
Javra : a simple, extensible Java package for VRML

Huub van de Wetering
Department of Mathematics and Computer Science

Eindhoven University of Technology
wstahw@win.tue.nl

Abstract

Javra is a Java package for handling VRML scene
graphs; it operates either stand-alone or in combination
with a VRML browser. The combination of Javra and a
VRML browser forms an effective start for generating 3D
interactive applications. With Javra a VRML scene graph
can be handled: both classes for VRML nodes and methods
for setting and getting the fields of these nodes are supplied.
Furthermore, VRML events generated, for instance, after a
user action, can be caught and handled in Javra.

The Javra node classes have an inheritance structure
which allows strict compile time type checking of the con-
struction of the scene graph. The programmers interface is
intended to be simple enough to be used by students of an
introductory programming course.

The node classes are generated completely automati-
cally, resulting in a robust package. The automatic code
generation can also be used to create custom Java pack-
ages for programmer-defined VRML prototypes, effectively
resulting in the extension of the set of Javra nodes.

Keywords: Java, VRML, EAI, prototype, scene graph,
3D interactive graphics

1 Introduction

The development of interactive 3D applications is a
difficult task. The highest performance and flexibility is
achieved when libraries such as OpenGL and Direct3D are
used directly for rendering, but they provide only low level
functionality. A higher level is provided by, for instance,
OpenInventor [8], VRML [3], and Java3D [5]. They are
based on scene graphs: the scene and other aspects such
as cameras and light sources are described in a hierarchi-
cal structure. Apart from the rendering of a scene graph
the interaction of the user with a (displayed) scene graph
is an important part of a 3D application. The problem ad-
dressed in this paper is how the development of interactive
3D applications can be simplified, such that students in an

introductory course can do this job.
Our solution is to use a combination of a Java program

and a VRML browser where the communication between
these two is taken care of by a newly developed java pack-
age: Javra [7]. Javra is based upon the external authoring
interface (EAI,[2]). It handles both the VRML scene graph
as well as some of the interactions with the scene graph.
The VRML browser handles the basic 3D scene interac-
tions, like translating and rotating a scene.

Other solutions exist. The package JVerge [4] imple-
ments a similar solution as Javra. JVerge, however, is no
longer supported by its creator and the Javra library is more
robust in supporting the VRML nodes since these nodes
are completely generated automatically. Furthermore, Javra
supports generation of custom classes based on VRML pro-
totypes, and it is based on the latest EAI standard. Java3D
[5] can also handle VRML worlds but its programmers in-
terface is not as simple as the interface of Javra. And, hence,
for use in an introductory programming course it is less suit-
able.

Section 2 contains a system overview, in section 3 Javra
nodes are introduced, in section 4 the usage of Javra is dis-
cussed. In the sections 5 and 6 examples are shown and
conclusions are drawn, respectively.

2 Javra, EAI, and VRML browser

In this paper we consider applications that are built from
four major components: Java, a VRML browser, EAI, and
Javra. The VRML browser can be used as a Java user inter-
face component to display VRML worlds within a Java pro-
gram. The browser is interfaced to a Java program via the
external authoring interface (EAI). The EAI enables pro-
grammers to manipulate a VRML world. However, EAI,
is as a programming tool not very convenient since it, for
instance, requires the programmer to write small pieces of
VRML in the program, the syntax of which is checked dur-
ing runtime. Furthermore, EAI clearly shows the VRML
event model, it uses for the communication. Instead the
Javra layer over the EAI gives the programmer a convenient

Javra

Node Browser

VrmlEvent

JavraNode Application

EAI

scene graph0..*

sends/receives

scene graph0..*

0..1

sends receives

Figure 1. Simplified class diagram showing
EAI and Javra relations

interface for manipulating the scene graph and handling in-
teraction.

Figure 1 shows how Javra and EAI are coupled. Via the
classesNode and Browser the EAI gives access to the
scene graph in the VRML browser. In a Javra program also
a scene graph (a la VRML) is created but here with so-called
JavraNode s. This graph can be exported either to a file
or a VRML browser. In the latter case the browser con-
tains aNode for eachJavraNode in the graph. When-
ever aJavraNode is changed, by setting one of its fields a
VRMLEvent is sent to the browser resulting in the change
of the correspondingNode in the browser. Similarly, the
browser can sent VRML events to the application when, for
instance, the user clicks on an object in the scene.

