

ISSN 0361-7688, Programming and Computer Software, 2008, Vol. 34, No. 5, pp. 271–278. © Pleiades Publishing, Ltd., 2008.
Original Russian Text © V.A. Debelov, G.G. Smirnova, L.F. Vasilyeva, 2008, published in Programmirovanie, 2008, Vol. 34, No. 5.

271

1. INTRODUCTION

Among all the methods for producing realistic
images, the classic light-backwards recursive ray trac-
ing algorithm (RRTA) proposed by Whitted [1] in 1980
and its modifications are most commonly used. This
algorithm affords a suitable cost (calculation time) to
quality (realism) ratio for the resulting images. A scene
is supposed to consist of

transparent

and

opaque

 sur-
faces illuminated by several point and directional light
sources. Theoretically, the RRTA can produce only
sharp shadows because only point sources are used for
scene illumination. In real scenes, the sources normally
have quite appreciable dimensions resulting in softened
(blurred) shadows of objects. Moreover, unrealistically
sharp shadows are often identified by an observer as
independent (phantom) objects in the scene. Hence, the
desire to make the rendered images more realistic by
introducing soft shadows. Many studies were aimed at
the simulation of soft shadows by modifying the RRTA.
This means that one needed to blur sharp shadows in
the framework of the RRTA so that the computational
effort be not very high. The light meshes method
(LMM), which was proposed in [2] for scenes with

opaque

 surfaces, was developed for simulating soft
shadows while rendering scenes with point light
sources. In this paper, we justify the applicability of this
method for scenes including

transparent

 and

semi-
transparent

 surfaces.
A

light mesh

 is a uniform mesh in the space of a
scene with points collecting generalized data concern-
ing the illumination of the corresponding point in the
scene space (rather than a point of an object) by light
sources that are visible from it. The most important
thing is that the visibility of light sources from the mesh

points was weighted by the intensity of sources and
divided by the distance function. The illumination at
the displayed object points

was multiplied by the aver-
age illumination

 at the nearest mesh points [2]. Without
going into details, we note that method made it possible
to produce sufficiently realistic scene images with
fairly realistic soft shadows. More details on soft shad-
ows can be found in [3]. It turned out that, as the com-
plexity of the problem increases (as the number of
primitives, number of sources, and image resolution
increase), the LMM becomes faster than the RRTA.
This feature seemed very attractive because it could be
used for test calculations in debugging the geometry
and illumination in a scene. However, the relationship
between images produced by the LMM and the RRTA
must be somehow explained to the user.

Another approach in which source visibility masks
are calculated and stored was proposed in [4, 5]. In the
framework of that approach, the modified light meshes
method can be compared with the RRTA due to the fol-
lowing reasons:

(a) If an object point is located far away from the
boundaries of sharp shadows, both images (produced
by the LMM and RRTA) coincide.

(b) All the sharp shadows in the image produced by
the RRTA look blurred (soft) in the image produced by
the LMM.

(c) As the mesh step decreases, the images produced
using the LMM converge to the image produced using
the RRTA.

Therefore, it is clear that the LMM is an approxima-
tion of the RRTA.

An Extension of the Light Meshes Method for Three-Dimensional
Scenes with Semitransparent Surfaces

V. A. Debelov, G. G. Smirnova, and L. F. Vasilyeva

Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences,
pr. Akademika Lavrent’eva 6, Novosibirsk, 600090 Russia

Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia
e-mail: debelov@oapmg.sscc.ru; gasmi@gorodok.net; ludvas@oapmg.sscc.ru

Received November 24, 2006

Abstract

—The light meshes method (a modification of the Whitted backwards recursive ray tracing) was jus-
tified and studied for scenes consisting of opaque surfaces. Its main difference from the basic method is that the
rendered image may include soft shadows (i.e., point sources are simulated by area sources). This study makes
a further step in the development of this method: it is extended for rendering scenes containing semitransparent
surfaces. A few computational schemes are considered and, for each of them, the difference between the image
calculated by the standard scheme and obtained by the application of the light meshes method is shown.

DOI:

10.1134/S0361768808050046

272

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 34

No. 5

2008

DEBELOV et al.

In Section 2, we briefly describe various image cal-
culation techniques (including the RRTA). These
descriptions are used in Section 3 to describe the LMM
for scenes with opaque surfaces. In Section 4, we con-
sider the specific features of RRTA calculations for
scenes with semitransparent surfaces.In Section 5, we
formulate the LMM for such scenes. In Section 6, we
analyze numerical results and rendered images to
clearly demonstrate the differences and specific fea-
tures of the LMM.

