Algorithms for Model Checking (2IW55)

Lecture 11
Timed Verification: Timed Automata
Chapter 16, 17

Tim Willemse
(timw@win.tue.nl)
http://www.win.tue.nl/~timw
HG 6.81
Outline

Timed Systems

Informally: Timed Automata

Formaly: Timed Automata

Summary

Exercise
Timed Systems

So far, we have only considered **untimed** systems.

- Timing is of crucial importance for many systems:
 - controllers found in airplanes (landing gear, collision avoidance).
 - controllers found in cars (airbag, future *drive-by-wire* systems).
 - communication protocols (re-routing upon timeouts).

Functional correctness is only one of many aspect:

- the correct timing of an event is crucial.
- timing influences behaviour: the passing of time may disable events.

which model of time to use:

- Discrete time.
- Continuous time.
Timed Systems

In discrete time, time has a discrete nature:

- Time can be described by natural numbers
- A special tick action is used to model the advance of a single time unit

Advantage: standard temporal logic can be used to express timing properties: The next-operator measures time.

Example
A timeout is set two time units after a message is sent:

\[A \mathcal{G} (\text{sent} \rightarrow X X (\text{timeout})) \]

Discrete time is mainly used for synchronous systems, such as hardware.
Simplicity is the key advantage to discrete time:

▶ We can reuse mixed Kripke Structures: timed transitions are labelled with a tick action.
▶ We can check properties using existing languages such as CTL*.
This means that traditional model checking algorithms are applicable.

Main disadvantages of discrete time:

▶ delay between any pair of actions is a multiple of an a priori fixed minimal delay.
▶ model is therefore only accurate up-to this minimal delay.
▶ finding the minimal delay is difficult in practice:
 • how to find the minimal delay in a distributed, asynchronous system?
In **continuous time**, time has a **continuous nature**:

- Time can be described by a **dense domain**, such as **real numbers**
- State changes can happen at **any point** in time

Example

An event `on` that must take place between time 0 and time 10 can be executed at time 0.000001, 1, e, π, . . .:

\[
\begin{align*}
0.000001 & \quad \ldots \quad 1 \quad \ldots \quad e \quad \ldots \quad \pi \quad \ldots \quad 10 \\
\arrows & \quad on \quad on \quad on \quad on
\end{align*}
\]

Problem: there are **infinitely** many moments that action `on` can happen. How to check that it happens before time t?
Approach by Alur and Dill:

- Restrict expressive power of the temporal logic ... Timed CTL

- Describe timed systems symbolically ... Timed Automata

- Compute a finite representation of the infinite state space on-demand ... Region Automata
Outline

Timed Systems

Informally: Timed Automata

Formally: Timed Automata

Summary

Exercise
Informally: Timed Automata

A Timed Automaton:
- has vertices called locations,
- has edges called switches which are labelled with actions (not shown),
- Intuition: executing a switch consumes no time, i.e. it is instantaneous.
- time progresses in locations.
Informally: Timed Automata

- Has real-valued clocks x, y, z, \ldots, which all advance with the same speed,
- Has guards indicating when an edge may be taken.
- Intuition: Guards express at which moments in time a transition is enabled.
- Enabledness depends on the constraints on clocks.
Informally: Timed Automata

- Switches can reset clocks upon execution, i.e. set some clocks to 0.
- Time can only increase as long as the location invariant holds.
- A switch must be taken before the invariant becomes invalid.

location invariant
Example

The following timed automaton models a simple lamp with three locations: off, low and bright. If a button is pressed the lamp is turned on for at most ten time-units. If the button is pressed again, the lamp is turned off. However, if the button is pressed rapidly, the lamp becomes bright.
Outline

Timed Systems

Informally: Timed Automata

Formaly: Timed Automata

Summary

Exercise
Formally: Timed Automata

Timing constraints are provided by clock constraints:

\[\phi ::= \text{true} \mid x < c \mid x - y < c \mid x \leq c \mid x - y \leq c \mid \neg \phi \mid \phi \land \phi \]

- \(c \in \mathbb{N} \) are constants (sometimes rational numbers);
- \(x, y \in C \) are clocks
- As usual:
 - \(x \geq c \) is short for \(\neg(x < c) \);
 - \(x \in [c_1, c_2) \) is short for \(\neg(x < c_1) \land (x < c_2) \)

The set of clock constraints over a set of clocks \(C \) is denoted \(C(C) \).
A timed automaton is a tuple

\[T = \langle L, L_0, Act, C, \rightarrow, \iota \rangle \]

- \(L \) is a finite set of locations; \(L_0 \subseteq L \) is a non-empty set of initial locations
- \(Act \) is the set of actions
- \(C \) is a finite set of clock variables
- \(\rightarrow \subseteq L \times C(C) \times Act \times 2^C \times L \) is the set of switches
- \(\iota : L \rightarrow C(C) \) is the invariant assignment function
Formally: Timed Automata

