1. Give a DFA D with alphabet $\{a, b\}$ and no more than 4 states for the language $L = \{w \in \{a, b\}^* \mid w \text{ ends in } aba\}$. Prove that $L(D) = L$ by providing the pathsets of the states of D.

2. The transition diagram of NFA N is given by

 ![Transition Diagram of NFA N](image)

 (a) Using the NFA-to-DFA algorithm transform N into a DFA D that accepts $L(N)$. Provide both the transition table and the transition diagram of D. [hint: the resulting DFA has 3 states]

 (b) Using the NFA-to-RE algorithm based on GNFA construct starting with NFA N a regular expression for $L(N)$. Provide all intermediate GNFA and the constructed regular expression.

3. Given are an alphabet Σ, and a regular language L over Σ. Function $\text{dbl} : \Sigma^* \to \Sigma^*$ is defined recursively by

 $\text{dbl}(\varepsilon) = \varepsilon$

 $\text{dbl}(au) = aa \text{ dbl}(u)$ for all $a \in \Sigma, u \in \Sigma^*$

 (i.e. $\text{dbl}(c_1c_2\ldots c_k) = c_1c_1c_2c_2\ldots c_kc_k$ for all $k \geq 0$ and $c_1, c_2, \ldots, c_k \in \Sigma$). Language L' is defined by

 $L' = \{\text{dbl}(w) \mid w \in L\}$.

 Let $D = (Q, \Sigma, \rightarrow, q_0, F)$ be a DFA with $L(D) = L$. Show how to construct using D an NFA N such that $L(N) = L'$. Give some informal arguments why the constructed NFA N accepts language L' (no formal proof required).
4. Given is language \(L = \{a^{2n}b^n \mid n \geq 0\} \).

(a) Construct a push-down automaton with no more than 5 states accepting \(L \) and give the invariant table for it.

(b) Give a context-free grammar \(G \) for \(L \) with only 1 variable and prove \(\mathcal{L}(G) \subseteq L \).

5. Function \(f : \{a,b\}^* \rightarrow \{A\}^* \) is defined by

\[
\begin{align*}
 f(\varepsilon) &= \varepsilon \\
 f(aw) &= AAf(w) \quad \text{for all } w \in \{a,b\}^* \\
 f(bw) &= f(w) \quad \text{for all } w \in \{a,b\}^*
\end{align*}
\]

(string \(f(w) \) is obtained from \(w \) by deleting all \(b \)'s, and changing every \(a \) into two \(A \)'s). Give a classical Turing machine with at most 5 states that computes \(f \) and show the computation of \(f(abab) \) by this Turing machine.

6. Given are labeled transition systems \(S \) and \(T \):

\[
\begin{array}{c}
S : \\
\begin{array}{c}
p_0 \quad \tau \quad a \\
p_1 \quad a \\
p_2 \\
p_3 \quad b \\
\end{array} \\
T : \\
\begin{array}{c}
q_0 \quad \tau \quad a \\
q_1 \\
q_2 \\
q_3 \quad a \quad \tau \\
\end{array}
\end{array}
\]

Compute a coloring scheme for the combination of these LTSs (your computation should be presented in the form of one table for the combined colorings of \(S \) and \(T \)) and indicate whether and why \(S \) and \(T \) are branching bisimilar or not.