Introduction to Formal Methods

Ruurd Kuiper

June 26, 2006

Contents

1 Introduction 5
1.1 Analgorithm e e e e 5
1.2 Apreliminarytable e 6
1.3 Amodelfortheprocess. i e 6
1.4 Tentative proposal for furtherlectures 7
2 System model: Transition system 9
2.1 Specification 9
2.2 Mutexasatransitionsystem 9
2.3 ASSESSMENt 10
6 Specification and verification: Hoare logic 19
6.1 Syntax 19
6.2 SemantiCsS e 19
6.3 Mutex properties e 19
6.4 AssessSMeNnt 19
4 Specification: Linear Temporal Logic (LTL)- global 13
4.1 SYNtaX . . . o e e e e e e e 13
4.2 SemantiCs 13
4.3 Mutex properties e e e e e e 13
4.4 ASSESSMENT 14

5 \Verification: CTL ModelCheck -global - semantic - automated

5.1 System satisfying property - semantical
5.2 System satisfying property - ModelCheck

5.3 AsSsessment e e e

6 Specification and verification: Hoare logic

6.1 Syntax e
6.2 SemantiCs e e e
6.3 Mutex properties e

6.4 ASSESSMENt e e e e e

7 Process Algebra

7.1 ASSESSMENT e e e e e e e e

8 Testing

8.1 ASSESSMENt e e e e

9 \Verification: Hoare OO Theorem Prover - compositional - syntactic - automated

10 Verification at Imtech

CONTENTS

29

Chapter 1

Introduction

In this course we address formal methods in software development. We have a dual aim: providing
an introduction to several methods and providing an assessment of such methods.

We use D. Peled, Software reliability methods, Springer 2001, ISBN 0-387-95106-7. We refer to
the book by DP.

To make these aims more concrete, we take as a running example a small system and some of its
properties. In this first lecture, we introduce the example informally, formalizing it in various ways
later on.

From this example we arrive at a preliminary table of development formalization issues and a model
for the stages in the process of developing such a system.

Finally, we present a tentative proposal for the upcoming lectures.

1.1 An algorithm

We discuss formalization aspects of a mutual exclusion algorithm for two processes with a critical
section. We first represent it informally as a picture with nodes and arrows: the nodes intuitively
are states, the arrows are transitions between the states, with guards on them to indicate when a
transition is enabled.

The desired properties we also present informally.

1. Mutual exclusiveness (ME): processes are not simultaneously in their critical section.

2. Eventual access (EA): if a process tries to enter its critical section it eventually will get access.
Various attempts are shown:

1. Attempt S1: only guards on the transition to the critical section, forbidding access if the other
is in the critical section.

6 CHAPTER 1. INTRODUCTION

] | syntax| semantics abstraction| compositionality| automation

System ? ? ? ? ?
Connection ? ? ? ? ?
Specification ? ? ? ? ?

2. Attempt S2: first come first serve variables.
3. Attempt S3: arbitrary but finite stay in critical section.

4. Attempt EWD: DP.83

pictures given at lecture, to be added to notes

1.2 A preliminary table
From the attempts we derive some ingredients for a development formalism.

1. Formalization of the system - syntax and semantics.
2. Formalization of the (properties) specification - syntax and semantics.

3. Formalization of the connection between system and (properties) specification - syntactic and
semantic.

Furthermore, to deal with the complexity of the development task, we observe some desirable fea-
tures of a development formalism.

1. Abstraction.

2. Compositionality.

3. Automation
This leads to a preliminary table for assesment of development formalisms (we place the connection
between gthe two connected things - the System and the Specification):

Exercise: Put the various Attempts in the table.

1.3 A model for the process

The table for development formalisms list the ingredients of formalisms. It does not address which
formalism should be applied for which task, in fact, no tasks have been identified. We follow a
well-established approach to identify and order development tasks, with the following ingredients.

