Implicit Surface Rendering

1. Ray tracing
 - Ray Marching
 - Sphere Tracing
2. Polygonization

Implicit Surface Polygonization

- Tiling surface with polygons/triangles
- Spatial partitioning in cells
- Cell polygonization

Discrete vs Continuous Data

Discrete data:
- Data only in vertices of cells
- E.g., obtained from medical data
- Interpolation to obtain continuous data
- Estimated cell/surface intersection

Continuous data
- Given by an implicit function
- Function evaluation can be very expensive

Partitioning - 1

- Accuracy or cell size
- Fixed vs adaptive resolution

Partitioning - 2

- Subdivision: octree/quad tree
- Enumeration: list of all cells

Cell Polygonization - 1

- Each vertex of cell is inside or outside volume
- An edge with an inside and outside vertex intersects the surface
Vertex v_0 is inside, value f_0
Vertex v_1 is outside, value f_1
Iso-value = f

Estimated intersection point:

$\left((1-\alpha)v_0 + \alpha v_1 \right)$

With $\alpha = \frac{f-f_0}{f_1-f_0}$

Cell Polygonization - 3

Computation vs interpolation

accurate

interpolated

Cell Polygonization - 4

Normal vector computation
- use normalized gradient: $\nabla f / ||\nabla f||$

Gradient can be computed or approximated:

$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right)$

$\nabla f \approx \left(\frac{f(x+\Delta,y,z)-f(x-\Delta,y,z)}{2\Delta}, \frac{f(x,y+\Delta,z)-f(x,y-\Delta,z)}{2\Delta}, \frac{f(x,y,z+\Delta)-f(x,y,z-\Delta)}{2\Delta} \right)$

Ambiguity
Disambiguate carefully and consistently, otherwise holes in the surface result.

Decomposition in tetrahedra eliminates ambiguities.
Shrink Wrapping

Polygon-set = large polygonized sphere

\begin{algorithm}
while (offset \neq 0) {
 move vertices to offset surface;
 divide some of the edges;
 move new vertices to offset surface
 along gradient;
 reduce offset;
}
\end{algorithm}

Iterations

Triangle subdivision