Regular languages

\[L \subseteq \Sigma^* \text{ is regular iff } L = \mathcal{L}(N) \text{ for some NFA } N \]

THEOREM the following statement are equivalent

- \(L \) is regular
- \(L = \mathcal{L}(D) \) for some DFA \(D \)
- \(L = \mathcal{L}(r) \) for some RE \(r \)

PROOF combine earlier results
THEOREM

- if L_1 and L_2 are regular, then $L_1 \cup L_2$ is regular
- if L is regular, then L^* is regular
- if L_1 and L_2 are regular, then $L_1 \cap L_2$ is regular

PROOF use a suitable representation for L_1, L_2 and L
The product automaton

two DFAs $D_i = (Q_i, \Sigma, \delta_i, q_0^i, F_i)$ for $i = 1, 2$

product automaton

$$D_1 \times D_2 = (Q_1 \times Q_2, \Sigma, \delta, \langle q_0^1, q_0^2 \rangle, F_1 \times F_2)$$

where

$$\delta(\langle q_1, q_2 \rangle, a) = \langle q'_1, q'_2 \rangle \iff \delta_1(q_1, a) = q'_1 \land \delta_2(q_2, a) = q'_2$$
An example product automaton
two DFAs $D_i = (Q_i, \Sigma, \delta_i, q_0^i, F_i)$ for $i = 1, 2$

product automaton

$$D_1 \times D_2 = (Q_1 \times Q_2, \Sigma, \delta, \langle q_0^1, q_0^2 \rangle, F_1 \times F_2)$$

where

$$\delta(\langle q_1, q_2 \rangle, a) = \langle q_1', q_2' \rangle \iff \delta_1(q_1, a) = q_1' \land \delta_2(q_2, a) = q_2'$$

LEMMA $\mathcal{L}(D_1 \times D_2) = \mathcal{L}(D_1) \cap \mathcal{L}(D_2)$
two DFAs $D_i = (Q_i, \Sigma, \delta_i, q^i_0, F_i)$ for $i = 1, 2$

product automaton

$$D_1 \times D_2 = (Q_1 \times Q_2, \Sigma, \delta, \langle q^1_0, q^2_0 \rangle, F_1 \times F_2)$$

where

$$\delta(\langle q_1, q_2 \rangle, a) = \langle q'_1, q'_2 \rangle \iff \delta_1(q_1, a) = q'_1 \land \delta_2(q_2, a) = q'_2$$

Lemma \(\mathcal{L}(D_1 \times D_2) = \mathcal{L}(D_1) \cap \mathcal{L}(D_2) \)

Proof for all $n \geq 0$ it holds that

$$\forall q_1, q'_1 \in Q_1, q_2, q'_2 \in Q_2 \forall w, w' \in \Sigma^* :$$

$$(q_1, w) \vdash^n_1 (q'_1, w') \land (q_2, w) \vdash^n_2 (q'_2, w')$$

$$\iff (\langle q_1, q_2 \rangle, w) \vdash^n (\langle q'_1, q'_2 \rangle, w')$$

\[\square\]
(i) The language accepted by the left automaton is the empty language

(ii) The string 11010111 is accepted by the right automaton
(i) The language accepted by the left automaton is the empty language

(ii) The string 11010111 is accepted by the right automaton

A. Both (i) and (ii) are true
B. (i) is true and (ii) is false
C. (i) is false and (ii) is true
D. Both (i) and (ii) are false
E. Can't tell
Two decision theorems

THEOREM

It can be decided whether or not a regular language is empty

THEOREM

It can be decided whether or not a string is member of a regular language
Two decision theorems

THEOREM

It can be decided whether or not a regular language is empty.

PROOF
let R_n = the set of states reachable from the initial state in at most n steps.
then $R_0 = \{q_0\}$ and $R_{n+1} = R_n \cup \{\delta(q, a) \mid q \in R_n, a \in \Sigma\}$.
$R_{|Q|-1} \cap F = \emptyset$ iff the language is empty.

THEOREM

It can be decided whether or not a string is member of a regular language.
THEOREM

It can be decided whether or not a regular language is empty

PROOF let \(R_n = \) the set of states reachable from the initial state in at most \(n \) steps

then \(R_0 = \{q_0\} \) and \(R_{n+1} = R_n \cup \{\delta(q, a) \mid q \in R_n, a \in \Sigma\} \)

\(R_{|Q|-1} \cap F = \emptyset \) iff the language is empty

THEOREM

It can be decided whether or not a string is member of a regular language

PROOF compute \(q \) such that \((q_0, w) \vdash^* (q, \varepsilon)\)
Start pumping

