Algorithms for Model Checking (2IW55)

Lecture 2
Fairness & Basic Model Checking Algorithm for CTL and fair CTL
– based on strongly connected components –
Chapter 4.1, 4.2 + SIAM Journal of Computing 1(2), 1972

Tim Willemse
(timw@win.tue.nl)
http://www.win.tue.nl/~timw
HG 6.81
Outline

Fairness for CTL

Strongly Connected Components

CTL Model Checking Algorithm

Example: demanding children

CTL Model Checking with Fairness

Summary

Exercise
Temporal Logics: Fairness

Atomic Propositions: EP, EQ, EA, JP, JQ, JA

Intended meaning: John or Ella is either Playing, posing Questions, getting Answers

To exclude that one child gets all attention, we want that both ¬EQ as well as ¬JQ hold infinitely often

fairness constraints ensuring this:
\[F = \{\{s_{00}, s_{01}, s_{02}, s_{20}, s_{21}\}, \{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\}\} \]
Sometimes properties are violated by “unrealistic” paths only, for instance due to a scheduler. In this case, one may restrict to fair paths.

A Kripke Structure over \(AP \) with fairness constraints is a structure \(M = \langle S, R, L, F \rangle \), where:

- \(\langle S, R, L \rangle \) is an “ordinary” Kripke Structure as before
- \(F \subseteq 2^S \) is a set of fairness constraints

A path is fair if it “hits” each fairness constraint infinitely often:

\[
\text{fair}(\pi) \text{ iff } \forall C \in F. \{i \mid \pi(i) \in C\} \text{ is an infinite set}
\]
In CTL^* with fairness semantics (\models_{F}), only fair paths will be considered.

Given a fixed Kripke Structure with fairness constraints $M = \langle S, R, L, F \rangle$, $s \models_{F} f$ means: formula f holds in state s in the fair CTL^* semantics.

The definition of \models_{F} coincides with \models except for the following four clauses:

- $s \models_{F} \text{true}$ iff there is some fair path starting in s
- $s \models_{F} p$ iff $p \in L(s)$ and there is some fair path starting in s
- $s \models_{F} \text{A } f$ iff for all fair paths π starting in s, we have $\pi \models_{F} f$
- $s \models_{F} \text{E } f$ iff for some fair path π starting in s, we have $\pi \models_{F} f$
Temporal Logics: Fairness

Note that $s_0 \models E F G p$, but $s_0 \not\models A F G p$

- First, consider as Fairness constraint: $F = \{ \{s_3\}\}$
 - then all fair paths contain s_3 infinitely often
 - we have $s_0 \models_F A F G p$

- Next, consider as Fairness constraint: $F = \{ \{s_2\}\}$
 - then all fair paths contain s_2 infinitely often
 - in particular, fair paths cannot contain s_3
 - so $s_0 \not\models_F E F G p$
Outline

Fairness for CTL

Strongly Connected Components

CTL Model Checking Algorithm

Example: demanding children

CTL Model Checking with Fairness

Summary

Exercise
Strongly Connected Components

Given a directed graph $G = \langle V, E \rangle$
- let $s \rightarrow^*_G t$ mean that there is a path from node s to t in G
- a strongly connected component (SCC) is a maximal subgraph S of G, such that for all $s, t \in S$, $s \rightarrow^*_G t$ and $t \rightarrow^*_G s$
- an SCC is non-trivial if it contains at least one edge

The SCCs of a graph (e.g. a Kripke Structure) can be computed in $O(|V| + |E|)$ time with an algorithm based on depth-first search:
- Text book version (see Introduction to Algorithms, Corben et al)
- Tarjan’s original algorithm (see SIAM Journal on Computing 1(2), 1972)

The second algorithm is most useful in model checking contexts
Strongly Connected Components

Idea behind Tarjan’s SCC algorithm
Given is a directed graph $G = \langle V, E \rangle$

- compute *spanning trees* by depth-first search; *number* the nodes in the order they are visited
- the other, non-tree edges are either:
 - *forward* edges (can be ignored)
 - *backward* edges (to an ancestor)
 - *cross* edges (to another subtree)

 backward and cross edges lead to nodes with smaller numbers

- nodes are kept on a *stack*; the nodes of a discovered SCC will be popped immediately from this stack
- compute $root[v]$: the smallest node which is:
 - reachable from v by a sequence of tree-edges followed by at most one non-tree edge; and
 - if $root[v] = v$, the root of a new SCC is found, and the whole SCC is popped from the stack
Strongly Connected Components