2. ANALYSIS OF THE RAY TRACING FORMULA

Let a scene be illuminated by

nL

 point sources with
the intensities

I

1

, …,

I

nL

, located at the points

LP

1

, …,

LP

nL

, and let it consist of a set of surfaces each point of
which is characterized by the properties of reflection
and semitransparency defined by the coefficients

k

d

 for
diffuse reflection,

k

s

 for specular reflection, and

k

t

 for
transparency.

All the subsequent formulations may be considered
only for the achromatic case. Following [6] accurate to
the notation, we write the main calculation formula of
the popular OpenGL and DirectX libraries, which is
called the local point illumination; this formula ignores
source visibility:

Here, (,) is the scalar product, and all the values are
taken at the given object point

P

;

I

out

 is the resulting
intensity;

I

a

 and

k

a

 are the intensity and the reflection
coefficient of the ambient light, respectively;

O

d

 is the
diffuse color of the surface;

f

att

,

i

 is the coefficient of
attenuation with distance for the

i

th source;

O

s

 is the
color of the specular component;

nShiny

 is the index of

surface specularity; , , , and are the normal,
the direction to the

i

th light source, its corresponding
reflected vector, and the direction to the camera, respec-

Iout IakaOd f att i, Ii kdOd N Li,()[
i 1=

nL

∑+=

+ ksOs Ri V,()
nShiny

] ktOtIt.+

N Li Ri V

tively;

O

t

 is the color of the semitransparent surface;
and

I

t

 is the intensity passed through this surface. Fig-
ure 1 demonstrates the directions of the vectors used in
formula (1) to calculate the intensity at the point

P

 of a
semitransparent surface. Here, the light refraction can
be taken into account as in the classical algorithm [1] or
ignored as in OpenGL or DirectX. The difference is
caused by the direction of incoming intensity

I

t

. It is
well known that the local illumination model cannot
calculate shadows and ignores specular reflections;
therefore, we are interested in an algorithm in which the
calculation formula includes the visibility function

V

(

i

,

P

) between the point

P

 and the

i

th source. First of
all, this includes the calculation by the so-called

local
illumination model

with shadows

 or

ray casting

:

(1)

We will not describe this very popular model. The
reader can make sure that this computational scheme
can also be modified using the LMM to blur shadows.

Let us write the RRTA formula (according to [6]):

(2)

here,

I

r

 is the intensity incoming from the direction of

the reflected ray . If the point

P

 is located on an
opaque surface, the visibility function

V

(

i

,

P

) can take
the following values: 1 if the

i

th source is visible from
the point

P

 and 0 otherwise. For the case when the
scene contains semitransparent surfaces, Whitted pro-
posed the following method for calculating

V

(

i

,

P

):

(1) First,

V

(

i

,

P

) is set to 1.

(2) Opaque surfaces are assigned

k

t

 = 0;

(3) The surfaces intersected by the segment connect-
ing the point

P

 with the

i

th source are determined.

(4)

V

(

i

,

P

) is multiplied by the coefficients

k

t

 of the
intersected surfaces.

Here, it makes sense to note that the proposed tech-
nique makes the resulting images less realistic; how-
ever, this algorithm is widely used, and we decided to
apply the LMM to this formulation. Since the three
terms

I

a

k

a

O

d

 +

k

s

I

r

 +

k

t

I

t

 in the LMM and RRTA are
treated and calculated similarly, we consider only the
second term rewritten in the form

Iout IakaOd=

+ V i P,() f att i, Ii kdOd N Li,()[⋅
i 1=

nL

∑

+ ksOs Ri V,()
nShiny

] ktOtIt.+

Iout IakaOd=

+ V i P,()
i 1=

nL

∑ f att i, Ii kdOd N Li,()[×

+ ksOs Ri V,()
nShiny

] ksIr ktIt;+ +

R

It

P
N

Li

Ri

V

Fig. 1. Calculation using the local illumination model with
filtering transparency.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 34 No. 5 2008

AN EXTENSION OF THE LIGHT MESHES METHOD 273

(3)

where URT(P) is the unknown intensity of the object
point P calculated by the RRTA, nL is the number of
sources, V(i, P) is the visibility of the ith source from
the point P, and Ω(i, P) is the part of formula (2) that
accounts for all reflecting properties of the surface at
the point P and parameters of the ith source.

