
 1

1 We consider some basic techniques for computer graphics.

a) What is a viewport in computer graphics terminology?

A viewport is a region of the screen that is used for showing graphics output, typically a
rectangular area.

b) Give a criterion to distinguish convex and concave polygons.

Some characteristics of a convex polygon are that:

- All interior angles are < 180 degrees;

- All line segments between two interior points are completely inside the polygon;

- Given a line through an edge, all points of the polygon are either on this line or on the same
side of the line;

- From each interior point, the complete boundary is visible.

These do not hold for concave polygons, and can hence be used to distinguish between them.

c) In the simplest model for transparency the color Isurface of the surface and the color Iback of the
background are blended into a perceived color I. Give a formula for I, assuming a transparency
coefficient α in the range from 0 (opaque) to 1 (fully transparent).

In the simplest model, Isurface and Iback and are weighted with (1−α) and α, and added up, i.e.,

I = (1−α) Isurface + α Iback .

It is easy to mix up opacity and transparency. To check, substitute α = 0 (opaque), which
gives I = Isurface , hence we see the surface, which is correct. Also, α = 1 (fully transparent)
gives I = Iback , hence we see the only the background, which is correct again. Finally, if
Isurface = Iback = C, we get I = (1−α) C + αC = C, hence if surface and background have the
same color, transparency does not matter anymore.

d) What is the difference in the computation of light intensities between Phong shading and
Gouraud shading?

In Gouraud shading colors of vertices are interpolated over polygons, in Phong shading normals
of vertices are interpolated (followed by a shading calculation).

2IV10/2IV60 Computer Graphics

Examination, April 16 2013, 14:00 – 17:00
This examination consist of four questions with in total 16 subquestion. Each subquestion weighs
equally. In all cases: EXPLAIN YOUR ANSWER. Use sketches where needed to clarify your
answer. Read first all questions completely. If an algorithm is asked, then a description in steps
or pseudo-code is expected, which is clear enough to be easily transferred to real code. Aim at
compactness and clarity. Use additional functions and procedures if desired. Give from each
function and procedure a short description of input and output. The use of the book, copies of
slides, notes and other material is not allowed.

 2

2 We consider a part of a hyperbolic surface, described by
22 yxz −= with .11 and 11 ≤≤−≤≤− yx

a) Give a parametric description S(u, v) and an implicit
description F(x, y, z)=0 of this surface.

We take x = u and y = v, and get 22 vuz −= . Hence,
).,,(),(22 vuvuvuS −=

For the implicit equation, we rewrite the given equation to get
,022 =+− yxz hence .),,(22 yxzzyxF +−=

b) Derive a formula for a normal vector for a point on this

surface, either using a parametric or an implicit description.

Using the parametric description, we get:

).1,2,2(
)2,1,0()2,0,1(

),(),(),(

vu
vu

v
vuS

u
vuSvuN

−=
−×=
∂

∂
×

∂
∂

=

Using the implicit equation, we get:

).1,2,2(,,),,(),,(yx
z
F

y
F

x
FzyxFzyxN −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

∂
∂

=∇=

c) Calculate all intersection points of a line P(t) = C + Vt with this surface, with P = (Px , Py , Pz), C

= (Cx , Cy , Cz), and V = (Vx , Vy , Vz).

A typical ray-tracing task. First, note that P(t) = C + Vt = (Cx + Vx t , Cy + Vy t , Cz + Vz t). Next, we
calculate for which value(s) of t we find intersections with the infinite surface. Substitution of P(t)
into the equation 22 yxz −= gives

 .)()(22 tVCtVCtVC yyxxzz +−+=+
We rewrite this to get a quadratic equation in t:

.0)()22()(

or ,)()22(
22222

22222

=−−+−−+−

−+−+−=+

zyxzyyxxyx

yxyyxxyxzz

CCCtVVCVCtVV

tVVtVCVCCCtVC

)(and),22(),(Set 2222
zyxzyyxxyx CCCcVVCVCbVVa −−=−−=−=

If D = b2−4ac < 0, then there are no intersections. If D > 0, we get two values for t, using the well-
known abc formula:

 .
2

42

1,2
a

acbbt −±−
=

If D = 0 and a ≠ 0, there is a single intersection for t1= −b/(2a), provided that a ≠ 0.
The case D=0 and a = 0 can occur, for instance for C = (0, 0, 0) and V = (1, −1, 0). Such a line lies
completely in the unbounded surface.
 If we find one or two intersection points, the final step is to check whether the point(s) P(ti) are
located within the given points, i.e., the conditions

11 and 11 ≤+≤−≤+≤− iyyixx tVCtVC
must be met.

y
x

z

 3

d) Give a procedure to draw this surface, assuming a procedure DrawTriangle(A, B, C) is available.

For instance:

N = 20; // number of steps per side
d = 1.0/N; // stepsize

function Pnt(i, j): point; // returns a point on the surface, specified by indices i and j (0...N)
begin

 Pnt.x = i*d; Pnt.y = j*d; Pnt.z = (i*i − j*j)*d*d;
 end;

 procedure DrawSurface;
 begin
 for i = 0 to N−1 do
 for j = 0 to N−1 do
 begin
 P00 = Pnt(i, j); // Calculate points of a quad
 P10 = Pnt(i+1, j);
 P01 = Pnt(i, j+1);
 P11 = Pnt(i+1, j+1);
 end;

 DrawTriangle(P00, P10, P11); // Draw the quad with two triangles
 DrawTriangle(P00, P11, P01);
 end;

 Many alternatives are possible, for instance by storing and reusing points.

3 We want to draw an arc as shown in the figure. The arc starts in point A = (a, 0), passes through point
B = (0, b), and ends in point C = (−a, 0). At point A and C the arc is perpendicular to the x-axis, at
point B the arc is perpendicular to the y-axis. We want to define the curve parametrically as P(t), with
t ∈ [0, 1]. We explore different options to define this arc. Indicate for each option if it is possible to
define an arc that meets the requirements, and if not, explain why not; if yes, explain how this can be
done and define P(t) exactly. We consider:

a) Use of an ellipse (scaled circle);

This is possible: P(t) = (a cos(πt), b sin(πt)).

b) Use of a curve based on a cubic function 01
2

2
3

3 axaxaxay +++= ;

This is not possible. At point A and C the tangent to the curve is vertical, and this implies that the
derivate of y is infinite.

c) Use of a single quadratic Bézier segment 2
2

10
2)1(2)1()(PtPttPttP +−+−= ; and

Again, not possible. A curve that starts at A and ends at C can be obtained by choosing P0 = (a, 0) and
P2 = (−a, 0). To obtain vertical tangents at these points, we get P1 = (a, p) and P1 = (−a, p). These
cannot be satisfied simultaneously. Or, equivalently, P1 must be located at the crossing of the tangent
lines at A and B, and if these lines are parallel, such a point cannot be found.

d) Use of a single cubic Bézier segment 3
3

2
2

1
2

0
3)1(3)1(3)1()(PtPttPttPttP +−+−+−= .

 4

This is possible. A curve that starts at A and ends at C can be obtained by choosing P0 = (a, 0) and
P3 = (−a, 0). To obtain vertical tangents at these points and aiming at a symmetric arc, we set
P1 = (a, p) and P2 = (−a, p), where p is a constant to be determined.
Halfway, the arc should cross the y-axis with y=b, i.e.,

 Py(1/2) = b.

Substitution of the values picked for the control-points gives

 Py(1/2) = P0y/8 + 3 P1y/8 + 3 P2y/8 + P3y/8
 = 3p/4.

Hence, if we choose p = 4b/3 we obtain a cubic Bézier segment that meets the requirements.