Procedure FIND_SCC applies a repeated depth-first search on yet unprocessed nodes of the input graph $G = \langle V, E \rangle$
The depth-first search is delegated to the procedure DFS_SCC.

```
procedure FIND_SCC
    i := 0;
    empty the stack;
    leave all nodes unnumbered;
    for vertice $w \in V$ do
        if $w$ is not yet numbered then
            DFS_SCC($w$);
        end if
    end for
end procedure
```
procedure DFS_SCC(v)

\[\text{root}[v] := \text{number}[v] := i := i + 1; \]
push \(v \) on the stack;
for successor \(w \) of \(v \) do
 if \(w \) is not yet numbered then
 DFS_SCC(w);
 \[\text{root}[v] := \min(\text{root}[v], \text{root}[w]); \]
 else if \(\text{number}[w] < \text{number}[v] \) and \(w \) on the stack then
 \[\text{root}[v] := \min(\text{root}[v], \text{number}[w]); \]
 end if
end for
if \(\text{root}[v] = \text{number}[v] \) then
 while top \(w \) of stack satisfies \(\text{number}(w) \geq \text{number}(v) \) do
 pop \(w \) from stack;
 end while
end if
end procedure
Strongly Connected Components

Example: SCC algorithm

A possible run of the SCC algorithm, with DFS node numbers, final root-values (in square brackets), tree edges (plain arrow), forward edges (dotted), back edges (dashed), cross edges (dash/dot). Two SCCs are found: number and root value are equal.
We analyse the space and time requirements for running \texttt{FIND_SCC} on a graph \(G = \langle V, E \rangle\):

- for every node:
 - \texttt{DFS_SCC} is called exactly once
 - all its outgoing edges are explored exactly once
- each node is pushed and popped from the stack exactly once
- checking whether a node is on the stack can be done in constant time, for instance by maintaining a Boolean array

Conclusion: Tarjan’s algorithm for finding strongly connected components runs in time and space \(O(|V| + |E|)\)
Outline

- Fairness for CTL
- Strongly Connected Components
- CTL Model Checking Algorithm
- Example: demanding children
- CTL Model Checking with Fairness
- Summary
- Exercise
Recall that CTL has the following ten temporal operators:

- $A X$ and $E X$: for all/some next state
- $A F$ and $E F$: inevitably and potentially
- $A G$ and $E G$: invariantly and potentially always
- $A [U]$ and $E [U]$: for all/some paths, until
- $A [R]$ and $E [R]$: for all/some paths, releases

Besides atomic propositions (AP), the constant true and the Boolean connectives (\neg, \vee), the following temporal operators are sufficient: $E X, E G, E [U]$.

Hence: only algorithms for computing formulae of the above form are needed.
Main loop of model checking CTL: check formula f on a Kripke Structure $\langle S, R, L \rangle$.

By recursion on f, algorithm $MC_{\text{CTL}}(f)$ computes $\text{label}(s)$ for all states $s \in S$, where $\text{label}(s)$ shall contain those subformulae of f that hold in s.

Algorithm $MC_{\text{CTL}}(f)$ employs a case distinction on the structure of f:

<table>
<thead>
<tr>
<th>f</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f = p$</td>
<td>add p to $\text{label}(s)$ for those states s with $p \in L(s)$</td>
</tr>
<tr>
<td>$f = g_0 \lor g_1$</td>
<td>$MC_{\text{CTL}}(g_0)$; $MC_{\text{CTL}}(g_1)$; add f to all states labelled with g_0 or g_1</td>
</tr>
<tr>
<td>$f = \neg g$</td>
<td>$MC_{\text{CTL}}(g)$; add f to all states not labelled with g</td>
</tr>
<tr>
<td>$f = E \times g$</td>
<td>$MC_{\text{CTL}}(g)$; add f to all states with an R-successor labelled by g</td>
</tr>
<tr>
<td>$f = E [g_0 \lor g_1]$</td>
<td>$MC_{\text{CTL}}(g_0)$; $MC_{\text{CTL}}(g_1)$; $\text{CHECK_EU}(g_0, g_1)$</td>
</tr>
<tr>
<td>$f = E \bigcirc g$</td>
<td>$MC_{\text{CTL}}(g)$; $\text{CHECK_EG}(g)$</td>
</tr>
</tbody>
</table>