- A clock constraint ϕ contains free variables
- The truth of a clock constraint ϕ depends on the values of the clocks
- A clock valuation ν for a set C of clocks is a function $\nu : C \to \mathbb{R}_{\geq 0}$
- Clock constraints are evaluated in the context of a clock valuation ν:
 - $[\text{true}]_\nu = \text{true}$
 - $[x < c]_\nu = \nu(x) < c$
 - $[x - y < c]_\nu = \nu(x) - \nu(y) < c$
 - $[x \leq c]_\nu = \nu(x) \leq c$
 - $[x - y \leq c]_\nu = \nu(x) - \nu(y) \leq c$
 - $[\neg \phi]_\nu = \neg [\phi]_\nu$
 - $[\phi_1 \land \phi_2]_\nu = [\phi_1]_\nu \text{ and } [\phi_2]_\nu$
- We write $\nu \models \phi$ iff $[\phi]_\nu = \text{true}$.
- Clock valuation update: $\nu + d$ is defined as: $(\nu + d)(x) = \nu(x) + d$ for all $d \in \mathbb{R}_{\geq 0}$.
- Clock valuation reset: $[\nu]_R$ is defined as: $[\nu]_R(x) = 0$ if $x \in R$, else $\nu(x)$.
Example

Let x, y be clocks and $\nu : \{x, y\} \rightarrow \mathbb{R}_{\geq 0}$ a clock valuation.

- if $\nu(x) = 2$ and $\nu(y) = \pi$, then $x < 3 \land y \geq 3$ holds
- the clock constraint $x - y > 2$ is valid whenever $\nu(x) - \nu(y) > 2$.
- the clock constraint $x \geq 2 \land x \leq 2$ is only valid whenever $\nu(x) = 2$.
- the clock constraint $x \geq 2 \land x - y < 2$ is only valid for $\nu(x) \geq 2$ and $\nu(y) > \nu(x) - 2$.
Example
The effect of a lower bound guarding a switch:

\[x \leq 2 \]

\[\{x\} \]
Formally: Timed Automata

Example
The effect of a lower bound and upper bound guarding a switch:

\[2 \leq x \leq 3 \]

\[\{ x \} \]

\[\text{value of} \ x \]
Example
The effect of an invariant:

\[x \leq 3 \]

\{ x \}

value of \(x \)
Example
The effect of an invariant and guard combined:

\[x \leq 3 \]

\[x \geq 2 \]

\{ x \}

value of \(x \)
Example

Switches that reset different clocks can cause an arbitrary difference between clock values. This is impossible to describe in a discrete time setting.
Formally: Timed Automata

Let $\mathcal{T} = \langle L, L_0, Act, C, \longrightarrow, \iota \rangle$ be a Timed Automaton. Its semantics is defined as a timed transition system: $[\mathcal{T}] = \langle S, S_0, Act, \rightarrow, \iota \rangle$.

- $S = \{(l, \nu) \mid l \in L \land \nu : C \to \mathbb{R}_{\geq 0} \land \nu \models \iota(l)\}$, i.e. all combinations of locations and clock valuations that do not violate the location invariant.

- $S = \{(l, \nu) \mid l \in L_0 \land \nu : C \to \mathbb{R}_{\geq 0} \land \nu \models \iota(l)\}$.

- $\longrightarrow \subseteq S \times Act \times S$ is defined as follows:

\[
\begin{align*}
 l \xrightarrow{g \ a \ R} l' & \quad \nu \models g \land \iota(l) \\
 v' &= [v]_R \\
 \nu' \models \iota(l')
\end{align*}
\]

\[
(l, \nu) \xrightarrow{a} (l', \nu')
\]

- $\iota \subseteq S \times \mathbb{R}_{\geq 0} \times S$ is defined as follows:

\[
\begin{align*}
 \nu \models \iota(l) & \quad \forall 0 \leq d' \leq d : \nu + d' \models \iota(l) \\
\end{align*}
\]

\[
(l, \nu) \xleftarrow{d} (l, \nu + d)
\]
Lemma
Let $\iota(l)$ be a negation-free location invariant. Then for all $d \in \mathbb{R}_{\geq 0}$ and all ν:

$$\nu \models \iota(l) \text{ and } \nu + d \models \iota(l) \text{ implies } \forall 0 \leq d' \leq d : \nu + d' \models \iota(l)$$

- The proof follows by a structural induction on $\iota(l)$.
- This means that for negation-free location invariants, we can simplify the rule for timed transition relations:

$$\frac{\nu \models \iota(l) \quad \nu + d \models \iota(l)}{(l, \nu) \xrightarrow{d} (l, \nu + d)}$$
Formally: Timed Automata

Recalling intuition:

- A switch $l \xrightarrow{g \ a \ R} l'$ means that:
 - action a is enabled whenever guard g evaluates to true.
 - upon executing the switch, we move from location l to location l' and reset all clocks in R to zero.
 - only locations l' that can be reached with clock values that satisfy the location invariant.

- an invariant $t(l)$ limits the time that can be spent in location l.
 - staying in location l only is allowed as long as the invariant evaluates to true.
 - before the invariant becomes invalid location l must be left.
 - if no switch is enabled when the invariant becomes invalid no further progress is possible.

- Thus, we need to determining when a clock constraint is valid or invalid.
Outline

Timed Systems

Informally: Timed Automata

Formaly: Timed Automata

Summary

Exercise
Summary

- Timed Systems can be modelled by discrete time or continuous time.
- For discrete time, existing model checking can be reused.
- For continuous time, a new model is introduced: Timed Automata.
- Timed Automata give rise to infinite transition systems.
- Timed Automata can model systems that cannot be described by means of discrete time.
Outline

Timed Systems

Informally: Timed Automata

Formally: Timed Automata

Summary

Exercise
Exercise

Consider the following Timed Automaton.

- Explain which switches can be executed.
- Is there a possibility that the Timed Automaton enters a state in which time cannot progress anymore?
- Give the Timed Transition System for the Timed Automaton.