4 We aim to draw the figure shown. In the center is a square
S0, centered on the origin, with size 2. The square S1 has
size 2a, a < 1, its lower left corner coincides with the
upper left corner of S0, and S1 is rotated over α degrees.
This pattern is repeated, the size of a square Si+1 is a times
the size of square Si . On top of the other edges squares are
positioned similarly.
We use a 3×3 homogenous transformation matrix M, such
that a position A in global coordinates is related to a
position B in local coordinates via A=MB. It may be
assumed that T(x,y) gives a translation matrix along the
vector (x,y); that R(ϕ) gives a rotation matrix of ϕ
degrees around the origin; and that S(s) gives a uniform
scaling matrix with a scale factor s. The routine
DrawSquare() draws a square in the local coordinate
frame that is implicitly defined by the matrix M. In these
local coordinates, the square that is drawn has size 2 and is centered on the origin.

a) Set M such that a call to DrawSquare() draws S1 , exactly according to the specification given and

the figure.

We can transform S0 to S1 using the following steps, using global transformations:

1) T(1, 1): Move the square such that the lower left corner is in the origin;
2) R(α): Rotate the square around the origin over α degrees;
3) S(a): Scale the square with a factor a;
4) T(−1, 1): Move the lower left corner (at the origin) to the upper left corner of the original

square.

Using local transformations, we get:

x

y

aa

AC
b

B

x

y

aa

AC
b

B

2

2a
3

α

S0

S 3

y

x

 5

1) T(−1, 1): Move the center of the square to the upper right corner;
2) S(a): Scale the square with a factor a;
3) R(α): Rotate the square around its origin over α degrees;
4) T(1, 1): Move the square such that its lower left corner moved to its origin.

Note that only the order is reversed, the transformations are the same. Furthermore, the rotation
and scaling can be interchanged. Based on these transformations, we get

M = T(−1, 1)S(a) R(α)T(1, 1).

b) Suppose M has been set such that Si has just been drawn with a call DrawSquare(). Update M to

draw Si+1 with yet another call to DrawSquare().

Each time a new square is added, the same transformation is applied again. This can be seen if we
consider Si and check which transformations are needed (in local coordinates) to get Si+1 . Hence:

 M’ = M T(−1, 1)S(a) R(α)T(1, 1).

But also

M’ = T(−1, 1)S(a) R(α)T(1, 1) M.

gives the desired result. In general, the transformation Mi for Si is given by

 Mi = (T(−1, 1)S(a) R(α)T(1, 1))i

c) It is desired that square Sn has size p and is rotated over β degrees in total. How to set a and α to

get this effect?

The total rotation must be equal to β, the figure shows that this is equal to nα. Hence, α = β / n.

The size must be equal to p, repeated scaling gives a size equal to 2an . Hence, a = (p/2)1/n.

d) Give a procedure to draw the complete figure, including all four arms, where each arm consists of
n squares.

For instance:

procedure DrawFigure(n);
begin
 M = I; // set M to the identity matrix
 DrawSquare(); // draw S0
 P = T(−1, 1)S(a)R(α)T(1, 1); // Calculate and store the basic transformation step

 for i = 1 to n do // for all levels…
 begin
 M = MP; // adapt the transformation for the next level squares
 for j = 1 to 4 do // for all arms…
 begin
 DrawSquare(); // draw a square
 M = R(90)M; // apply a global rotation to shift to the next arm
 end;
 // Note: after for rotations over 90 degrees, M is back to its starting position
 end;
end;

Alternatively, the loops for levels and arms can be interchanged, for instance:

 6

procedure DrawFigure(n);
begin
 M = I; // set M to the identity matrix
 DrawSquare(); // draw S0
 P = T(−1, 1)S(a)R(α)T(1, 1); // Calculate and store the basic transformation step

 for i = 0 to 3 do // for all arms…
 begin
 M = R(i*90); // set M to a rotation of 0, 90, 180, 270 degrees
 for j = 1 to n do // for all levels…
 begin
 M = MP; // adapt the transformation for the next level square
 DrawSquare(); // draw a square
 end;
 end;
end;