3. THE LIGHT MESHES METHOD
FOR OPAQUE SURFACES

The known approaches to the simulation of soft
shadows in the RRTA are based on specific geometrical
considerations in the object space or in the space of the
image; these are the method of shadow volumes [7], the
method of shadow maps [8], etc. The main idea of the
LMM is to consider and modify computations of the
visibility function V(i, P) of the ith source from the ren-
dered point P. Therefore, we disregard formulas for cal-
culating the local illumination of the point and concen-
trate on the calculation of V(i, P). The scene space is
divided into domains, each with a constant mask of
source visibility {V(1, P), …, V(nL, P)}. A change in
even one of these values (for example, the jth value)
indicates that there is a boundary of a sharp shadow for
the jth source at this point. It only remains to “blur”
these boundaries between domains. Thus, we do not
have to consider the total geometry of the scene: it is
sufficient to make a local estimate in the neighborhood
of the rendered object point.

A light mesh (LM) is a uniform mesh of points in the
space of the scene; h is the mesh resolution. The LMM
has another important parameter kI determining the
interpolation sphere with the radius r = h · kI that will
be defined below.

Preprocessing step. At each mesh point x, we define
a mesh value—the mask of visibility of light sources

Nx = {V(i, x) . In an implementation of the LMM,
it is more rational to determine the mesh values “on
demand” (i.e., at the moment when these values are
required for calculations). It is seen from the statistics
presented in [4] that only about 1 to 10% of all LM
points in the scene space are used in the calculations.

Let us denote Nx(i) = V(i, x). Then, the intensity
ULM(P) of the point P can be calculated using the LMM
approach by the following algorithm Ψ (details can be
found in [3]):

(1) Construct the interpolation set DLM(P) of mesh
points that first includes all the light points located
within a sphere centered at P: ||xk – P || ≤ r.

(2) Remove xk that are located on the invisible

(reverse) side of an opaque surface: (, xk – P) ≤ 0.

URT P() V i P,()Ω i P,(),
i 1=

nL

∑=

}i 1=
nL

N

Here, (,) is the scalar product and is the normal at the
point P.

(3) Remove xk that are invisible from the point P or,
to put it differently, are occluded by other (opaque) sur-
faces of the scene. Thus, all the remaining points satisfy
the visibility condition V(xk, P) = 1.

(4) The resulting set DLM(P) = {x1, …, xm} (consist-
ing of light mesh points) will be used for calculating the
intensity of the object point P.

(5) If DLM(P) ≠ ∅ (i.e., if m > 0), we calculate the
quantity

(4)

where the function

indicates whether the ith source can yield a shadow in
the neighborhood of the point P; i.e., if the source is
located on the outer side, then ξ(i, P) = 1; otherwise, if
it is located on the back side, ξ(i, P) = 0. In the latter
case, this source is ignored in the calculation. Figure 2
shows a scene with two sources: ξ(1, P) = 1 and ξ(2, P) =
0. The mesh point x is visible from both sources. The
second source cannot take part in the generation of a
shadow because it illuminates x “from behind” and,
therefore, should not be used in the calculation of its
illumination. If we take into account this source in for-
mula (4), the situation called the light leak would occur.
For the object point Q with ξ(1, Q) = 1 and ξ(2, Q) = 1,
the second source will be used in the calculation of illu-
mination to form half-shadow even though Q is not vis-
ible from that source.

(6) If DLM(P) = ∅, we apply formula (3) (i.e., the
standard RRTA algorithm). Note that, in experiments
even with very complex scenes (hundreds of thousands
of triangles) not more than a dozen such cases occurred
in images with the resolution of 1000 × 1000 pixels and
higher.

Figure 3 shows a scene rendered by both algorithms.
The scene is illuminated by a single source and consists

N

ULM P() 1
m
---- ξ i P,() Ω i P,()⋅[]

i: V i xk,() 1=

∑ ,
k 1=

m

∑=

ξ i P,()
1, if LPi P–() n P(),() 0>
0, otherwise⎩

⎨
⎧

=

LP1

LP2

x
P

Q

Fig. 2. Calculation by formula (4).