Upon termination, $s \models f$ if and only if $f \in \text{label}(s)$
procedure CHECK_EU(f, g)
 \(T := \{ s \mid g \in \text{label}(s) \}; \)
 for all \(s \in T \) do \(\text{label}(s) := \text{label}(s) \cup \{ E [f \cup g] \}; \)
 end for
 while \(T \neq \emptyset \) do
 choose \(s \in T \);
 \(T := T \setminus \{ s \}; \)
 for all \(t \) satisfying \(t R s \) do
 if \(E [f \cup g] \notin \text{label}(t) \) and \(f \in \text{label}(t) \) then
 \(\text{label}(t) := \text{label}(t) \cup E [f \cup g]; \)
 \(T := T \cup \{ t \}; \)
 end if
 end for
 end while
end procedure

Observations:
- label all states where \(g \) holds
- search backwards over states where \(f \) holds
procedure CHECK_EG(f)
S' := \{s \mid f \in \text{label}(s)\};
SCC := \{C \mid C \text{ is a nontrivial SCC of } S'\};
T := \bigcup_{C \in SCC} \{s \mid s \in C\};
for all \(s \in T\) do
 \text{label}(s) := \text{label}(s) \cup \{E G f\};
end for
while \(T \neq \emptyset\) do
 choose \(s \in T\);
 T := T \setminus \{s\};
 for all \(t\) satisfying \(t \in S'\) and \(t \mathbin{R} s\) do
 if \(E G f \notin \text{label}(t)\) then
 \text{label}(t) := \text{label}(t) \cup \{E G f\};
 T := T \cup \{t\};
 end if
 end for
end while
end procedure

Observations:
- restrict attention to subgraph where \(f\) holds
- an infinite path in a finite graph eventually reaches a non-trivial SCC
We analyse the time complexity for the standard CTL model checking algorithm of formula f (with $|f|$ the number of subformulae) on Kripke Structure $M = \langle S, R, L \rangle$.

- There are at most $|f|$ calls to MC_{CTL}
- Backward reachability and detecting strongly connected components can be done in time linear to the Kripke Structure: $\mathcal{O}(|S| + |R|)$
- Hence, each recursive call takes at most $\mathcal{O}(|S| + |R|)$ time

So, the complexity of this CTL model checking algorithm is $\mathcal{O}(|f| \cdot (|S| + |R|))$, which is linear in both the formula and the state space.
Outline

Fairness for CTL

Strongly Connected Components

CTL Model Checking Algorithm

Example: demanding children

CTL Model Checking with Fairness

Summary

Exercise
Example: demanding children

- Intended meaning: John or Ella is either Playing, posing Questions, getting Answers

Requirement: Whenever John asks a question, he eventually gets an answer
Formula: \(A \square (JQ \rightarrow A F JA) \)
Example: demanding children

- Intended meaning: John or Ella is either Playing, posing Questions, getting Answers

Step 1: express using basic operators

\[A \bigwedge (JQ \rightarrow A F JA) \]
\[\equiv \]
\[\neg E [\text{true} U \neg(\neg JQ \lor \neg E G \neg JA)] \]
Example: demanding children

- Step 2: treat $E G \neg J A$
 - Restrict to the subgraph where $\neg J A$ holds
 - Find non-trivial SCCs
 - Backward reachability
Example: demanding children

- **Step 2: treat** $E \ G \ \neg J A$
 - **Restrict to the subgraph where** $\neg J A$ **holds**
 - **Find non-trivial SCCs**
 - **Backward reachability**
Example: demanding children

- ▶ Step 2: treat $EG \neg J A$
 - Restrict to the subgraph where $\neg J A$ holds
 - Find non-trivial SCCs
 - Backward reachability
Example: demanding children

Step 2: treat $E G \neg J A$
- Restrict to the subgraph where $\neg J A$ holds
- Find non-trivial SCCs
- Backward reachability

