
Technische Universiteit Eindhoven Seminar Project

Correspondence between Kripke Structures and Labeled Transition
Systems for Model Minimization

Rob Schoren

Abstract

This document is mainly an extension of the work of Michel Reniers and Tim Willemse,
which showed the correspondence between Kripke Structures and Labeled Transition Sys-
tems for a number of equivalences. They have also established that the embeddings
defined by De Nicola and Vaandrager allow us to use minimization techniques modulo
bisimulation in one domain, to attain an actual minimization modulo bisimulation in the
other domain. In this document, the same property is investigated for simulation equiv-
alence. Extensive proof is given to show that similarity minimization is covered by the
embedding.

Contents

1 Introduction 2

2 Definitions 2
2.1 Kripke Structures . 2

2.1.1 General Definitions . 2
2.1.2 Similarity . 3
2.1.3 Minimization modulo similarity . 3

2.2 Labeled Transition Systems . 4
2.2.1 General Definitions . 4
2.2.2 Similarity . 4
2.2.3 Minimization modulo similarity . 5

2.3 Embeddings . 5
2.3.1 embedding KS into LTS and back . 6
2.3.2 Embedding LTS into KS and back . 7

3 Combining Minimizations and Embeddings: Similarity 8
3.1 Minimization modulo similarity of KS using minimization in LTS 8
3.2 Minimization modulo similarity of LTS using minimization in KS 10

4 An Example of Minimization modulo Similarity 14

5 Alternative embeddings from KS to LTS 16

6 Conclusions 17

7 Future work 17

/department of computer science 1

Seminar Project Technische Universiteit Eindhoven

1 Introduction

In process theory, many modelling techniques have been developed to describe the behaviour
of systems. Two of the most used types of models are Kripke Structures and Labeled Transition
Systems, also denoted by KS and LTS. The difference between these languages is that KS
are state-based (meaning that states are labeled with a name), while LTS are event-based
(meaning that transitions are labeled).

As the work of De Nicola and Vaandrager has showed, KS and LTS are interchangeable
in many contexts. However, it is not very interesting to translate a model from one domain
to the other and back. The embeddings between domains are far more useful if we can do
actual computations in between, since this means that we can reuse implementations of pos-
sibly complex operations. One of the most common operations in proces theory is model
minimization. For many reasons, we want our models to be as small as possible, while main-
taining the behaviour of the system. In the work by Reniers and Willemse, it is showed that
bisimilarity or stuttering equivalence minimization in one domain can be obtained by using
an implementation of minimization in the other domain. This document extends their results,
by proving that the same property holds for similarity.

Outline. Section 2 gives an overview of the definitions used by the proofs and examples.
In section 3, an extensive proof is given that similarity minimization techniques can be shared
between KS and LTS, while some examples for this are provided in section 4. Sections 6 and
7 finish the document with conclusions and possible future work.

2 Definitions

For both Kripke Structures and Labeled Transition Systems, this section gives an overview
of definitions that are used.

2.1 Kripke Structures

2.1.1 General Definitions

The first step is to define what exactly a Kripke Structure is.

Definition 1 (Kripke Structure). A Kripke Structure K is a 5-tuple 〈S, I, AP,→, L〉, where:

- S is a set of states.

- I is the set of initial states: I ⊆ S.

- AP is a set of atomic propositoins.

- → is a total transition relation: →⊆ S × S.

- L is a state labelling: L : S → 2AP .

Note that from now on, the shorthand notation s→ t is used for stating that (s, t) ∈→.

As the focus of this document is on minimization of models, we need to define the size of a
structure in order to compare structures and use minimality.

2 /department of computer science

Technische Universiteit Eindhoven Seminar Project

Definition 2 (Size). The size |K| of a Kripke Structure K = 〈S, I, AP,→, L〉 is defined
as the number of states it has: |S|. This means that, given another Kripke Structure
K ′ = 〈S′, I ′, AP,→′, L′〉, we say that |K| ≤ |K ′| (K is smaller than K ′), if |S| ≤ |S′|.

2.1.2 Similarity

When minimizing a KS, we want the resulting KS to be equivalent to the original one. Many
equivalences have been defined in process theory. In this document, the emphasis is on the
equivalence relation called similarity.

Definition 3 (Simulation relation). Let K = 〈S, I, AP,→, L〉 be a Kripke Structure. A
relation B ⊆ S × S is a simulation relation if and only if for every s, s′ ∈ S such that
(s, s′) ∈ B:

- L(s) = L(s′)

- For all t ∈ S, if s→ t, then s′ → t′ for some t′ ∈ S such that (t, t′) ∈ B.

Definition 4 (Similarity). States s, s′ ∈ S are similar (notation: s ' s′) if and only if there
are simulation relations B and B′ such that (s, s′) ∈ B and (s′, s) ∈ B′.