274

PROGRAMMING AND COMPUTER SOFTWARE Vol. 34 No. 5 2008

DEBELOV et al.

of a tabletop (box) and a solid cylinder hanging over it
with a bar (rectangular parallelepiped) partially sealed
into the cylinder. All the surfaces are opaque. Soft shad-
ows appear due to interpolation (averaging over the
semispherical neighborhood) of the visibility of the
point P from the source according to the algorithm Ψ
(see [5] for details). In the left part of this figure the vis-
ible parts of sharp shadow edges are marked by arrows;
the same edges shown in the right part of the figure are
blurred. Pay attention to the sharp shadow from the
point source at the side of the cylinder in the left part of
the figure; in the right figure, it changes into a penum-
bra. It is seen from the shadow configuration under the
cylinder that it hangs over the tabletop. This figure also
demonstrates another feature of the LMM: sharp
boundaries between faces are not blurred (i.e., the
geometry is preserved).

4. SPECIFIC FEATURES OF RAY TRACING
FOR SEMITRANSPARENT CONDITIONS

The situation is quite different when the scene
includes semitransparent surfaces [1, 6]. Here, the
recursive tracing means not a sequence of reflections
but a tree; at each node of this tree, a refraction direc-
tion is constructed in addition to specular reflection.
The coefficient kt is responsible for attenuating the ray
intensity It arriving from the “direction of refraction”
(see Fig. 1). Calculations performed on the basis of the
RGB-model normally use the characteristics of the
environment on both sides of the semitransparent sur-
face, which provides a basis for the Snell law applica-
tion; then, the path for the refracted ray can be built.
One can assume that a more accurate intensity value
can be obtained by using the technique described above
for opaque surfaces (i.e., construct a tree once and cal-
culate the intensity based on spectral considerations).
However, this is fundamentally wrong because of the
so-called optical dispersion when the direction of the
refracted ray depends on the light wavelength. We will
not consider the issue of how seriously this phenome-

non affects the realism (more correctly, physical accu-
racy). Note that studies on the RRTA usually omit a
detailed consideration of how the local illumination is
calculated at the object point when the scene includes
semitransparent surfaces. The standard RRTA calcu-
lates the function V(i, P) by multiplying the transpar-
ency coefficients of the surfaces intersected by the seg-
ment connecting the ith source with the point P (i.e.,
refractions are neglected). Let us again point out that
the backwards ray tracing is performed taking refrac-
tions on semitransparent surfaces into account, but vis-
ibility is calculated using the segment connecting the
source and the point although a physically accurate
approach requires that the path from the source to the
object point be traced with account of ray refractions on
each of the surfaces.

Now, let us rewrite formula (4) used by the RRTA to
find the local illumination of a point in the form

(5)

where nJ(i) is the number of paths along which the light
ray can travel from the ith source to the point P with
account of refractions; the path can be a straight line (if
there are no semitransparent objects between the source
and the point P) or a polyline (if there are semitranspar-
ent objects refracting the light ray). Note that this for-
mula is correct for both cases: with or without refrac-
tion. v(i, j, P) is the visibility function of the ith source
for the jth path from the point P. If the source is visible,
then v(i, j, P) = 1; if there is at least one opaque object
on the path, then the source is invisible and v(i, j, P) = 0;
if there are nT semitransparent surfaces on the path j to
the source, then v(i, j, P) = , where tp are the
transparency coefficients of these surfaces. Ii is the
intensity of the ith source. This multiplier can be
removed from the sum sign because it linearly appears
in Ω'. Ω'(i, j, P) is the illumination function depending
on the reflecting properties of the surface material, on

URT P() v i j P, ,()
j 1=

nJ i()

∑ Ii Ω ' i j P, ,()⋅ ⋅
⎝ ⎠
⎜ ⎟
⎛ ⎞

,
i 1=

nL

∑=

t pp 1=
nT∏

Fig. 3. Images rendered using the RRTA (left) and LMM (right) algorithms (ray casting technique).

PROGRAMMING AND COMPUTER SOFTWARE Vol. 34 No. 5 2008

AN EXTENSION OF THE LIGHT MESHES METHOD 275

the properties of the light source i with account of atten-
uation due to distance, and on the path j.

5. THE LIGHT MESHES METHOD
AND SEMITRANSPARENT SURFACES

Now, the value at a mesh point is not simply a visi-
bility mask of nL bits (as in Section 3), but an array of
nL real numbers. To obtain LMM formulas, we modify
formulas (5) similar to how it was done in Section 3.