No new states are found. So, $E G \neg J A$ holds in the states $\{s_{00}, s_{10}, s_{20}, s_{01}, s_{11}, s_{21}\}$;
Example: demanding children

\[\{EP ,JP\} \quad \{EQ ,JP\} \quad \{EA ,JP\} \]

\[\{EP ,JQ\} \quad \{EQ, JQ\} \quad \{EA, JQ\} \]

\[\{EP, JA\} \quad \{EQ, JA\} \]

\[\{EP, JG\} \quad \{EQ, JG\} \quad \{EA, JG\} \]

\[\text{Step 3: treat } \neg E \ G \ \neg J A \]

\[\quad \text{• } E \ G \ \neg J A \text{ holds in } \{s_{00}, s_{10}, s_{20}, s_{01}, s_{11}, s_{21}\}, \text{ so } \neg E \ G \ \neg J A \text{ holds in } \{s_{02}, s_{12}\} \]

\[\text{Step 4: treat } \neg J Q \]

\[\quad \text{• } \neg J Q \text{ holds in } \{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\} \]

\[\text{Step 5: treat } \neg J Q \lor \neg E \ G \ \neg J A \]

\[\quad \text{• } \neg J Q \lor \neg E \ G \ \neg J A \text{ holds in } \{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\} \cup \{s_{02}, s_{12}\} = \{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\} \]
Example: demanding children

Step 6: treat \(\neg((\neg JQ \lor \neg E \ G \neg J\ A) \)

- \(\neg JQ \lor \neg E \ G \neg J\ A \) holds in \(\{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\} \), so \(\neg(\neg JQ \lor \neg E \ G \neg J\ A) \) holds in \(\{s_{01}, s_{11}, s_{12}\} \)

Step 7: compute \(E [true \ U \neg((\neg JQ \lor \neg E \ G \neg J\ A)] \)

- Start in \(\{s_{01}, s_{11}, s_{12}\} \)
- Perform a backward reachability analysis over states for which true holds
Example: demanding children

▶ Step 6: treat $\neg (\neg JQ \lor \neg \mathbf{E} G \neg JA)$
 - $\neg JQ \lor \neg \mathbf{E} G \neg JA$ holds in $\{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\}$, so $\neg (\neg JQ \lor \neg \mathbf{E} G \neg JA)$ holds in $\{s_{01}, s_{11}, s_{12}\}$

▶ Step 7: compute $\mathbf{E} \left[\mathbf{true} \ U \neg (\neg JQ \lor \neg \mathbf{E} G \neg JA) \right]$
 - Start in $\{s_{01}, s_{11}, s_{12}\}$
 - Perform a backward reachability analysis over states for which true holds
Example: demanding children

Step 6: treat \(\neg (\neg JQ \lor \neg E \ G \neg JA) \)
- \(\neg JQ \lor \neg E \ G \neg JA \) holds in \(\{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\} \)
 so \(\neg (\neg JQ \lor \neg E \ G \neg JA) \) holds in \(\{s_{01}, s_{11}, s_{12}\} \)

Step 7: compute \(E [true \ U \ (\neg JQ \lor \neg E \ G \neg JA)] \)
- Start in \(\{s_{01}, s_{11}, s_{12}\} \)
- Perform a backward reachability analysis over states for which \(true \) holds
Example: demanding children

▶ Step 6: treat $\neg(\neg JQ \lor \neg E G \neg JA)$
 • $\neg JQ \lor \neg E G \neg JA$ holds in $\{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\}$, so $\neg(\neg JQ \lor \neg E G \neg JA)$ holds in $\{s_{01}, s_{11}, s_{12}\}$

▶ Step 7: compute $E [true U \neg(\neg JQ \lor \neg E G \neg JA)]$
 • Start in $\{s_{01}, s_{11}, s_{12}\}$
 • Perform a backward reachability analysis over states for which true holds
Example: demanding children

- **Step 6:** treat \(\neg (\neg JQ \lor \neg E \ G \neg JA) \)
 - \(\neg JQ \lor \neg E \ G \neg JA \) holds in \(\{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\} \),
 - so \(\neg (\neg JQ \lor \neg E \ G \neg JA) \) holds in \(\{s_{01}, s_{11}, s_{12}\} \)

- **Step 7:** compute \(E [\text{true} \ U \ (\neg JQ \lor \neg E \ G \neg JA)] \)
 - Start in \(\{s_{01}, s_{11}, s_{12}\} \)
 - Perform a backward reachability analysis over states for which true holds
Example: demanding children