Definition 5 (Similarity of KS). Two Kripke Structures K and K ′ are simulation equivalent
(or similar), notation K ' K ′, if and only if:

- For all s in I, there is a s′ in I ′, such that s ' s′.

- For all s′ in I ′, there is a s in I, such that s′ ' s.

2.1.3 Minimization modulo similarity

Using the definitions of the size of a KS and similarity between two KS, we can describe how
to perform a minimization. The following definition shows for an arbitrary Kripke Structure,
how to compute an equivalent structure that is as small as possible.

Using the notion of simulation equivalence between states, we can define the equivalence
classes C of a Kripke Structure K. For every maximal set of similar states s1, s2, . . . , sn ∈ S
(so, s1 ' s2 ' · · · ' sn), there is one corresponding class c ∈ C. We use ”[]”to denote the
class of a state, so if s ∈ c, then [s] = c.

Definition 6 (∀-quotient). We can minimize a Kripke Structure K modulo similarity by
calculating its ∀-quotient structure K/' = 〈S/', I/', AP/',→/', L/'〉 as defined in [BG03]:

- S/' = C, the set of equivalence classes of K

- I/' = {c ∈ C | ∃s ∈ c . s ∈ I}

/department of computer science 3

Seminar Project Technische Universiteit Eindhoven

- AP/' = AP

- →/'= {(c1, c2) ∈ C × C | ∀s1 ∈ c1 ∃s2 ∈ c2 . s1→ s2}

- L/'([s]) = L(s)

From [BG03], it follows that the following statements hold for K/':

- K ' K/'

- For every Kripke Structure K ′ such that K ' K ′, we have that |K/'| ≤ |K ′|.

2.2 Labeled Transition Systems

2.2.1 General Definitions

Just like KS, we need a formal definition of what a Labeled Transition System is.

Definition 7 (Labeled Transition System). A Labeled Transition System T is a 4-tuple
〈S, I, Act,→〉, where:

- S is a set of states.

- I is the set of initial states: I ⊆ S.

- Act is a set of actions.

- → is a total transition relation: →⊆ S × (Act ∪ {τ})× S.

Note that from now on, the shorthand notation s
a−→ t is used for stating that (s, a, t) ∈→.

Definition 8 (size). The size |T | of a Labeled Transition System T = 〈S, I, Act,→〉 is defined
as the number of states it has: |S|. This means that, given another LTS T ′ = 〈S′, I ′, Act′,→′〉,
we say that |T | ≤ |T ′| (T is smaller than T ′), if and only if |S| ≤ |S′|.

2.2.2 Similarity

The notion of simulation equivalence for LTS is very much alike that for KS. In the following
definition shows that there is a comparable approach, but in LTS the action of a transition
plays the role of the label of a state in KS.

Definition 9 (Simulation relation). Let T = 〈S, I, Act,→〉 be an LTS. A relation B ⊆ S×S
is a simulation relation if and only if for every s, s′ ∈ S such that (s, s′) ∈ B:

- For all t ∈ S and a ∈ Act ∪ {τ}, if s
a−→ t, then s′

a−→ t′ for some t′ ∈ S such that
(t, t′) ∈ B.

Definition 10 (Similarity). States s, s′ ∈ S are similar (notation: s ' s′) if and only if there
are simulation relations B and B′ such that (s, s′) ∈ B and (s′, s) ∈ B′.

4 /department of computer science

Technische Universiteit Eindhoven Seminar Project

Definition 11 (Similarity of LTS). Two Labeled Transition Systems T and T ′ are simulation
equivalent (T ' T ′), if and only if:

- For all s in I, there is a s′ in I ′, such that s ' s′.

- For all s′ in I ′, there is a s in I, such that s′ ' s.

2.2.3 Minimization modulo similarity

In order to follow the approach of KS minimization, the ∀-quotient definition for KS has been
adapted for LTS. This results in a very similar way of minimizing LTS, using the definitions
below.

Using the notion of simulation equivalence between states, we can define the equivalence
classes C of an LTS T . For every maximal set of similar states s1, s2, . . . , sn ∈ S (so,
s1 ' s2 ' · · · ' sn), there is one corresponding class c ∈ C. We use ”[]”to denote the
class of a state, so if s ∈ c, then [s] = c.

Definition 12 (∀-quotient). We can minimize an LTS T modulo similarity by calculating its
∀-quotient system T/' = 〈S/', I/', Act/',→/'〉:

- S/' = C, the set of equivalence classes of T

- I/' = {c ∈ C | ∃s ∈ c . s ∈ I}

- Act/' = Act

- →/'= {(c1, a, c2) ∈ C ×Act× C | ∀s1 ∈ c1 ∃s2 ∈ c2 . (s1, a, s2) ∈→}

The following statements hold for T/':

- T ' T/'
- For every LTS T ′ such that T ' T ′, we have that |T/'| ≤ |T ′|.

