∈Te,c

PRC(t′′) ∧ PRC(t′)Kw′

The SMT analysis ensured#(CO(Te′)) ≤ 1. So there are two cases, either there are no concerns
on the labels of transitions labeled with the event e′. In this case, the conjunction over the concerns
holds and we still need to show that the precondition of t′ holds. In the other case, there is only
one concern on the labels of transitions labeled with the event e′. In this case, we need to show
that the disjunction of preconditions holds. the event e′. In this case, we need to show that the
disjunction of preconditions holds. However we already need to show that the precondition of t′

holds and we know that t′ ∈ Te′,c′ . So we need to show.

JPRC(t′)Kw′

This is equal to the following.

JAC(so′) ∧ gu′
∧
{p = ARG′(p)|p ∈ dom(ARG′)}Kw′

We know that for each de�ned parameter p = ARG′(p) holds as we picked p′ with this in mind.
So we need to show.

JAC(so′) ∧ gu′Kw′

To show this we take a step back and take a look at the gathered transitions from the SMT
analysis. The following was ensured by this SMT analysis.

JAC(ta) ∧ arKvv[U(Tv
e )] ∧ JAC(so) ∧ guKv =⇒ JAC(so′) ∧ gu′Kv[U(T v

e )]

It was assumed earlier that s
e(p)−−→ s′ holds. Looking at the acceptor semantics and taking into

account that s′ is not the failure state as it was selected from S we can assume the following; s′ =
w[U(Tw

e )], JPOC(Tw
e )Kws′ and JCC(e)Kw. We can use this information to simplify our implication a

little bit. We now pick the valuation w as v could be any valuation from V
X .

JAC(ta) ∧ arKws′ ∧ JAC(so) ∧ guKw =⇒ JAC(so′) ∧ gu′Ks′

First, we earlier assumed that JPRC(t)Kw holds. This means the following has to hold JAC(so)∧
guKw. So we can reduce our implication even further.

JAC(ta) ∧ arKws′ =⇒ JAC(so′) ∧ gu′Ks′

Now we focus on the postcondition that was found earlier JPOC(Tw
e )Kws′ . We know that t ∈ Tw

e

as we saw that JPRC(t)Kw holds. So we know that JPOC(t)Kws′ holds. These postconditions for
t look as follows; JAC(ta) ∧ arKws′ . This information can be used to determine the following from
our implication.

JAC(so′) ∧ gu′Ks′

We know that w′ has the same evaluations as s′ with some additional evaluations from the
parameters. So therefore we may conclude that the following also holds �nishing our proof.

JAC(so′) ∧ gu′Kw′

Therefore Lemma 5 holds.

86



No successor transitions The following de�nition was supplied for TNS ; see De�nition 2.

TS(t) = {t′ ∈ TP |∀s∈S,s′∈S,p∈VPAR(e)((s
e(p)−−→ s′ ∧ JPRC(t)K(s ∪ p)) =⇒

(∃s′′∈S FO,p′∈VPAR(e′)(s′
e′(p′)−−−→ s′′ ∧ JPRC(t′)K(s′ ∪ p′))))}

The gathered transitions for T smt
NS are de�ned as follows; see De�nition 7.

T smt
NS (t) = {t′ ∈ TP |ϕNS(t, t

′)is unsatis�able}

With this information, we need to show that Lemma 6 always holds.

∀t∈TTNS(t) ⊇ T smt
NS (t)

The proof that this lemma is correct is nearly the same as the proof for T smt
S , see Lemma

5. There are two di�erences as the result of the negation around the existential quanti�er in the
de�nition of TNS which carries on through the proof.

First, the following step changes.

¬(J
∧

c∈CO(Te)

∨
t′′∈Te,c

PRC(t′′) ∧ PRC(t′)Kw′)

to

¬(JPRC(t′)Kw′)

Which is now trivial as either ¬(J
∧

c∈CO(Te)

∨
t′′∈Te,c

PRC(t′′)Kw′ or ¬(JPRC(t′)Kw′) can result
in the complete conjunction not holding.

Next there is the need for proving ¬JAC(so′) ∧ gu′Kw. This can be accomplished by using the
gathered transitions of the SMT solver because ϕNS also gathers the negation compared to ϕS .