The preprocessing step is more complex than in
Section 3 because, at each mesh point, the visibility of
a source is not simply 0 or 1. At each mesh point xl , for
the ith source (i ranges from 1 to nL), the value of the
visibility function is determined with account of trans-
parency v(i, xi) by the formula

(6)

where V(i, xl) is the visibility function without account
of semitransparency. To determine its value, we shoot
rays from the mesh point in the direction of the source.
If there are no objects on the path of the ray to the
source, then V(i, xl) = 1; otherwise, V(i, xl) = 0. Next, we
check whether the rays passing (or refracting) through
semitransparent objects fall on mesh points; nK is the
number of paths consisting of refracted rays that hit the
mesh point xl; nP(k) is the number of semitransparent
surfaces that were penetrated by the kth path; and tp is the
transparency coefficient of the pth surface.

The interpolation set is again chosen using the algo-
rithm Ψ (see Section 3) modified in accordance with a
possible semitransparency of scene surfaces.

(1) Construct the interpolation set DLM(P) of mesh
points that first includes all the light points located
within a sphere centered at P: ||xk – P || ≤ r.

(2) Remove xk that are located on the invisible

(reverse) side of an opaque surface: (, xk – P) ≤ 0.

(3) Remove xk that are invisible from the point P or,
to put it differently, are occluded by opaque surfaces of
the scene. Thus, all the remaining points satisfy the par-
tial visibility condition v(xk, P) > 0.

(4) The resulting set DLM(P) = {x1, …, xm} consist-
ing of light mesh points will be used for calculating the
intensity at the object point P. At each of these points xk,
the visibility v(xk, P) > 0 of P is known; it is calculated
by formula (6).

v i xl,() V i xl,() t p

p 1=

nP k()

∏⎝ ⎠
⎜ ⎟
⎛ ⎞

,
k 1=

nK

∑+=

N

(5) If DLM(P) ≠ ∅ (i.e., if m > 0), calculate the
quantity

(7)

where (i, P) accounts for the reflecting properties of
the surface material, for the intensity, and for the dis-
tance from the source i.

(6) If DLM(P) = ∅, formula (5) is applied (i.e., the
standard RRTA algorithm).

Let us analyze formula (7) in more detail. The mul-
tiplier ξ(1, P) is used to avoid light leaks similarly to the
case of opaque surfaces (see Section 3). However, this
cannot prevent all the cases of light leak when the visi-
bility is calculated by formula (6) using ray refractions
on media interfaces; we simply made an empirical
assumption that the paths in formula (6) are usually
directed towards the light source. Thus, the calculations
in most cases will be correct. However, in order to com-
pletely prevent light or shadow leaks, formula (7) should
be replaced by a more complex and computationally
expensive algorithm. For example, at each mesh point xl
and for each source, we store all the components of the
visibility function v(i, xl) separately (in the notation of
formula (6)) rather than as a single total value:

• direct visibility V(i, xl);

• for each of the paths j = 1, …, nK, the partial visi-

bilities αj = ;

• for each of the paths j = 1, …, nK, the first segment
of the path [xl , Pj]; i.e., the point Pj .

Now, in formula (7), we replace the subexpression
ξ(i, P) · v(i, xi) by V(i, xi) · ξ(i, P) + α · ξ(Pj , P).

6. EXPERIMENTS

The experiments were performed using the same
scene as shown in Fig. 2 except that the cylinder surface
was assumed to be semitransparent. Figure 4 shows six
images produced using different algorithms:

• The first row shows the images produced by the
standard RRTA algorithm, and the second row shows
the images produced by the LMM.

• The left image in each row was rendered while
neglecting refraction on semitransparent surfaces. Such
images can normally be obtained using OpenGL or
DirectX.

• The center image in each row was rendered taking
refraction into account in backwards ray tracing and

ULM
1
m
---- v xl P,() ∑

l 1=

m

∑=

× ξ i P,()
i 1=

nL

∑ v i xl,() Ii Ω̃ i P,()⋅ ⋅ ⋅
⎝ ⎠
⎜ ⎟
⎛ ⎞

,

Ω̃

t pp 1=
nP j()∏

276

PROGRAMMING AND COMPUTER SOFTWARE Vol. 34 No. 5 2008

DEBELOV et al.

neglecting it while determining the visibility of
sources. Such images are obtained using the standard
RRTA.

• The right image in each row. Refraction was taken
into account both in backwards ray tracing and in deter-
mining the visibility of sources. Such images are usu-

ally obtained using other methods (for example,
Monte-Carlo tracing or photon maps). The Whitted
model can also be used; however, in this case, for each
scene, one has to develop a program adapted to the
geometry of this particular scene, which is just what we
have done in calculating the right images in each row.

Fig. 4. Different rendering techniques for a scene with a semitransparent surface.