- **Step 6:** treat $\neg (\neg JQ \lor \neg E \ G \neg JA)$
 - $\neg JQ \lor \neg E \ G \neg JA$ holds in $\{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\}$, so $\neg (\neg JQ \lor \neg E \ G \neg JA)$ holds in $\{s_{01}, s_{11}, s_{12}\}$

- **Step 7:** compute $E[true \ U \ (\neg JQ \lor \neg E \ G \neg JA)]$
 - Start in $\{s_{01}, s_{11}, s_{12}\}$
 - Perform a backward reachability analysis over states for which true holds
Example: demanding children

Conclusion:

- So, $\text{E} \left[\text{true} \ U \left(\neg JQ \lor \neg \text{E} \ G \ (\neg J A) \right) \right]$ holds in all states
- Hence, its negation $\text{A} \ G \ (JQ \rightarrow \text{A} \ F \ J A)$ holds in no state
- The requirement does not hold for the full Kripke Structure
- Why? Because in this case, there is a path in which only Ella progresses while John is not being served.
- Next, we look at the Kripke Structure with Fairness Constraints
Outline

Fairness for CTL

Strongly Connected Components

CTL Model Checking Algorithm

Example: demanding children

CTL Model Checking with Fairness

Summary

Exercise
Recall: Kripke Structure $M = \langle S, R, L, F \rangle$ with fairness constraints $F \subseteq 2^S$.

- A path is fair if it “hits” each fairness constraint infinitely often
- A fair SCC is an SCC that contains an element from each constraint $C \in F$

Main idea of fair model checking for CTL:

- Special treatment for $s \models_F E G f$: CHECK_FAIR_EG
 - Restrict attention to $S' \subseteq S$ where f holds
 - Find a path to a fair non-trivial SCC in S'
- Label states where $E G$ true fairly holds with a new proposition symbol fair
- Treat the other operators using the original “unfair” procedures:
 - $s \models_F p$.. $s \models p \land \text{fair}$
 - $s \models_F E X f$.. $s \models E X (f \land \text{fair})$
 - $s \models_F E [f U g]$.. $s \models E [f U (g \land \text{fair})]$
CTL Model Checking with Fairness

- Assume fairness constraints $\neg EQ$ and $\neg JQ$.
- Remark: full graph is one big fair SCC, so $E G$ true holds everywhere.

$E G$ $\neg JA$:
- Restrict to subgraph with $\neg JA$
- Find fair non-trivial SCCs
- Do backward reachability

Hence: $JQ \land E G \neg JA$ holds fairly in NO state
Hence $E F (JQ \land E G \neg JA)$ holds nowhere fairly
Hence, its negation, the requirement $A G (JQ \rightarrow A F JA)$ fairly holds everywhere!
Outline

Fairness for CTL

Strongly Connected Components

CTL Model Checking Algorithm

Example: demanding children

CTL Model Checking with Fairness

Summary

Exercise
Summary

CTL model checking:

▶ SCC algorithm is used
▶ Tarjan’s SCC algorithm runs one depth-first search, computing SCCs on-the-fly. Time complexity is linear
▶ CTL model checking can be done in time linear in the size of the formula as well as in the Kripke Structure
▶ Extension with Fairness Constraints is straightforward and is useful in practice
▶ Why not treat fairness in formulae?

\[A [(G F C_1 \land G F C_2) \rightarrow Requirement] \]

• fairness cannot be expressed in CTL
• for LTL all known algorithms are exponential in the size of the formula
Outline

- Fairness for CTL
- Strongly Connected Components
- CTL Model Checking Algorithm
- Example: demanding children
- CTL Model Checking with Fairness
- Summary
- Exercise
Exercise

CTL formulae:

- p
- $E [q R p]$
- $A G E F p$
- $A ((G p) ∨ (F q))$

- Determine for each formula in which states of the above Kripke Structure it holds; use both the semantics and use the appropriate algorithms
- Extend the Kripke structure with the Fairness constraints $F = \{ \{s_1\}, \{s_2\} \}$. In which states do the above formulae fairly hold?
- Similarly for the Fairness constraint $F = \{ \{s_3\} \}$