• Pumping Lemma for Regular Languages

If \(L \subseteq \Sigma^* \) is a regular language, then

\[
\exists m \in \mathbb{N} : m > 0 : \\
\forall w \in L : |w| \geq m : \\
\exists x, y, z \in \Sigma^* : w = xyz \land |xy| \leq m \land |y| > 0 : \\
\forall i \in \mathbb{N} : x y^i z \in L \] \]

Some languages can be proven to be not regular using the contraposition of the pumping lemma:

If

\[
\forall m \in \mathbb{N} : m > 0 : \\
\exists w \in L : |w| \geq m : \\
\forall x, y, z \in \Sigma^* : w = xyz \land |xy| \leq m \land |y| > 0 : \\
\exists i \in \mathbb{N} : x y^i z \notin L \] \]

then \(L \) is not a regular language.

• Proof that \(L = \{a^n b^n \mid n \geq 0\} \) is not regular:

Let \(m > 0 \).

Choose \(w = a^m b^m \), then \(w \in L \) and \(|w| = 2m \geq m \).

Let \(x, y, z \) be such that \(w = xyz \), \(|xy| \leq m \), \(|y| > 0 \).

It follows that \(x \) and \(y \) consist of \(a \)'s only.

Say \(x = a^k \), \(y = a^l \), and \(z = a^{m-k-l} b^m \).

for some \(k, l \) with \(k \geq 0 \), \(k + l = |xy| \leq m \), \(l > 0 \).

Choose \(i = 2 \). We now have

\[
xy^i z = x y^2 z = a^k a^{2l} a^{m-k-l} b^m = a^m + l b^m \notin L
\]

since \(m + l > m \).

due to \(l > 0 \).

\(L \) is not regular. It follows that \(L = \{a^n b^n \mid n \geq 0\} \) is not regular.