2.3 Embeddings

When we intend to reuse minimization techniques from one domain to achieve minimization
in the other, we need translations in both directions.

In [DNV90], De Nicola and Vaandrager have presented the embeddings lts and ks, allowing
us to move from one domain to the other. However, using these translations to go back to the
original domain will not result in the original model. For instance, when we start with some
Kripke Structure, and first apply embedding lts and then ks, the resulting KS will be much
larger than the original one. Reniers and Willemse have dealt with this problem in [RW10]
by introducing the reverse embeddings lts−1 and ks−1. All of these embeddings are presented
here again, slightly changed to allow for initial states.

/department of computer science 5

Seminar Project Technische Universiteit Eindhoven

2.3.1 embedding KS into LTS and back

Definition 13 (The embedding lts). The embedding lts : KS → LTS is defined as in
[DNV90]: lts(K) = 〈S′, I ′, Act,→′〉 for an arbitrary Kripke Structure K = 〈S, I, AP,→, L〉,
where:

- S′ = S ∪ {s | s ∈ S}, assuming that s 6∈ S for all s ∈ S.

- I ′ = I

- Act = 2AP ∪ {⊥}

- →′ is the smallest relation satisfying:

s
⊥−→
′
s

s→ t L(s) = L(t)

s
τ−→
′
t

s
L(s)−−→

′
s

s→ t L(s) 6= L(t)

s
L(t)−−→

′
t

Definition 14 (Reversibility). An LTS T = 〈S, I, Act,→〉 is reversible iff:

- Act = 2AP ∪ {⊥} for some set AP .

- For all s ∈ I, we have that s
⊥−→.

- For all s, s′, s′′ ∈ S such that s
⊥−→ s′ and s

⊥−→ s′′, we have that (s′
a−→ ∧ s′′ a

′
−→)⇒ a =

a′, for all actions a, a′ ∈ Act.

Definition 15 (The reverse embedding lts−1). Let T = 〈S, I, Act,→〉 be a reversible LTS.
The Kripke Structure lts−1(T) is the structure 〈S′, I ′, AP,→′, L〉, such that:

- S′ = {s ∈ S | s ⊥−→}

- I ′ = I

- AP is such that Act = 2AP ∪ {⊥}

- →′ is the least relation satisfying:

s
a−→ s′ a 6= ⊥ s

⊥−→
s→′ s′

- L(s) = a for the unique a such that s
⊥−→ s′

a−→ s for each s ∈ S′

6 /department of computer science

Technische Universiteit Eindhoven Seminar Project

2.3.2 Embedding LTS into KS and back

Definition 16 (The embedding ks). The embedding ks : LTS → KS is defined as in
[DNV90]: ks(T) = 〈S′, I ′, AP,→′, L〉 for an arbitrary LTS T = 〈S, I, Act,→〉, where:

- S′ = S ∪ {(s, a, t) ∈→ | a 6= τ}

- I ′ = I

- AP = Act ∪ {⊥}, where ⊥ 6∈ Act

- →′ is the smallest relation satisfying:

s→′ (s, a, t) (s, a, t)→′ t
s
τ−→ t

s→′ t

- L(s) = {⊥} for s ∈ S, and L((s, a, t)) = {a}.

Definition 17 (Reversibility). A Kripke Structure K = 〈S, I, AP,→, L〉 is reversible iff:

- AP = Act ∪ {⊥} for some set Act.

- For all s ∈ I, we have that L(s) = {⊥}.

- |L(s)| = 1 for all s ∈ S.

- For all s ∈ S such that ⊥ 6∈ L(s), we have that ∀s′, s′′ ∈ S . (s→ s′ ∧ s→ s′′)⇒ (s′ =
s′′ ∧ L(s′) = {⊥})

Definition 18 (The reverse embedding ks−1). Let K = 〈S, I, AP,→, L〉 be a reversible KS.
Then ks−1(K) is the LTS 〈S′, I ′, Act,→′〉, such that:

- S′ = {s ∈ S|L(s) = {⊥}}

- I ′ = I

- Act = AP \ {⊥}

- →′ is the least relation satisfying:

s→ s′ L(s) = L(s′)

s
τ−→
′
s′

s→ s′′ a ∈ L(s′′) \ {⊥} s′′ → s′

s
a−→
′
s′

/department of computer science 7

Seminar Project Technische Universiteit Eindhoven

3 Combining Minimizations and Embeddings: Similarity

This section shows, using the definitions from the previous section, that it is possible to per-
form a minimization modulo similarity in either KS or LTS, while using an implementation
of minimization in the other.

For notational purposes, the functions minLTS and minKS are introduced, such that
minLTS(T) = T/' and minKS(K) = K/', for arbitrary LTS T and KS K.