3 JavraNode

The Javra package is generated automatically from a
specification file (see [7]) containing an enhanced specifi-
cation of each VRML node. From this file the following
information is read: (a) node name, (b) field : field qual-
ification (exposedField, field, eventOut, eventIn,...), field
type (SFFloat, SFVec3f, MFNode, ...), field name, default
values, and (c) class hierarchy information. For each node
in the specification a Java class is created with for each (ex-
posed) field a set and get method. The specification file is
a VRML97 specification file with only small additions and
alterations: A class hierarchy has been introduced and the
typing of fields has been replaced by a strict typing. Part
of the class hierarchy is shown in figure 2 where the dark
nodes are newly introduced nodes. Note that all classes in-
herit from the classJavraNode .

Below we give the interface that is generated for theBox
node. The box node contains only one field and both a set
and a get method for it are supplied. Furthermore,Box
inherits fromGeometry . Consequently, it can be used in

JavraNode

Appearance ChildrenNode Material Geometry

Sensor ShapeGroupingNode

TouchSensorGroup Transform

Sphere ExtrusionBox

Figure 2. Javra node inheritance limited to the
nodes mentioned in this paper

the geometry field of aShape node; this fields requires a
Geometry object due to the introduced strict typing.

class Box extends Geometry {
float[] get size();
void set size(float[] a);

}

TheGroupingNode is one of the newly introduced nodes
and it contains several fields, one of them a field containing
an array of children nodes, and it may raise an event, among
others, for adding new children nodes to the array. Part of
its programmers interface is shown below.

class GroupingNode extends ChildrenNode {
void addChildren(ChildrenNode[] a);
void set children(ChildrenNode[] a);
void ChildrenNode get children();
...

}

4 Usage

The usage of the Javra nodes is equivalent to the usage of
the corresponding VRML nodes. In this section we give an
overview of Javra and show some of its special features. In
section 4.1 we show the building of a simple Javra scene
graph, in section 4.2 we show ways to export the scene
graph to either a file or a browser, in section 4.3 we han-
dle interaction with a scene in the browser, and finally, we
indicate in section 4.4 how to use VRML prototypes within
Javra.

4.1 Building scene graphs

A VRML model is a set of connected nodes forming a
so-called scene graph. Below the VRML code is given for
a simple scene graph containing only a box.

Shape {
geometry Box { size 1 2 1 }
appearance Appearance {

material Material { diffuseColor 1 0 0 }
}

}

In the following corresponding Javra code the connections
between nodes (and, hence, the scene graph) are realized by
calling the corresponding set-functions.

Material m=newnewnew Material ();
m.set diffuseColor(new floatnew floatnew float[] {1,0,0 });

Appearance a=newnewnew Appearance ();
a.set material(m);

Box b=newnewnew Box ();
b.set size(new floatnew floatnew float[] {1,2,1 });

Shape s=newnewnew Shape ();
s.set geometry(b);
s.set appearance(a);

Creating a Javra scene graph requires VRML knowledge on
how to construct a scene graph, specific Javra knowledge
consists only of a naming convention. In general, Javra
scene graph generation faithfully mimics the VRML scene
graph creation where the field nameXXX in VRML is re-
placed by aset XXXmethod call in Javra.

4.2 Exporting scene graphs

Given a (Javra) scene graph we can export it to either a
VRML browser that supports the EAI interface or to a file.
The second option is realized by calling the print method
of the top node in the scene graph. The generated VRML
file will automatically make use of the DEF/USE construc-
tion of VRML to keep the resulting file small and allow the
browser to optimize the rendering.

For exporting a Javra scene graph to a browser we need
to obtain a handle to a browser object; this can be done by
calling the appropriate methods of the EAI. Subsequently,
to show the previously given box example in the browser
we need the following line of code:

browser.replaceWorld(
newnewnew Node[] {s.getNode(browser) }

);

where the replaceWorld method is again an EAI
method call expecting an array of browser nodes (Node[]).
To obtain such nodes theJavraNode s constructs aNode
in the method callgetNode(browser) . In this last
method a lot of the error prone EAI code is handled invisi-
bly by Javra.

Instead of replacing a world by a scene graph, nodes can
also be added to an existing world (see code below). With
EAI we can obtain a browser node for an object defined
in the VRML world, e.g. aGroup defined"TOP" . This
browser noden can be embedded in aJavraNode j by
the methodcreateJavraNode of the classJavraN-
odeFactory . Finally, a cast to the correct Jav(r)a type
may be done. Now the browser node can be manipulated
via the methods of the JavraGroup nodeg.