1.4. TENTATIVE PROPOSAL FOR FURTHER LECTURES 7
1. Artifacts: tangible items that are produced during the development. For example, the descrip-
tions of system properties, the designs, the implementations, etc.

2. Activities: the activities to obtain the artifacts. For example, to obtain the implementation of
a component from a specification, to design a test, etc.

These artifacts and activities are usually ordered in some way: as a waterfall model, as a V-model,
as spiral model, as a Rational Unified Process adaptable model ... We follow the approach where the
artifacts are ordered as a V (the activities are assumed to take place between the various artifacts, to
produce them).

The idea is, that the ordering indicates information flow.

In its most simple form [P.E. Brook 1986], the V’s left branch, going down, covers

e Requirement specification
e Structural design
e Detailed Design

e Implementation
with corresponding entries on the right branch, going up,

e Unit test
e Integration test
e Acceptance test

e Operation and maintenance

Note, that apart from information flow between adjacent boxes in the V, also across opposite boixes
in the right and left branches in formation flows, as the tests are derived from/c arried out against
the artifacts in these boxes.

Exercise: Put the various Attempts in the V’s.

1.4 Tentative proposal for further lectures
We address the following topics.

1. Modelling the system: Transition system.

2. Specification and verification: Hoare Logic

w

©® N o o A

CHAPTER 1. INTRODUCTION

. Specification: Linear time temporal logic (LTL). Specification: Branching time temporal
logic (CTL, CTL*) (In model check chapter)

. Verification automated - semantically: Computation tree logic (CTL) model checking.
. Specification automated - syntactically: Hoare logic and (i) PVS (ii) ESC/Java

. Testing

Formalism with different abstraction: Process algebra

Specification with different compositionality Dijkstra/Hoare logic for object orientation (au-
tomated).

Application of formal methods and automation at imTech.

Chapter 2

System model: Transition system

We present a model for systems: Transition systems

DP.4: Introductory remarks chapter 4, 4.1, 4.2, 4.3, 4.4, 4.6 Mutual Exclusion4.8, 4.10, 4.11, 4.12

2.1 Specification

DP.71 4.4 is the crucial section: Syntax formalized as transition systems, semantics formalized as
state sequences.

Check whether you are familiar with the contents of DP chapter 2 and 3 as far as needed for under-
standing the formal definition of transition systems.

2.2 Mutex as a transition system

DP.83 This is the crucial example.

Note, that transition systems, i.e., with guarded transitions, are used as syntax. This is because we
want an intuitively understandable model for systems: in such systems guards occur, e.g., in while
statements.

The semantics is state sequences, without explicit guards being present on the state transitions.
Often transition system without guards can be used to give a finite representation of these sequences,
but not always, e.g., when the statespace is infinite. Exercise DP.4.6.1 suggests that a transition

system without guards would also give a finite description for the mutual exclusion algorithm.

9

10 CHAPTER 2. SYSTEM MODEL: TRANSITION SYSTEM

] | syntax | semantics | abstraction | compositionality| automation
System|| trans. system set state seq’s no system structure global ?
Connection - - - - -
Specification - - - - -

2.3 Assessment

2.3.1 The matrix

Transition systems are (a little differen from the position taken at the lectures) viewed as a syntax
for systems, with sets of state sequences as semantics. They abstract away from the structure of
the system, for example in Mutex the parallellism is not represented - therefore the modelling is
global as well. Automation is optional: it is possible, e.g. for prototyping purposes, to implement
transition systems.

2.3.2 TheV’s

Transition systems fits in the Realization-V as an artifact at the level of Specification and Design
where it acts as a model for the system. If the transition system model is implemented as an exe-
cutable model, it can be used as an artifact in the V&V-V at the same level.

Chapter 3

Specification and verification: Hoare
logic

A syntax and semantics for property specifications for systems and properties can be found in DP
7, notably DP.7.4. We assume familiarity with Hoare logic as taught at the TU/e.

3.1 Syntax

Predicate logic.

