Assertion Checking
for Object-Oriented
Programs

Kees Huizing
June 13 2007

What is software?

the documents or the product

Product analysis

* testing

* model checking

* run-time checks

* not our concern here

Document analysis

* documents are what the developers are
working on

* documents deterwmine flexibility

* 00 has a strong view on decomposition
of the software: documents

* Note that this structure need not be
present in product (running code)

Facts of SE: maintenance

* corrective (debugging etfe.): 17%
* adaptive (to changes in environment): 18%
* perfective (new requirements): 65%

o Flexibility (i.e., being amenable to change) is
essential

o Claim to fame of 00 is (a.0.) this flexibility

Our goal

* gpecification and verification on the
document level

* verification is about behaviour: found in
the code (not so much in the structure
documents)

* allow in proof and specs the same
flexibility as 00 design

a do not create additional dependencies

B2. Removing
dependencies

o mutual dependencies can often be broken by

1. splitting up components, in particular creating
interfaces

2. replacing dependencies on full component by
weaker dependencies on interfaces

Observer pattern

Observer keeps copy (or part of it) of state of Subject
. e.g., graphical view of numerical data

data (model) graph, etc. (view)
Subject obs | Observer
getSate() ¢ subj update()

Mutual Dependency

ing mutual dependency

Break

D R R R T PR R R T T,

update()

Mutual dependency is replaced by three singular

- dependenc

ies

Means

* Formal verification in the style of
Ontwerp van Algoritmen

m exawmple:

product level: repetition involves many
(unbounded) state changes during execution

document level: repetition is one statement
and has one invariant, fixed number of proof
obligations

* Note: afleiding” (program derivation)
not essential; also a posteriori (=
enhanced code review)

00

* objects are basic units in the product
* classes are basic units in the code

* classes are the watertight
compartments in change flood,

R.M.S. TITANIC

48,328 Gross Tonnage

forward 1t class
grand stairc

crows nest _tass
afficers moke room

Huarters

stern bridge
oy docking
Jlass stateroonns

cargo crang

How to specify a class?

* different from code fragments (pre/
post)

* class describes both:
a behaviour

A dafa

Specifying behaviour

* all methods satisty their contracts:

m if started in precondition, will end in
posteondition

m some data remains untouched

Specifying data

* all objects of a class should satisfy the class
invariant

* why invariants?
m documentation (what does this data mean?)

m data definition (representation invariant)
m ease of specification
m put the concerns where they belong:

* yser of object should not be worried with internal
consistency

How tfo prove invariance? (1)

* Pata induction.

If for every object in a sequence:
1. Tholds after object creation

2. tor each change from state s to s* holds:
skl= ¢ Ll

= Then | holds for every state in the
sequence

How to prove invariance? (2)

Class C with invariant |

* Prove that | holds at the end of each
construetor

* Prove for every method wm of C:
{1 AprelBodym {1 Apost)

Notes

Invariants hold only between method
calls (so-called observable states)

* (Caller doesnt have fo prove invariant
* lnvariant may be assumed after call

These are in fact requirements of the
method

class Klasse §

someCode() 1 //@ invariant I.;
Klasse o;
// prove o.pren void m() {
o.m();

// assume this.prem A this.Ic
// assume o0.postm A 0.I¢

// prove this.postm A this.Ic
}

Problems

* do you see one?

class Divider §

//@ invariant n > O; class Help §
int n; Divider d;
Help h; void check(int i) {
int m(int k) { d.m(...);
int r = k/n; -
n--; ;
h.check(r); }
if (n==0) n = 100;
return r; >
} Call-back

} problem

Solutions to call-back problem

* forbid call-back statically (layered
architecture)

A rigid

* forbid call-back dynawically (by
recording caller)

m creates dependency callee - caller

* prove invariant before call
m breaks encapsulation

* prove invariants when leaving objec

Problems (¢td)

* lnvariants referring to other objects

next.prev = this

m changing one object can invalidate
another

m proving {1 A pre) Bodywm {1} is not
enough

vulnerability

Solutions to vulnerability

* make hierarchical strueture and
restrict change access (ownership)

* prove all -possibly- violated invarian
at critical points :-(

* wmake dependencies explicit in
specification

Methods revisited

iRdviparerpbisaami one word can wmean

ditferent things

* object variable can hold references to
different types of objects

* hence, a.ml) can result in calls to different
methods m (in case of overriding)

* what precondition do we prove, what
posteondition do we assume?

Pynawic binding

* carry the dynamic type with you in the
assertions and use the corresponding pre/
post pair -

* prove the pre/post of the static type and
make sure that

= precondition of overriding method is not
stronger

= postcondition of overriding method is not
weaker

behavioural subtyping

Method call

* naive proof rule (non-recursive)
for every method m applicable to b

| \ | /
{this.pre Athis. A...} body {this.post Athis.d A...}

{b.pre, } b.m() {b.post Ab.I}

e

dynamic binding!

* choice of pre, post, I depends on dynamic
type of b

25

Removing dynamic binding

* Notation:
b.P dynamic binding
b:P static binding

dynamic binding

no alternative

{this: pre AthisI A...} body, {this: post /\@ .

{(b:pre ¥ bm() {b:post aAb:I}

26

Removing dynamic binding

* Notation:
b.P dynamic binding
b:P static binding

dynamic binding

no alternative

{this: pre AthisI A...} body, {this: post /\@ .

{(b:pre ¥ bm() {b:post aAb:I}

27

Assertional tools for Java

* JML: a widely accepted spec language
* Uses Java syntax

* added as comment to existing code or in
separate files

* many tools exist

ESCAlava

* Extended Static Checking for Java
* yses subset of JML

ESCAlava (etd)

* modular checking: classes and methods are
checked in isolation

* disadvantages:

m you can not use knowledge of specific usage in
application

m executing proofs requires insight in the code

* advantages:
m pno exponential blow-up of verif. conditions

m robust to change, ready for reuse

Links

% ESCAava: http://research.compaq.com/SRC/esc/
download.html

% Spec# Microsoft counterpart to ESCAlava2 tool for
C# verification. See: http:/research.microsoft.com/specsharp/

%k Huizing, K. and Kuiper, R., (2001), Reinforcing fragile base
classes, in: Proc. 3rd ECOOP Workshop on Formal Techniques for
Java Prograwms, Budapest.

%k R. Middelkoop, C. Huizing, R. Kuiper; E. Luit, Cooperation-
based Invariants for 00 languages, International Workshop on
Formal Aspects of Component Software 2005 Macao,
(Electronic Notes in Theoretical Computer Science, Elsevier).

%k Sun K., Verifying Java Programs by Integrating ESCAlava2
and PVS, MSe, TU/ 2007,