The diagram shows a nondeterministic finite automaton (NFA) with states labeled q_0, q_1, q_2, q_3, q_4, and q_5. The transitions are labeled with symbols a and b. The start state is q_0, and the accepting states are q_3, q_4, and q_5. The diagram illustrates the pumping lemma for regular languages.
Start pumping
THEOREM if $L \subseteq \Sigma^*$ is a regular language then

$$\exists m > 0: \forall w \in L, |w| \geq m: \exists x, y, z : w = xyz \land |xy| \leq m \land |y| > 0 : \forall i \geq 0 : xy^i z \in L.$$
The Pumping Lemma

THEOREM if \(L \subseteq \Sigma^* \) is a regular language then

\[
\exists m > 0 : \\
\forall w \in L, |w| \geq m : \\
\exists x, y, z : w = xyz \land |xy| \leq m \land |y| > 0 : \\
\forall i \geq 0 : xy^i z \in L
\]

PROOF suppose \(L = \mathcal{L}(D) \) for DFA \(D \)
take \(m \) the number of states of \(D \)
LEMMA DFA D over alphabet Σ

$$(q, w) \vdash^*_D (q', w') \iff (q, wv) \vdash^*_D (q', w'v)$$

for all states q, q' of D and all strings $w, w', v \in \Sigma^*$

PROOF by induction on n:

$$(q, w) \vdash^n_D (q', w') \iff (q, wv) \vdash^n_D (q', w'v)$$
Example non-regular languages

Pumping Lemma: if $L \subseteq \Sigma^*$ is a regular language then

$$\exists m > 0 :$$

$$\forall w \in L, |w| \geq m :$$

$$\exists x, y, z : w = xyz \land |xy| \leq m \land |y| > 0 :$$

$$\forall i \geq 0 : x y^i z \in L$$

- the language $L_1 = \{ a^n b^n \mid n \geq 0 \}$ is not regular

- the language $L_2 = \{ uu \mid u \in \{a, b\}^* \}$ is not regular
Pumping Lemma: if $L \subseteq \Sigma^*$ is a regular language then
\[
\exists m > 0 : \\
\forall w \in L, |w| \geq m : \\
\exists x, y, z : w = xyz \land |xy| \leq m \land |y| > 0 : \\
\forall i \geq 0 : xy^iz \in L
\]

- the language $L_1 = \{ a^n b^n \mid n \geq 0 \}$ is *not* regular
 for any $m > 0$, consider $a^m b^m$
- the language $L_2 = \{ uu \mid u \in \{a, b\}^* \}$ is *not* regular
Example non-regular languages

Pumping Lemma: if $L \subseteq \Sigma^*$ is a regular language then
\[\exists m > 0 : \forall w \in L, |w| \geq m : \exists x, y, z : w = xyz \land |xy| \leq m \land |y| > 0 : \forall i \geq 0 : xy^i z \in L\]

- the language $L_1 = \{a^n b^n \mid n \geq 0\}$ is \textit{not} regular
 for any $m > 0$, consider $a^m b^m$

- the language $L_2 = \{uu \mid u \in \{a, b\}^*\}$ is \textit{not} regular
 for any $m > 0$, consider $a^m ba^m b$
How many of the following languages are *not* regular?

- $L_1 = \{ uu \mid u \in \{a\}^* \}$
- $L_2 = \{ a^n b^m c^\ell \mid n \geq 0, m \geq 2, \ell \geq 4 \}$
- $L_3 = \{ a^n b^m c^\ell \mid n, m, \ell \geq 0, n = m \lor m = \ell \}$
- $L_4 = \{ a^n b^m c^\ell \mid n, m, \ell \geq 0, n \neq m \land m \neq \ell \}$
How many of the following languages are \textit{not} regular?

- \(L_1 = \{ uu \mid u \in \{a\}^* \} \)
- \(L_2 = \{ a^n b^m c^\ell \mid n \geq 0, \ m \geq 2, \ \ell \geq 4 \} \)
- \(L_3 = \{ a^n b^m c^\ell \mid n, m, \ell \geq 0, \ n = m \lor m = \ell \} \)
- \(L_4 = \{ a^n b^m c^\ell \mid n, m, \ell \geq 0, \ n \neq m \land m \neq \ell \} \)

A. 0
B. 1
C. 2
D. 4
E. Can’t tell
Pumping Lemma: if $L \subseteq \Sigma^*$ is a regular language then

$$\exists m > 0 :$$

$$\forall w \in L, |w| \geq m :$$

$$\exists x, y, z : w = xyz \land |xy| \leq m \land |y| > 0 :$$

$$\forall i \geq 0 : xy^i z \in L$$

- the language $L = \{ a^{n^2} | n \geq 0 \}$ is not regular
Pumping Lemma: if $L \subseteq \Sigma^*$ is a regular language then

$\exists m > 0:\,
\forall w \in L, |w| \geq m:\,
\exists x, y, z:\ w = xyz \wedge |xy| \leq m \wedge |y| > 0:\,
\forall i \geq 0:\ xy^i z \in L$

- the language $L = \{ a^{n^2} | n \geq 0 \}$ is not regular
 for any $m > 0$, consider a^{m^2}