3.1 Minimization modulo similarity of KS using minimization in LTS

Lemma 1. Given a reversible Labeled Transition System T , we have that T/' is reversible.

Proof. Suppose we have a reversible Labeled Transition System T = 〈S, I, Act,→〉, and its
∀-quotient system T/' = 〈S/', I/', Act/',→/'〉. In order to derive a contradiction, let us
assume that T/' is not reversible. This means that at least one of the following statements
holds:

- Act/' 6= 2AP ∪{⊥} for some set AP . As T is reversible, there is some set AP ′ such that

Act = 2AP
′∪{⊥}. By definition, Act/' = Act, so it also holds that Act/' = 2AP

′∪{⊥}.

- There is an s ∈ I/', such that s 6 ⊥−→. From the definition of ∀-quotient, it follows that s
is an equivalence class of states s1, . . . , sn ∈ S, such that si ∈ I, for some 1 ≤ i ≤ n. As

T is reversible, it holds that si
⊥−→. Note that s1, . . . , sn are all in the same equivalence

class, so sj
⊥−→ tj , for all 1 ≤ j ≤ n and some state tj . Furthermore, for each pair

sk, sm ∈ s1, . . . , sn, there are simulation relations B and B′ such that (sk, sm) ∈ B and
(sm, sk) ∈ B′. Then we also have that (tk, tm) ∈ B and (tm, tk) ∈ B′, so tk ' tm. This
means that there is an equivalence class t of (not necessarily distinct) states t1, . . . , tn,
such that for all states in class s, there is a ⊥- transition to a state in class t. So by

definition of ∀-quotient, s
⊥−→ t in T/'.

- There exist s, s′, s′′ ∈ S/' such that s
⊥−→ s′, s

⊥−→ s′′, s′
a−→ and s′′

a′−→, but a 6= a′. In
this case, s, s′ and s′′ are equivalence classes of states s1, . . . , sn ∈ S, s′1, . . . , s

′
n′ ∈ S and

s′′1, . . . , s
′′
n′′ ∈ S respectively. For every 1 ≤ i ≤ n, there are 1 ≤ i′ ≤ n′ and 1 ≤ i′′ ≤ n′′,

with si
⊥−→ si′ and si

⊥−→ si′′ . Furthermore, there are equivalence classes c1 and c2 of the
states in S, such that for all 1 ≤ i′ ≤ n′ and 1 ≤ i′′ ≤ n′′, there are t ∈ c1 and u ∈ c2
with s′i′

a−→ t and s′′i′′
a′−→ u (where a 6= a′). So assume an arbitrary si in the equivalence

class of s. It has si
⊥−→ si′ and si

⊥−→ si′′ for some si′ , si′′ ∈ S, such that si′
a−→ and si′′

a′−→,
but a 6= a′. From this, it follows that T is not reversible, which leads to a contradiction.

Lemma 2. We have that minLTS ◦ lts ◦minKS = lts ◦minKS

Proof. Given a Kripke Structure K = 〈S, I, AP,→, L〉 that is minimal with respect to simi-
larity (in KS), we have to show that lts(K) = 〈S′, I ′, Act,→′〉 is minimal w.r.t. similarity (in
LTS), so lts(K) = lts(K)/' = 〈S/', I/', Act/',→/'〉. In order to prove that S′ = S/', we
show that the identity relation on the states of lts(K) is a similarity relation, and that this
relation is maximal.

8 /department of computer science

Technische Universiteit Eindhoven Seminar Project

As K is minimal, we know that the identity relation on S is a maximal similarity relation.
From this it follows that the identity relation on S′ is also a similarity relation.

Now, in order to derive a contradiction, assume that the identity relation on S′ is not a
maximal similarity relation, so there are states s, t ∈ S′, such that s 6= t and s ' t. Four
cases are distinguished:

- s ∈ S and t 6∈ S. By definition of lts, s
⊥−→ but t 6 ⊥−→ in lts(K). Thus, s 6' t.

- s 6∈ S and t ∈ S. By definition of lts, t
⊥−→ but s 6 ⊥−→ in lts(K). Thus, s 6' t.

- s ∈ S and t ∈ S. In K, s and t are not similar. This means that at least one of the
following statements holds:

- There is no simulation relation B with (s, t) ∈ B. Then, assuming s0 = s ∧ t0 = t,
there exist sequences of transitions s0 → s1 → · · · → sn and t0 → t1 → · · · → tn−1
with L(si) = L(ti) (for i < n) and there is no state tn, such that tn−1 → tn and

L(tn) = L(sn). This means that in lts(K), the transition sn−1
L(sn)−−−→ sn cannot be

mimicked from tn−1. Thus, s 6' t.
- There is no simulation relation B with (t, s) ∈ B. The derivation of this contra-

diction is symmetrical to the previous case, so s 6' t.