3.2 Semantics

State transformations.

3.3 Mutex properties
One of the properties of the system, ME, can be expressed; EA cannot.

Properties of the schedular cannot be expressed either.

3.4 Assessment

3.4.1 The matrix

Hoare formulas are the syntax for specification of properties. System structure is used to determine
where assertions hold.

11

12 CHAPTER 3. SPECIFICATION AND VERIFICATION: HOARE LOGIC

] | syntax \ semantics | abstraction| compositionality| autom:
System|| programming language state transformation/logical truth very little yes see le
Connection Hoare triple logical implication - - see le
Specification predicate formulas logical truth very little yes see le

The properties are specified about parts of the system, i.e., compositionally.

3.42 TheV’s

Hoare specifications of properties fit in the V at the upper three boxes where it acts as specifications
of properties of the system but also at the opposite boxes as the tests may be specified in this
formalism.

Chapter 4

Specification: Linear Temporal Logic
(LTL) - global

We present a syntax and semantics for property specifications.
DP.5: Introductory remarks chapter 5, 5.1, 5.2, 5.4.

NB DP.5.3 is addresed in the next chap®t,

4.1 Syntax

DP.5.4 Syntax: propositional or predicate logic extended with temporal operators.

4.2 Semantics
DP.5.4 Semantics: non-temporal formulas interpreted on states; temporal symbols interpreted over
state sequences.

NB State sequences are the semantics of transition systems as well, so there is a connection to the
semantics of systems.

Check whether you are familiar with the contents of DP chapter 2 and 3 as far as needed for under-
standing the formal definition of the semantics.

4.3 Mutex properties

Crucial is DP.125.

The properties of the system, ME and EA, can be expressed formally in LTL.

13

14 CHAPTER 4. SPECIFICATION: LINEAR TEMPORAL LOGIC (LTL)- GLOBAL

] | syntax | semantics | abstraction | compositionality| automation
System - - - - -
Connection - - - - -
Specification|| LTL formulas | set state seq's no system structure no -

D

The properties of the scheduler, required to make the properties of the system hold, can also be
expressed formally in LTL.

The required schedular properties can be put to the system as well as to the algorithm (as a premisse
for good behaviour), depending on who has the responsibility for the schedular and algorithm match.

4.4 Assessment

4.4.1 The matrix

LTL formulas are the syntax for specification of properties, sets of state sequences the semantics.

System structure is abstracted away. Because the logic specifies order of state changes, it should
also be noted that this order is time order, but abstracts away real time. The properties are specified

about the whole system, i.e., global.

442 TheV’'s

LTL specifications of properties fit in the V at the upper three boxes where it acts as specifications of
properties of the system but also at the opposite boxes as the tests may be specified in this formalism.

Chapter 5

Verification: CTL ModelCheck - global -
semantic - automated

We present a model check procedure to prove properties, expressed in temporal logic, of systems,
modelled as transition systems. We deviate from DP. in using Computation Tree Logic (CTL), a
branching time version of temporal logic rather than the linear time LTL from chapter 4. See
M.R.A. Huth and M.D. Ryan, Cambridge University Press, 2004 (2000) - copies of the relevant
chapter are provided at the lectures.

5.1 System satisfying property - semantical

A systemP, represented as a transition system, has as semantics a set of state sequeffes, say

A propertyS, specified as a temporal logic formula, is true or false for a sequence; the property also
detemines a set of state sequences: those for which it is trugSsay

A systemP satisfies a specificatioBif |[P]| C [[S].

5.2 System satisfying property - ModelCheck

In the previous chapte®?, we have seen how at the syntact level properties about systems can be
proven. We also defined what it meant semantically for a property to hold for a system: inclusion of
state sequence sets. Automation of verification can be done at both the semantic and the syntactic
level. In the present chapter we present automation of semantic verification, in chapter 9 we present
an automation of a syntactic approach.