Fig. 5. Semitransparent sphere: RRTA (left) and LMM (right).

PROGRAMMING AND COMPUTER SOFTWARE Vol. 34 No. 5 2008

AN EXTENSION OF THE LIGHT MESHES METHOD 277

In the scene depicted in Fig. 5, the larger sphere is
semitransparent. In our calculations, the visibility was
determined with account of refraction; therefore, the
sphere works as a light-collecting lens. Figure 6 shows
(using a series of images) the dependence of the soft
shadow on the light mesh size and on the radius of the
interpolation hemisphere. The left part of this figure
shows (bottom-up) four images of a shadow fragment
rendered with a decreasing light mesh size and a con-
stant radius of the interpolation hemisphere. The right
part shows the images rendered using a fixed mesh size
and increasing (from the bottom to the top) radius.

7. CONCLUSIONS

In this study, we considered various techniques for
calculating images with shadows and showed that all
the approaches can be modified using the light meshes
method. In other words, if there is a computer program
that renders images on the basis of ray tracing, the func-
tionality of this program can be extended by introduc-
ing the LMM mode. It is obvious that, using this
approach, the user can be allowed to control the process
of shadow blurring by specifying: (a) the sources that
yield soft shadows and the sources that yield sharp
shadows; (b) the surfaces casting soft shadows and the
surfaces casting sharp shadows; (c) the surfaces on
which soft shadows are allowed, etc. The size of the

neighborhood (hemisphere) over which visibility is
averaged determines the width of the penumbra area,
and the light mesh resolution is responsible for grading
the intensity in the penumbra area; therefore, by vary-
ing the mesh resolution, one can obtain softer or
sharper shadows; while varying the radius of the inter-
polation sphere, one can control the penumbra area. It
is clear that this approach would fail for arbitrary
scenes. However, the experimental results show that the
use of the LMM without refraction of shadow rays
yields quite realistic images for scenes with semitrans-
parent surfaces. Blurring sharp shadow boundaries
allows the user to simulate non-point sources and,
therefore, the LMM can be used together with and in
place of the standard ray tracing algorithm.

ACKNOWLEDGMENTS

This study was partially supported by the Russian
Foundation for Basic Research, project no. 06-07-
89216.

REFERENCES

1. Whitted, T., An Improved Illumination Model for
Shaded Display, Comm. ACM, 1980, vol. 23, no. 6,
pp. 343–349.

Fig. 6. Dependence of shadow blurring on the light mesh resolution (left) and on the radius of the interpolation hemisphere (right).

278

PROGRAMMING AND COMPUTER SOFTWARE Vol. 34 No. 5 2008

DEBELOV et al.

2. Debelov, V.A. and Sevastyanov, I.M., A Novel Approach
to Simulation of Soft Shadows and Diffuse Color Bleed-
ing in Ray Tracing, Proc. of the 11th Int. Conf. on Com-
puter Graphics and Machine Vision Graphicon-2001,
Nizhni Novgorod, 2001, pp. 18–24.

3. Debelov, V.A. and Sevastyanov, I.M., Soft Shadows as
Interpolation of Visibility, Future Generation Computer
Systems, 2004, vol. 20, no. 8, pp. 1299–1315.

4. Debelov, V.A. and Vasilyeva, L.F., Approximation of the
Solution obtained by a Whitted-like ray tracing algo-
rithm in Synthesis of Realistic Images, Proc. of the Int.
Scientific and Practical Conf. “Svyaz-2004,” Seminar
“Computational Methods and Solution of Optimization
Problems,” 2004, Issyk-Kul’, 2004, pp. 64–69.

5. Debelov, V.A., Vasilyeva, L.F., and Novikov, I.E.,
Improvement of the Light Meshes Method for the Ray
Tracing Algorithm: Approximation of Solution, Imple-
mentation on a Graphical Processing Unit, Proc. of the
15th Int. Conf. on Computer Graphics and Its Applica-
tions Graphicon-2005, Novosibirsk, 2005, pp. 355–359.

6. Foley, J. and Van Dam, A., Computer Graphics: Princi-
ples and Practice, Reading, Mass.: Addison-Wesley,
1990.

7. Crow, F., Shadow Algorithms for Computer Graphics,
Comput. Graphics, 1977, vol. 11, no. 2, pp. 242–247.

8. Williams, L., Casting Curved Shadows on Curved Sur-
faces, Comput. Graphics, 1978, vol. 10, no. 2, pp. 270–
274.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