- s 6∈ S and t 6∈ S. By definition, there are distinct s′, t′ ∈ S such that s = s′ and t = t′.

The only transitions of s and t are s
L(s′)−−−→ s′ and t

L(t′)−−−→ t′. By definition of s ' t, there
are simulation relations B and B′ such that (s, t) ∈ B and (t, s) ∈ B′. This means that
also (s′, t′) ∈ B and (t′, s′) ∈ B′. So s′ ' t′ for s′, t′ ∈ S, which led to a contradiction in
the previous item. Concludingly, s 6' t.

From this case distinction it follows that S′ = S/'. This means that by definition of ∀-
quotient, we also have that I ′ = I/'. Trivially, it holds that Act = Act/'. The last step in
this proof is to show that →′ = →/'. Both of the following statements must hold:

- If s
a−→ t in lts(K), then also s

a−→ t in lts(K)/'. As S′ = S/', both s and t are the
only states of their equivalence classes in lts(K), c1 and c2 respectively. So there is an
a-transition from every state in c1 to a state in c2. Following from the definition of
∀-quotient, this means that s

a−→ t in lts(K)/'.

- If s
a−→ t in lts(K)/', then also s

a−→ t in lts(K). Again, we call the equivalence classes of

s and t in lts(K), c1 and c2 respectively. As s
a−→ t in lts(K)/', there is an a-transition

from every state in c1 to a state in c2. As s and t are the only states in their equivalence
class, this means that s

a−→ t in lts(K).

As this shows that also →′ = →/', we can conclude that lts(K) = lts(K)/'.

Lemma 3. lts−1 is the functional reverse of lts, so lts−1 ◦ lts = Id.

Proof. This proof follows directly from the definitions of lts and lts−1 and is given in [RW10].

Lemma 4. minKS = lts−1 ◦minLTS ◦ lts ◦minKS implies minKS = lts−1 ◦minLTS ◦ lts.

Proof. This proof has been given for minimization modulo bisimilarity and stuttering equiva-
lence in [RW10], along with a proof of the preservation and reflection of ' by lts. Combining
these two elements easily yields the proof for this lemma.

/department of computer science 9

Seminar Project Technische Universiteit Eindhoven

Theorem 5. minKS = lts−1 ◦minLTS ◦ lts

Proof. It is shown in Lemma 2 that:

minLTS ◦ lts ◦minKS = lts ◦minKS

From Lemma 1, it follows that minLTS ◦ lts ◦minKS(K) is reversible for an arbitrary Kripke
Structure K. This means that we also have:

lts−1 ◦minLTS ◦ lts ◦minKS = lts−1 ◦ lts ◦minKS

From Lemma 3 it follows that:

lts−1 ◦minLTS ◦ lts ◦minKS = minKS

Finally, Lemma 4 can be applied to conclude:

minKS = lts−1 ◦minLTS ◦ lts

3.2 Minimization modulo similarity of LTS using minimization in KS

In order to prove that minimization of an LTS can be done using an implementation of
minimization in KS, we first need to define an alternative embedding, ks′. This embedding is
defined as follows:

Definition 19 (The embedding ks′). The embedding ks′ : LTS → KS is defined as ks′(T) =
〈S′, I ′, AP,→′, L〉 for an arbitrary LTS T = 〈S, I, Act,→〉, where:

- S′ = S ∪ {(a, t) | for each (s, a, t) ∈→ such that a 6= τ}

- I ′ = I

- AP = Act ∪ {⊥}, where ⊥ 6∈ Act

- →′ is the smallest relation satisfying:

s
a−→ t a 6= τ

s→′ (a, t) (a, t)→′ t
s
τ−→ t

s→′ t

- L(s) = {⊥} for s ∈ S, and L((a, t)) = {a}.

Lemma 6. minKS ◦ ks′ = minKS ◦ ks

Proof. We want to show that for an arbitrary Labeled Transition System T , it holds that
minKS ◦ ks′(T) is isomorphic to minKS ◦ ks(T). In order to derive a contradiction, let us
assume that there exists an LTS T = 〈S, I, Act,→〉 such that minKS ◦ ks′(T) 6= minKS ◦ ks(T).
We have that minKS ◦ ks′(T) = 〈S′, I ′, AP ′,→′, L′〉 and minKS ◦ ks(K) = 〈S′′, I ′′, AP ′′,→′′
, L′′〉. As we assumed that minKS ◦ ks′(T) 6= minKS ◦ ks(T), one of the following statements
must hold:

10 /department of computer science

Technische Universiteit Eindhoven Seminar Project

- S′ 6= S′′. The only difference in the definitions of ks and ks′ is that for every transition
in→, there is a state (s, a, t) in ks(T), while there is a state (a, t) in ks′(T). This means
that if there are multiple states s such that s

a−→ t (for some action a and some state
t), there will be only one state (a, t) in ks′(T). In ks(T) however, there will be a state
(s, a, t) for each s. As all of these states (s, a, t) have the same label (a), and their
only outgoing transition is to t, it is easy to see that they are all simulation equivalent.
Thus, they will be grouped together in an equivalence class by definition of ∀-quotient.
Concludingly, the minimization eliminates the redundant ’transition’-states (s, a, t) in
ks(T), such that S′ = S′′.