Node n=browser.getNode("TOP");
JavraNode j=JavraNodeFactory.

createJavraNode(browser,n);
Group g=(Group)j;

4.3 Interaction with scene graphs

After the scene graph is exported to the browser, the dy-
namic aspects of the scene can still be changed. Changes
are administered both in the Javra node as well as in the
browser node. The changes are supplied to the browser
using VRML’s event model, and are handled accordingly.
All this is invisible to the programmer who still uses the
same methods for setting (and getting) the fields of the Javra
nodes. The user can interact with the scene shown by the
browser. The interactions result inVrmlEvents that are
being tracked in the application. In Java an object imple-
menting theVrmlEventListener interface of the EAI
has to be supplied to the browser stating interest in receiv-
ing a certain event.JavraNode has a method that can
be used for stating this interest in one of the events a node
can generate. For example, for aTouchSensor and its
touchTime event the Javra code is simply as follows:

TouchSensor ts=new TouchSensor();
ts.advise("touchTime",listener,data);

wherelistener is an object of a class that implements
the VrmlEventListener interface anddata is any
Java object;data is supplied to the listener on a callback
with the methodeventOutChanged of the listener.

4.4 Extension with prototypes

Constructing scene graphs in VRML can be simplified
by using prototypes; they are parameterized nodes. Proto-
types typically have a relatively small amount of fields and
events in their parameter list, hiding all the details of the
scene graph they define. This benefit can be mimicked by
a Java class that internally implements a scene graph with
Javra. However, the VRML representation is more concise
and clearer since it is tuned for this kind of modeling. A new

Figure 3. Playing with the Extrusion node

Javra class can be generated out of a VRML prototype and
it can then be used in exactly the same way as the standard
Javra node classes. The only prerequisite is that the browser
has the prototype definition loaded. This method of using
prototypes has been proposed in [6] in an EAI context but
here it comes with the programmer-friendlier interface of
Javra. Finally, note that generating Javra nodes directly in
Java is still a good solution in the many cases where model-
ing directly in VRML is insufficient.

5 Examples

The figures 3 and 4 show two applets using a VRML
browser [1] and the Javra package. These and more applets
are available at [7]. The extrusion example (figure 3) shows
an applet in which the user can input parameters for the
VRML extrusion node. After selecting one of the possible
spines the current world is replaced by a new world contain-
ing an extrusion object according to the current parameters
and the chosen spine.

Figure 4. Robot playing towers of Hanoi

The example in figure 4 shows a robot playing towers
of Hanoi; this world is generated using VRML prototypes.
Both the robot and the discs in this example are constructed
in VRML by means of prototypes. The robot prototype,
for instance, has four parameters: the height of the arm,
the angle of the arm, and the position of the left and the
right finger. Its Java interface is small and all the geometry
definition is done in VRML. The animation is steered by the
applet by calling the methods of the generated class Robot.

6 Conclusions

The Javra package has been used extensively by students
to generate VRML files in the final assignment of an intro-
ductory programming course. Javra and VRML turned out
to be simple enough to be used in such a setting.

For a computer graphics specialist it may be an awkward
idea to give away much of the control over the precise im-
plementation of the rendering and to be limited to the tight
structure of a VRML scene graph. But for obtaining fast
results with a minimal of effort the Javra package in combi-
nation with a VRML browser seems ideal. Furthermore, the
extensibility of Javra with the prototype classes introduces
a flexible way of working. And finally, with the integration
(in the last EAI specification) of the browser as a Java user
interface component, it has become a competitor for more
complex and demanding programmer interfaces.

References

[1] ParallelGraphics. http://www.parallelgraphics.com.

[2] The Virtual Reality Modelling Language - Part 2 : Ex-
ternal Authoring Interface. ISO/IEC 14772-2, 1997.
http://www.web3d.org/WorkingGroups/vrml-eai/.

[3] Rick Carey and Gavin Bell.The annotated VRML 2.0
Reference Manual. Addison-Wesley.

[4] Justin Couch. Jverge, a free VRML 2.0 node java class
library. http://www.vlc.com.au/JVerge.

[5] M. Deering and H. Sowizral. Java3D Specification,
Version 1.0. Sun Microsystems, August 1997.

[6] Chris Marrin, Jim Kent, Dave Inmel, and Murat Ak-
tihanoglu. Using VRML Prototypes to Encapsu-
late Functionality for an External Java Applet, 1997.
http://www.marrin.com/vrml/papers/InternalExternal/.

[7] Huub van de Wetering. Javra: Java & VRML assistant.
http://www.win.tue.nl/̃ wstahw/javra, 1999.

[8] J. Wernecke. The Inventor Mentor: programming
Object-Oriented 3D Graphics with Open Inventor. Ad-
dison Wesley, 1993.