To reason about set inclusion between sets of sequences is awkward: usually the sequences are
infinitely long and there are infinitely many of them. The first idea is, to translate set inclusion
between sets of sequences to a check between finite representations of these sets of sequences. The
second idea is, to automate this check.

15

16CHAPTER 5. VERIFICATION: CTL MODELCHECK -GLOBAL - SEMANTIC - AUTOMATED

1. The finite transition system (syntactically) representing the system is unfolded into one with
concrete states: the (semantic) model.

2. The temporal formula (syntactically) representing the property is checked as follows.

Peled, Springer A finite transition system with concrete states, i.e., a model, for the negation of the
formula is constructed. In this case model checking means automata theoretic checking
the intersection of the models for emptiness (then the property holds for the system).
Disadvantage: constructing the model for the negation of the formula is difficult.
Advantage: this works for LTL.

Huth and Ryan, OUP The formula is checked on the model incrementally, starting with the smallest subfor-
mulas.
Disadvantage: this only works for CTL.
Advantage: the model checking is easy and intuitive.

Note, that although we call this a semantical approach, we stay in fact, especially in the second case,
quite close to the syntax. The reason to still call it a semantical approach is that the model check
algorithm is quite directly using the semantics of the transition system: the idea of sequences of
states.

Latest news: The intuitive approach of CTL checking can, after all, be extended to LTL as well (and
even CTL). Kesten and Pnueli, to appear in Elsevier Science.

We discuss Huth and Ryan NB These parts of Huth and Ryan have been provided as handouts at the
lectures:

1. CTL HR.152-159;
2. The model checking procedure HR.172-174;

3. Exemplified for eventual access on Mutex (2 versions) HR.177.

5.3 Assessment

5.3.1 The matrix

For a system the syntax is a transition system, the semantics is a tree. For a specification of a
property, the syntax is CTL, the semantics a set of trees. The connection between the two is, at the
semantic level, the element-of relation. On the modelcheck level the syntactic, CTL, formula is put
to the syntactic, transition system, representation of the system. Nevertheless this is regarded as a
semantic approach, because the algorithm that performs the modewl check interprets the transition
system in a quite semantical fashion, namely using the transitions through the tree to determine
which formulas get attached to its nodes. The representation of the system is global, so the model
check approach itself is global as well - alternative, compositional versions exist but are beyond the
scope of the lectures.

5.3. ASSESSMENT 17

] | syntax | semantics | abstraction | compositionality| automation|
System| trans. system| tree state seq’s| no system structure - -
Connection|| model check element-of - no yes
Specification|| CTL formulas| set tree stat seq’s no system structure - -

5.3.2 TheV’s

CTL automated verification fits in the V as properties in the right hand part being checked against
models of the system in the lefthand part.

18CHAPTER 5. VERIFICATION: CTL MODELCHECK -GLOBAL - SEMANTIC - AUTOMATED

Chapter 6

Specification and verification: Hoare
logic

A syntax and semantics for property specifications for systems and properties can be found in DP
7, notably DP.7.4. We assume familiarity with Hoare logic as taught at the TU/e.

6.1 Syntax

Predicate logic.

6.2 Semantics

State transformations.

6.3 Mutex properties

One of the properties of the system, ME, can be expressed; EA cannot.
Properties of the schedular cannot be expressed either.

6.4 Assessment

6.4.1 The matrix

Hoare formulas are the syntax for specification of properties. System structure is used to determine
where assertions hold.

19

20 CHAPTER 6. SPECIFICATION AND VERIFICATION: HOARE LOGIC

] | syntax \ semantics | abstraction| compositionality| autom:
System|| programming language state transformation/logical truth very little yes see le
Connection Hoare triple logical implication - - see le
Specification predicate formulas logical truth very little yes see le

The properties are specified about parts of the system, i.e., compositionally.

6.4.2 TheV’s

Hoare specifications of properties fit in the V at the upper three boxes where it acts as specifications
of properties of the system but also at the opposite boxes as the tests may be specified in this
formalism.