- I ′ 6= I ′′. From the definitions of ks and ks′, it follows that the set of initial states of
both ks′(T) and ks(T) is I. As the previous case showed that S′ = S′′, we can conclude
from the definition of ∀-quotient that I ′ = I ′′.

- AP ′ 6= AP ′′. It trivially holds by definition of ks, ks′ and ∀-quotient that AP ′ = AP ′′.

- →′ 6=→′′. As we discussed in the first case, the difference between ks and ks′ is that the
’transition’-states (s, a, t) of ks for all s with s

a−→ t, are grouped together into a single
state (a, t) in ks′. We also showed already that all these states (s, a, t) will be in the
same equivalence class c when minimizing. There will be an outgoing transition from c
to the equivalence class of t, just like there will be an outgoing transition from (a, t) to
the equivalence class of t in ks′. Moreover, for all equivalence classes d of the states s
with s

a−→ t, there will be a transition from d to c in ks if and only if there is a transition
from d to c in ks′. As ks and ks′ treat the transitions, the τ -transitions, in exactly the
same way, we can conclude that →′=→′′.

- L′ 6= L′′. Using the first case, where we showed that S′ = S′′, it is straightforward to
see that L′ = L′′.

As this case distinction shows that there exists no LTS T such that minKS ◦ ks′(T) 6=
minKS ◦ ks(T), we can conclude that minKS ◦ ks′ = minKS ◦ ks.

Lemma 7. We have that minKS ◦ ks′ ◦minLTS = ks′ ◦minLTS

Proof. Given a Labeled Transition System T = 〈S, I, Act,→〉 that is minimal with respect
to similarity (in LTS), we have to show that ks′(T) = 〈S′, I ′, AP,→′, L〉 is minimal w.r.t.
similarity (in KS), so ks′(T) = ks′(T)/' = 〈S/', I/', AP/',→/', L/'〉. In order to prove that
S′ = S/', we show that the identity relation on the states of ks′(T) is a similarity relation,
and that this relation is maximal.

As T is minimal, we know that the identity relation on S is a maximal similarity relation.
From this it follows that the identity relation on S′ is also a similarity relation.

Now, in order to derive a contradiction, assume that the identity relation on S′ is not a
maximal similarity relation, so there are states s, t ∈ S′, such that s 6= t and s ' t. Four
cases are distinguished:

- s ∈ S and t 6∈ S. By definition of ks′, L(s) = {⊥} but L(t) 6= {⊥} in ks′(T). Thus,
s 6' t.

- s 6∈ S and t ∈ S. By definition of ks′, L(t) = {⊥} but L(s) 6= {⊥} in ks′(T). Thus,
s 6' t.

/department of computer science 11

Seminar Project Technische Universiteit Eindhoven

- s ∈ S and t ∈ S. In T , s and t are not similar. This means that at least one of the
following statements holds:

- There is no simulation relation B with (s, t) ∈ B. Then, assuming s0 = s ∧ t0 = t,

there exist sequences of transitions s0
a1−→ s1

a2−→ . . .
an−→ sn and t0

a1−→ t1
a2−→

. . .
an−1−−−→ tn−1 and there is no state tn, such that tn−1

an−→ tn. This means that in
ks′(T), the transition sn−1 → (an, sn) cannot be mimicked from tn−1. Thus, s 6' t.

- There is no simulation relation B with (t, s) ∈ B. The derivation of this contra-
diction is symmetrical to the previous case, so s 6' t.

- s 6∈ S and t 6∈ S. By definition of ks′, there are (s′, a, s′′), (t′, a′, t′′) ∈→ such that
s = (a, s′′) and t = (a′, t′′). As s 6= t, one of the following statements holds:

- a 6= a′. Then L(s) 6= L(t), so s 6' t.
- s′′ 6= t′′. Then there is a transition s → s′′ in ks′(T), which cannot be mimicked

from t, as the only transition from t is t→ t′′ and s′′ 6' t′′. So, s 6' t.

From this case distinction it follows that S′ = S/'. This means that by definition of ∀-
quotient, we also have that I ′ = I/' and L′ = L/'. Trivially, it holds that AP = AP/' . The
last step in this proof is to show that →′ = →/'. Both of the following statements must
hold:

- If s → t in ks′(T), then also s → t in ks′(T)/'. As S′ = S/', both s and t are the
only states of their equivalence classes in ks′(T), c1 and c2 respectively. So there is
an transition from every state in c1 to a state in c2. Following from the definition of
∀-quotient, this means that s→ t in ks′(T)/'.