ϕS((so, gu, e,ARG, AG, ta, ar), (so′, gu′, e′,ARG′, AG′, ta′, ar′)) =
AC(ta) ∧ ar ∧ σold(AC(so) ∧ gu) ∧Assign(AG) ∧ ¬(AC(so′) ∧ gu′)

ϕNS((so, gu, e,ARG, AG, ta, ar), (so′, gu′, e′,ARG′, AG′, ta′, ar′)) =
AC(ta) ∧ ar ∧ σold(AC(so) ∧ gu) ∧Assign(AG) ∧ (AC(so′) ∧ gu′)

In ϕNS the negation is removed around AC(so′) ∧ gu′ in comparison to ϕS .
Therefore Lemma 6 holds.
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A.3.3 Concern analysis

To show that the concern analysis is correct a portion of the proofs has to be altered. The concern
analysis removes the restriction #(CO(Te′)) ≤ 1 and adds a post-analysis to ensure the complete
analysis is still correct.

Successor transitions The concern analysis ensures that only transitions with the following
properties are associated with T co

S ; see De�nition 8. The T ∗
′

S notation is used to get the gathered
transitions without the concern restrictions from either the syntax or SMT analysis on implied
transitions.

T co
S (t) = {(so′, gu′, e′,ARG′, AG′, ta′, ar′) ∈ TP |∀c∈CO(Te′ ))

(∃t′∈Te′,c(t
′ ∈ T ∗

′

S (t)))}

In the syntax and SMT analysis the#(CO(Te′)) ≤ 1 was used in the proofs during the following
step. To simplify

J
∧

c∈CO(Te)

∨
t′′∈Te,c

PRC(t′′) ∧ PRC(t′)Kv′

To

JPRC(t′)Kv′

So now we need to show that the indicated step in the proof can still be proven with the use of
the concern analysis. When this is done correctly we can reuse the remaining parts of the syntax
and SMT analysis on implied transitions to prove Lemma 7.

∀t∈TTS(t) ⊇ T co
S (t)

The existential quanti�er and universal quanti�er in the de�nition of T co
S closely mimic the

conjunction and disjunction in the concern condition. When a transition is found in T ∗
′

S it is
known that the preconditions of those transitions hold. The universal and existential quanti�er
make sure there is at least one transition for each concern that has a precondition that holds.
Therefore we know that J

∧
c∈CO(Te)

∨
t′′∈Te,c

PRC(t′′)Kv′ holds. From this point, the proofs from
the syntax and SMT analysis can be used again.

Therefore Lemma 7 holds.

No successor transitions The concern analysis introduces transitions associated with T co
NS

that have the following properties; see De�nition 9.

T co
NS(t) = {(so′, gu′, e′,ARG

′, AG′, ta′, ar′) ∈ TP |∃c∈CO(Te′ ))
(∀t′∈Te′,c(t

′ ∈ T ∗NS(t)))}

We need to show that Lemma 8 holds.

∀t∈TTNS(t) ⊇ T co
NS(t)

The previous proofs for both the syntax and SMT analysis on implied transitions can still be
used to show that transitions in T ∗NS are all located in TNS . However, some additional transitions
can now be identi�ed. The additionally found transitions are correctly identi�ed as the existen-
tial and universal quanti�cation closely mimics the conjunction and disjunction in the concern
condition. In the proofs for the syntax and SMT analysis, this looked as follows.

¬(J
∧

c∈CO(Te)

∨
t′′∈Te,c

PRC(t′′) ∧ PRC(t′)Kv′)
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When the concern analysis identi�es a transition in T co
NS there is a concern for which this

disjunction does not hold meaning that the complete conjunction also does not hold. In this case,
the transition is located in TNS .

So therefore Lemma 8 holds.

No overlap in transition sets At last, we need to show that there is no overlap between
transitions associated with T co

S , T co
NS and T co

PS . This is denoted with the Lemma 9 and 10.

∀t∈TT co
S (t) ∩ T co

PS(t) = ∅

∀t∈TT co
NS(t) ∩ T co

PS(t) = ∅

The de�nitions are as follows for the gathered transitions for the concern analysis, see De�nition
8, 9 and 10.

T co
S (t) = {(so′, gu′, e′,ARG′, AG′, ta′, ar′) ∈ TP |∀c∈CO(Te′ ))

(Te′,c ⊆ T ∗S(t))}

T co
NS(t) = {(so′, gu′, e′,ARG

′, AG′, ta′, ar′) ∈ TP |∃c∈CO(Te′ ))
(∀t′∈Te′,c(t

′ ∈ T ∗NS(t)))}

T co
PS(t) = T ∗S(t) \ (T co

S (t) ∪ T co
NS(t))

It is clearly visible that the transitions associated with T co
PS have no overlap with either tran-

sitions associated with T co
S or T co

NS . These are explicitly excluded from the transitions associated
with T co

PS .
Therefore both Lemma 9 and 10 hold.
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A.4 Test speci�cation visualizations

Figure 27: OIL example Co�ee
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Figure 28: OIL example Game
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