6.4. ASSESSMENT

automated

21

22

CHAPTER 6. SPECIFICATION AND VERIFICATION: HOARE LOGIC

Chapter 7

Process Algebra

At this point in the lecture series we have introduced the concepts of formal methods, mainly using
temporal formalisms.

We now introduce not so much new concepts as well as alternatives for the formalizations encoun-
tered so far. Process algebra is a case in point: from a high vantage point it can be viewed as being
a specification and verification formalism in much the same way as the ones encountered so far.

However, from closer up it is quite different, as will show up in the assessment matrix.
We present process algebra along the lines of DP.

DP.8: Introductory remarks chapter 8, 8.1, 8.2, 8.3 (especially the idea that state variable values
are modelled as processes: hence the three additional processes in the Dekker version of mutual
exclusion), 8.5, 8.6.

(At least) process algebra is quite special because of the following features:
1. The system model and the property model are one and the same, not only the semantics, but
also the syntax.
2. The level, of abstraction is higher than usual: actions rather than state variable values.

3. The relation between system and specification is not so much stating that a property holds of
a system as well as stating that one system refines another.

4. The formal proof system is a rewrite system rather than a logic.

It is especially because of the last two points that, to accomodate for several notions of refinement,
various notions of equivalences between agents have been defined. Furthermore, to enable establish-
ing refinement between agent that differ only in, intuitively, internal behaviour, a powerful notion

of hiding and silent steps are part of the approach.

23

24 CHAPTER 7. PROCESS ALGEBRA

] | syntax | semantics | abstraction | compositionality| automation
System agent action tree | no state informatior yes -
Connection|| rewrite rules| equivalences - - -
Specification agent action tree | no state informatior yes -

7.1 Assessment

7.1.1 The matrix

For systems as well as properties, the syntax is an agent, a process algebra term, the semantics an
action tree. The connection between the two is, at the semantic level, various notions of simulation.
On the proofsystem level, equivalence is shown by rewriting.

Various possibilities for automation are available but outside the scope of the lectures

7.1.2 TheV’s

Process algebra fits in the V at the higher parts of the left branch, i.e., for specification and also on
the higher parts of the connection between the left and right branch, i.e., for testing. Because of the
high abstraction level the scope is more towards protocols than towards large systems.

Chapter 8

Testing

DP.9: Introductory remarks chapter 9, 9.1, 9.2, 9.3, 9.8.

This chapter is different from the previous ones. It is not A test formalism that is introduced here,
but rather a collection of formal notions ABOUT testing that enable to more rigorously describe
PROPERTIES of test formalisms.

We therefore do not asses a formalism, but rather testing as such.

8.1 Assessment

8.1.1 The matrix

For systems the syntax is transition systems, the semantics is state sequences. For specification of
properties, the syntax is LTL, the semantics state sequences. The connection between the two is,
at the semantic level, set inclusion of sets of state sequences. On the proofsystem level the state
sequences do not appear anymore: the proofs are given in terms of the transition systems and the
proof rules.

8.1.2 TheV’s

Testing fits in the V as the connections between the left and right branches of the V.

] | syntax | semantics | abstraction compositionality| automation|
System| code or a mode| execution or mode| various possibly yes
Connection various various various - possibly
Specification various execution related| various possibly -

25

26

CHAPTER 8. TESTING

Chapter 9

Verification: Hoare OO Theorem Prover
- compositional - syntactic - automated

See power point of Huizing. Note, that this completes the formal methods picture sketched in the
lecture series as it adds automation of the syntax-oriented proof approach through the ESC/Java
prooftool.

27

28CHAPTER 9. VERIFICATION: HOARE OO THEOREM PROVER - COMPOSITIONAL - SYNTACTIC - AUTOM.

Chapter 10

Verification at Imtech

As in the not-for-public-disclosure powerpoint presentation at the lecture following Van Gerwen -
imTech.

29

