1. To which language is $L(0^*)$ equal (5)
 A. \emptyset
 B. $\{\emptyset\}$
 C. ε
 D. $\{\varepsilon\}$

2. Let $L = \{a^n b^n \mid n \geq 0\}$. To which language is L equal (5)
 A. $\{a^k b^\ell \mid k \neq \ell\}$
 B. $\{b^n a^n \mid n \geq 1\}$
 C. $\{a^k b^\ell \mid k \neq \ell\} \cup \{w \in \{a,b\}^* \mid w \text{ contains substring } ba\}$
 D. $\{a^k b^\ell \mid k \neq \ell\} \cup \{b^k a^\ell \mid k, \ell \geq 0\}$

3. The transition diagram of NFA N is given by

Which one of the following strings is not in $L(N)$ (5)
 A. $abab$
 B. $baab$
 C. baa
 D. aab
4. For regular expressions \(r_1 \) and \(r_2 \) we write \(r_1 = r_2 \) iff \(\mathcal{L}(r_1) = \mathcal{L}(r_2) \). Which one of the following equalities it not correct

A. \((r_1 + r_2)^* = (r_1^* \cdot r_2^*)^* \)
B. \((r_1 \cdot r_2)^* = r_1^* \cdot r_2^* \)
C. \(r_1 \cdot (r_2 \cdot r_1)^* = (r_1 \cdot r_2)^* \cdot r_1 \)
D. \((1 + r)^+ = r^* \)

5. Construct a DFA \(D \) with alphabet \(\{a, b\} \) and no more than 4 states for the language \(L = \{w \in \{a,b\}^* \mid w \text{ has substring } baa\} \). Prove that \(\mathcal{L}(D) = L \) by providing the pathsets of the states of \(D \).

6. The transition diagram of NFA \(N \) is given by

![Transition Diagram](image)

Derive a DFA \(D \) from \(N \) that accepts \(\mathcal{L}(N) \). Provide both the transition table and the transition diagram of \(D \). [hint: the resulting DFA has 5 states]

7. Given are an alphabet \(\Sigma \), a symbol \(a \in \Sigma \), and a regular language \(L \) over \(\Sigma \). Language \(L' \) is defined by

\[
L' = \{ u \in \Sigma^* \mid au \in L \}
\]

Show that \(L' \) is regular.