- If s → t in ks′(T)/', then also s → t in ks′(T). Again, we call the equivalence classes
of s and t in ks′(T), c1 and c2 respectively. As s→ t in ks′(T)/', there is an transition
from every state in c1 to a state in c2. As s and t are the only states in their equivalence
class, this means that s→ t in ks′(T).

As this shows that also →′ = →/', we can conclude that ks′(T) = ks′(T)/'.

Lemma 8. Given a reversible Kripke Structure K, we have that K/' is reversible.

Proof. Suppose we have a reversible Kripke Structure K = 〈S, I, AP,→, L〉, and its ∀-quotient
system K/' = 〈S/', I/', AP/',→/', L/'〉. In order to derive a contradiction, let us assume
that K/' is not reversible. This means that at least one of the following statements holds:

- AP/' 6= Act∪{⊥} for some set Act. As K is reversible, there is some set Act′ such that
AP = Act′ ∪ {⊥}. By definition, AP/' = AP , so it also holds that AP/' = Act′ ∪ {⊥}.

- There is an s ∈ I/', such that L(s) 6= {⊥}. From the definition of ∀-quotient, it
follows that s is an equivalence class of states s1, . . . , sn ∈ S, such that si ∈ I, for some
1 ≤ i ≤ n. As T is reversible, it holds that L(si) = {⊥}. Note that s1, . . . , sn are all in
the same equivalence class, so L(sj) = {⊥}, for all 1 ≤ j ≤ n. By definition, this also
means that L(s) = {⊥}.

12 /department of computer science

Technische Universiteit Eindhoven Seminar Project

- There is an s ∈ S/', such that |L(s)| 6= 1. From the definitions of ∀-quotient and
similarity, it follows that s is an equivalence class of states s1, . . . , sn ∈ S, such that
L(si) = L(sj) for all 1 ≤ i ≤ j ≤ n. As K is reversible, |L(si)| = 1 for every 1 ≤ i ≤ n.
By definition, L(s) = L(si) (again for 1 ≤ i ≤ n, so |L(s)| = 1.

- There exist s, s′, s′′ ∈ S/', with ⊥ 6∈ L(s), s→ s′, s→ s′′, such that s′ 6= s′′ ∨
L(s′) 6= {⊥}. In this case, s, s′ and s′′ are equivalence classes of states s1, . . . , sn ∈ S,
s′1, . . . , s

′
n′ ∈ S and s′′1, . . . , s

′′
n′′ ∈ S respectively. For every 1 ≤ i ≤ n, there are

1 ≤ i′ ≤ n′ and 1 ≤ i′′ ≤ n′′, with si → s′i′ and si → s′′i′′ . Now at least one of the
following statements is true:

- s′ 6= s′′, so {s′1, . . . , s′n′} 6= {s′′1, . . . , s′′n′′}. As equivalence classes are disjunct, we
have that (for every 1 ≤ i ≤ n) there are s′i′ and s′′i′′ , such that ⊥ 6∈ L(si), si → s′i′ ,
si → s′′i′′ and s′i′ 6= s′′i′′ . This contradicts the assumption that K is reversible, so
s′ = s′′.

- L(s′) 6= {⊥}, so L(s′i′) 6= {⊥} (for all 1 ≤ i′ ≤ n). Then there exists si with
⊥ 6∈ L(si) and si → s′i′ , such that L(s′i′) 6= {⊥}. This contradicts the assumption
that K is reversible, so L(s′) = {⊥}.

Lemma 9. ks−1 is the functional reverse of ks′, so ks−1 ◦ ks′ = Id.

Proof. This proof follows directly from the definitions of ks′ and ks−1 and very similar to the
proof for ks and ks−1 as given in [RW10].

Lemma 10. minLTS = ks−1 ◦minKS ◦ ks′ ◦minLTS implies minLTS = ks−1 ◦minKS ◦ ks′.

Proof. This proof is symmetrical to that of Lemma 4.

Lemma 11. minLTS = ks−1 ◦minKS ◦ ks′

Proof. This proof is symmetrical to that of Theorem 5, using Lemmas 7-10 instead of Lemmas
1-4.

Theorem 12. minLTS = ks−1 ◦minKS ◦ ks

Proof. From Lemma 6 we have that minKS ◦ ks′ = minKS ◦ ks, meaning that for an arbitrary
LTS T it holds that minKS ◦ ks′(T) is isomorphic to minKS ◦ ks(T). This means that we can
easily conclude from Lemma 11 that minLTS = ks−1 ◦minKS ◦ ks.

