
Assertion Checking 
for Object-Oriented 

Programs
Kees Huizing

June 13, 2007



What is software? 

software

the documents or the product

Diagrams

XMLJava

UML



Product analysis

testing

model checking

run-time checks

not our concern here



Document analysis

documents are what the developers are 
working on

documents determine flexibility

OO has a strong view on decomposition 
of the software: documents

Note that this structure need not be 
present in product (running code)



Facts of SE: maintenance

corrective (debugging etc.): 17%

adaptive (to changes in environment): 18%

perfective (new requirements): 65%

Flexibility (i.e., being amenable to change) is 
essential

Claim to fame of OO is (a.o.) this flexibility 



Our goal

specification and verification on the 
document level 

verification is about behaviour: found in 
the code (not so much in the structure 
documents)

allow in proof and specs the same 
flexibility as OO design

do not create additional dependencies



B2. Removing 
dependencies

mutual dependencies can often be broken by 

1. splitting up components, in particular creating 
interfaces

2. replacing dependencies on full component by 
weaker dependencies on interfaces  



Observer pattern

Subject Observerobs

subj

Mutual Dependency

Observer keeps copy (or part of it) of state of Subject
e.g., graphical view of numerical data  

update()getSate()

data (model) graph, etc. (view)



Breaking mutual dependency

Subject

getSate()

obs

Mutual dependency is replaced by three singular 
dependencies

subj

Observer
update()

Concrete Observer
update()

Observer
update()subj

obs

depends o
n

does not depend on



Means
Formal verification in the style of 
Ontwerp van Algoritmen

example: 

product level: repetition involves many 
(unbounded) state changes during execution 

document level: repetition is one statement 
and has one invariant, fixed number of proof 
obligations

Note: “afleiding” (program derivation) 
not essential; also a posteriori (= 
enhanced code review)



OO
objects are basic units in the product

classes are basic units in the code

classes are the watertight 
compartments in change floods



How to specify a class?

different from code fragments (pre/
post)

class describes both:
behaviour

data



Specifying behaviour 

all methods satisfy their contracts:
if started in precondition, will end in 
postcondition

some data remains untouched



Specifying data
all objects of a class should satisfy the class 
invariant   

why invariants?
documentation (what does this data mean?)

data definition (representation invariant)

ease of specification

put the concerns where they belong: 

user of object should not be worried with internal 
consistency



How to prove invariance? (1) 

Data induction. 

If for every object in a sequence: 
1.  I holds after object creation

2. for each change from state s to s’ holds:

s |= I ⇒ s’ |= I

➡Then I holds for every state in the 
sequence



How to prove invariance? (2) 

Class C with invariant I

Prove that I holds at the end of each 
constructor 

Prove for every method m of C:
  { I ∧ pre } Bodym { I ∧ post }



Notes

Caller doesn’t have to prove invariant

Invariant may be assumed after call

Invariants hold only between method 
calls (so-called observable states)

These are in fact requirements of the 
method



someCode() {
Klasse o;
...

// prove o.prem

   o.m();
// assume o.postm ∧ o.IC 

 ...

}

      

class Klasse {
  //@ invariant IC;
 ... 

  void m() {
  // assume this.prem ∧ this.IC

...
  // prove this.postm ∧ this.IC 

}

...
}



Problems
do you see one?

class Divider {
  //@ invariant n > 0;
  int n;
  Help h; 

  int m(int k) {
    int r = k/n;
    n--;
    
    if (n==0) n = 100;
    return r;
  }
}

      

Call-back
problem

class Help {
    Divider d;
    void check(int i) {
    ...
    d.m(...);
    ...
  }
}

      

      h.check( r );...



Solutions to call-back problem
forbid call-back statically (layered 
architecture)

rigid 

forbid call-back dynamically (by 
recording caller)

creates dependency callee –>  caller 

prove invariant before call  
breaks encapsulation 

prove invariants when leaving object

research



Problems (ctd)

Invariants referring to other objects

next.prev = this
changing one object can invalidate 
another

proving  { I ∧ pre } Bodym { I } is not 

enough

vulnerability



Solutions to vulnerability

make hierarchical structure and 
restrict change access (ownership)

prove all –possibly– violated invariants 
at critical points :-(

make dependencies explicit in 
specification



Methods revisited

                      : one word can mean 
different things

object variable can hold references to 
different types of objects

hence, a.m() can result in calls to different 
methods m (in case of overriding)

what precondition do we prove, what 
postcondition do we assume?

PolymorphismPolymorphismPolymorphismPolymorphismPolymorphismPolymorphism



Dynamic binding

carry the dynamic type with you in the 
assertions and use the corresponding pre/
post pair :-(  

prove the pre/post of the static type and 
make sure that

precondition of overriding method is not 
stronger 

postcondition of overriding method is not 
weaker

behavioural subtyping



06/13/2007 TU/e
25

• naïve proof rule (non-recursive)

• choice of pre, post, I depends on dynamic 
type of b

Method call

dynamic binding! 

for every method m applicable to b



06/13/2007 TU/e
26

• Notation:
b.P  dynamic binding
b:P  static binding

Removing dynamic binding

::

no alternative

:
: ::

dynamic binding



06/13/2007 TU/e
27

• Notation:
b.P  dynamic binding
b:P  static binding

Removing dynamic binding

::

no alternative

:
: ::

dynamic binding



Assertional tools for Java

JML: a widely accepted spec language

uses Java syntax

added as comment to existing code or in 
separate files

many tools exist



ESC/Java

Extended Static Checking for Java

uses subset of JML



ESC/Java (ctd)
modular checking: classes and methods are 
checked in isolation

disadvantages: 
you can not use knowledge of specific usage in 
application

executing proofs requires insight in the code 

advantages: 
no exponential blow-up of verif. conditions

robust to change, ready for reuse



Links
ESC/Java:  http://research.compaq.com/SRC/esc/
download.html

   Spec#, Microsoft counterpart to ESC/Java2 tool for 
C#  verification. See: http://research.microsoft.com/specsharp/

    Huizing, K. and Kuiper, R ., (2001), Reinforcing fragile base 
classes, in: Proc. 3rd ECOOP Workshop on Formal Techniques for 
Java Programs, Budapest.

    R . Middelkoop, C. Huizing, R . Kuiper, E. Luit, Cooperation-
based Invariants for OO languages, International Workshop on 
Formal Aspects of Component Software 2005, Macao, 
(Electronic Notes in Theoretical Computer Science,  Elsevier).

     Sun, K. , Verifying Java Programs by Integrating ESC/Java2 
and PVS, MSc, TU/e 2007.


