1. Answer: A, D, F

The language of the other regular expressions is:

B. \(L((a \cdot b)^*) = \{ (ab)^n \mid n \geq 0 \} \)
C. \(L((a \cdot (b + 1))^*) = \{ a, ab^j \}^* \)
E. \(L((a \cdot b^*)^*) = \{ a b^n \mid n \geq 0 \}^* \)

and hence differs from \(\{ a, b^j \}^* \)

2. Answer:

- Every odd length string in not in \(L \)
- Every even length string that is not an alternation of \(a \)'s and \(b \)'s, must contain two adjacent symbols that are equal, so the string contains substring \(aa \) or \(bb \)

3.

![Diagram](image.png)

State	**Pathset**
\(q_0 \) | \{ \(\varepsilon \) \} \cup \{ w \in \{ a, b \}^* \mid w \) does not contain \(bbba \) and ends in \(a \} \)
\(q_1 \) | \(w \in \{ a, b \}^* \mid w \) does not contain \(bbba \) and ends in \(b \) but not in \(bbba \} \)
\(q_2 \) | \(w \in \{ a, b \}^* \mid w \) does not contain \(bbba \) and ends in \(bb \} \)
\(q_3 \) | \(w \in \{ a, b \}^* \mid w \) contains \(bbba \} \)

Alternative description pathset (more compact)

\(q_0 \) | \(w \in \{ a, b \}^* \mid w \) does not contain \(bb \) and does not end in \(b \} \)

Alternative description pathset (more compact)

\(q_1 \) | \(w \in \{ a, b \}^* \mid w \) does not contain \(bb \) and does not end in \(b \} \)
4. A DFA D is derived using the so-called "subset construction" from the proof of Theorem 2.13 but only the reachable states are calculated.

Transition Table

- **Initial State**: q_0
- **Final States**: $\{q_0, q_2\}$

<table>
<thead>
<tr>
<th>DFA State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_2}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
<td>${q_0, q_2, q_1}$</td>
</tr>
<tr>
<td>${q_0, q_1, q_2}$</td>
<td>${q_0, q_2}$</td>
<td>${q_0, q_2, q_1}$</td>
</tr>
</tbody>
</table>

Transition Diagram

- Regular expression: $(a+b)^*a(b^*b)^*$

5. $D' = (Q, \Sigma, \delta, q_0, F')$ with $F' = \{ q \in Q | \delta(q, a) \in F \}$