/department of computer science 13

Seminar Project Technische Universiteit Eindhoven

4 An Example of Minimization modulo Similarity

This section gives an example of minimization modulo similarity of a Kripke Structure, while
using minimization techniques for Labeled Transition Systems. The intention is to give a
visualisation of Theorem 5, in order to give a better view on how the embeddings and mini-
mizations work in practice.

First, we present the example Kripke Structure K:

Figure 1: The original Kripke Structure K.

Minimizing K using the definition of ∀-quotient yields:

Figure 2: minKS(K), the ∀-quotient of K.

14 /department of computer science

Technische Universiteit Eindhoven Seminar Project

Translating K into an LTS using the embedding lts results in the following structure:

Figure 3: The embedding lts(K).

Applying the ∀-quotient definition on lts(K) in the LTS domain yields:

Figure 4: The minimized embedding minLTS ◦ lts(K).

/department of computer science 15

Seminar Project Technische Universiteit Eindhoven

When we apply the reverse embedding lts−1 to translate minLTS ◦ lts(K) back to a Kripke
Structure gives us the final result:

Figure 5: The reversed minimized embedding lts−1 ◦minLTS ◦ lts(K).

Note that in Figures 2 and 5 we see that for the example Kripke Structure K, it holds that
minKS(K) = lts−1 ◦minLTS ◦ lts(K).

5 Alternative embeddings from KS to LTS

The embedding lts as presented in section 2 is the most common translation from KS to LTS
in literature. This observation contributed to chosing this embedding as our main embedding
for the proofs and examples in this document. However, applying the embedding results in an
LTS that is a lot larger than the original KS (it has twice as many states), and the behaviour
of such an LTS is intuitively not equivalent to the behaviour of the KS. More specifically, an
execution of the LTS could loop infinitely within a state s and its dual s.

Therefore, we have reasons to look for ’better’ embeddings. Such an embedding should
provide us with an LTS that is more intuitively related to the original KS, while preserving
the properties that [DNV90] and [RW10] have proved for lts. Many possible alternatives have
been suggested, including the following:

Definition 20 (The embedding lts′). The embedding lts′ : KS → LTS is defined as:
lts′(K) = 〈S′, I ′, Act,→′〉 for an arbitrary Kripke Structure K = 〈S, I, AP,→, L〉, where:

- S′ = S ∪ {s | s ∈ S}, assuming that s 6∈ S for all s ∈ S.

- I ′ = I

- Act = 2AP ∪ {⊥}

- →′ is the smallest relation satisfying:

16 /department of computer science

Technische Universiteit Eindhoven Seminar Project

s
L(s)−−→

′
s

s→ t L(s) = L(t)

s
τ−→
′
t

s→ t L(s) 6= L(t)

s
L(t)−−→

′
t

While this embedding still has as many states as lts, its behaviour is more obviously
related to that of the original KS, as the aforementioned infinite loop within a state and its
dual is no longer possible.

This alternative embeddings is only an example for translations that may be an improve-
ment to lts, but it shows how a subtle change can give an entirely different result. In this
document, we do not focus on finding the best possible embedding, but a future research may
be required to investigate a more satisfying alternative.

6 Conclusions

Extending the works of [DNV90] and [RW10], the interchangeability of KS and LTS for model
minimization modulo similarity has been established. In section 3, an extensive proof is given
that the embeddings lts and ks can be applied to reuse minimization techniques that maintain
similarity.

As this is no trivial property, but shows a rather strong connection between KS and
LTS, these results contribute to the accepted assumption that the two languages are equally
expressive.

7 Future work

Along with the investigation of minimizing while maintaining bisimilarity and stuttering
equivalence by [RW10], and the focus on similarity in this document, the most important
equivalence remaining for Kripke Structures is trace equivalence. While some intuitions have
been presented, a more formal proof of the interchangability between KS and LTS would
practically complete the minimization topic. Hence, this could be an obvious extension.

Of course, there are many more operations besides minimization that may be interesting.
In a similar manner to this document, one could investigate whether it is possible to achieve
useful results in one domain while using techniques in the other domain.

Finally, there are reasons to look for an improved version of the embedding lts. It produces
a rather large LTS, while there may be nicer translations possible. As pointed out in section
5, there are many ways to make a translation from KS to LTS, and it would be useful to find
the best possible embedding.

References

[BG03] Doron Bustan and Orna Grumberg. Simulation-based minimization. ACM Trans.
Comput. Logic, 4(2):181–206, 2003.

/department of computer science 17

Seminar Project Technische Universiteit Eindhoven

[DNV90] Rocco De Nicola and Frits Vaandrager. Action versus state based logics for transi-
tion systems. 469:407–419, 1990.

[RW10] Michel A. Reniers and Tim A.C. Willemse. Folk theorems on the correspondence
between state-based and event-based systems. SOFSEM 2011, 2010.

18 /department of computer science

