Binary Trees, Binary Search Trees and AVL
Trees

[N.B.: This presentation is based on parts of a chapter in [Wirth]. The Pascal
programs have been redesigned and text fragments have been scanned
from the book and edited to fit the new algorithms. Some introductory
sections with basic notions and algorithms have been added. Kees
Hemerik]

1 Introduction

2 Basic Definitions

3 Traversals

4 Binary Search Trees
5 AVL Trees

6 References

lintroduction

In this note we consider some variations on binary search trees, with the
ultimate goal to design data structures that enable us to maintain large
collections of data elements in such a way that for a collection of N
elements the following operations can all be performed in O(log N) time:

 Find (find the location of a given data item in the collection)

« Insert(insert a new data item into the collection)

* Delete (delete a given data item from the collection)

The note begins with some general tree notions and algorithms, and
subsequently introduces binary search trees, rotation operators, and AVL-
trees [Adelson-Velskii & Landis].

2Basic Definitions
Assume some set S. The set BT(S) of binary trees over S can be defined
inductively as the smallest set X such that:

e eOOX

« forall LOX,aOS,ROX: <L, a R>0X

Some examples:
e ¢
e <¢,D,e>
e <<g¢,D,e>,B,<¢e,E,e>>
e <<<g¢,D,e>,B,<¢,E,e>>,A,<¢e,C,e>>

Trees are usually represented graphically in an obvious way. E.qg. the last
example above would be drawn as:

Functions on binary trees can be defined recursively. E.g. the function h
giving the height of a binary tree is defined as follows:

e he=0

e h<L,a,R>=1+(hL max hR)

In Pascal, binary trees over some assumed data type TData can be defined
as follows:

type
TDhata = ...;

PNode = "TNode;
TNode =
record
FData: TData;
FLeft: PNode;
FRight: PNode
end;

The empty tree ¢ will be represented by the pointer value nil. For the
construction of a tree node the following function will be convenient:

function MakeNode(AData: TData; ALeft: PNode; ARight: PNode): PNode;
var
H: PNode;
begin
New(H) ;
with H” do
begin
FData := AData;
FLeft := ALeft;
FRight := ARight;
end;
Result := H;
end;

Function definitions like the one for the height function h above can be
mapped to Pascal function definitions in a straightforward way:

function H(P: PNode): Integer;
begin

if P = nil

then Result := 0

else Result := 1 + Max(H(P".FLeft), H(P".FRight))
end;
3Traversals

3.1Standard Tree Traversals

Many operations on trees consist of systematically traversing the tree in
some pre-determined order and applying some operation to the data in
each node visited. There exist some standard traversal strategies, generally
known as pre-order, in-order, and post-order respectively. They are defined
as follows:

Pre-order traversal of tree with root top:
If the tree is not empty :
1. Visit node top
2. Traverse, in pre-order, node top’s left subtree
3. Traverse, in pre-order, node top’s right subtree

In-order traversal of tree with root top:
If the tree is not empty :
1. Traverse, in in-order, node top’s left subtree
2. Visit node top
3. Traverse, in in-order, node top’s right subtree

Post-order traversal of tree with root top:
If the tree is not empty :
1. Traverse, in post-order, node top’s left subtree
2. Traverse, in post-order, node top’s right subtree
3. Visit node top

3.2Recursive Tree Traversals

In Pascal, these traversals can be coded simply using recursive procedures
that take as parameter, in addition to the pointer to the root of the tree, a
procedure that has to be applied to the data in each node:

type
TAction = procedure(AData:TData);
// the type of the procedure that has to be applied to the node data

procedure PreOrder (ANode: PNode; AAction: TAction);
begin
if ANode <> nil then
with ANode” do
begin
AAction(FData);
PreOrder (FLeft, AAction);

PreOrder (FRight, AAction)
end;
end;

procedure InOrder (ANode: PNode; AAction: TAction);
begin
if ANode <> nil then
with ANode” do
begin
InOrder (FLeft, AAction);
AAction(FData);
InOrder (FRight, AAction)
end;
end;

procedure PostOrder (ANode: PNode; AAction: TAction);
begin
if ANode <> nil then
with ANode” do
begin
PostOrder (FLeft, AAction);
PostOrder (FRight, AAction)
AAction(FData);
end;
end;

3.3Tree Traversals by Means of a Stack

The standard tree traversals can also be coded by means of a stack. The
stack holds two kinds of obligations or tasks:
» Visit a given node (perform action on its data);
« Traverse the tree having a given node as its root.
Initially, the stack contains a single task, viz. traverse the entire tree. While
the stack is not empty, its top element can be popped. Depending on its
form, one of the following tasks is performed:
« If the task is of the form “Visit node Anode”, the action is performed
on its data;
« If the task is of the form “Traverse tree with root Anode”, three new
tasks are generated and pushed on the stack, viz.:
o “Visit node Anode”;
o “Traverse the left subtree of ANode” ;
o “Traverse the right subtree of ANode” ;
The desired traversal order (i.e. pre-order, in-order or post-order)
determines the order in which the newly generated tasks should be pushed
onto the stack. Remember that the stack is a LIFO (last-in, first-out) device
and that therefore the tasks should be pushed in an order opposite to the
order in which they are to be executed. For instance, to obtain a pre-order
traversal, the tasks should be pushed in the following order:
1. “Traverse the right subtree of ANode”;
2. “Traverse the left subtree of ANode”;
3. “Visit node ANode”.

Just as in the recursive case, the handling of empty (nil) trees deserves
some attention. There are two possibilities:
« Allow nil pointers in the tasks on the stack. In this case, after popping
a task, its node reference should be checked to be non-nil before
performing any action on it;
« Disallow nil pointers in the tasks on the stack. In this case, a task
should only be pushed onto the stack if its node reference is non-nil.

In the code samples below, the first alternative has been chosen.
Furthermore, the tasks have been coded by means of the types TVisitKind
and TTask and the stack has been coded by means of a class TStack, of
which only the public interface has been shown. As was to be expected, the
code of the three traversal procedures is very similar. The only difference is
in the order in which the newly generated tasks are pushed on the stack.

type
TVisitKind = (vkNode, vkTree);

TTask =

record
FKind: TVisitKind;
FNode: PNode;

end;

TVisitStack =
class(TObject)
private
public
// construction/destruction

constructor Create;
destructor Destroy; override;

// queries

function Top: TTask;
function Count: Integer;
function IsEmpty: Boolean;

// commands

procedure Pop;

procedure Push(ATask: TTask);

procedure PushTask (AKind: TVisitKind; ANode: PNode) ;
end;

procedure Preorder (ANode: PNode; AAction: TAction);
var

VStack: TVisitStack;

VTask: TTask;

begin
VStack := TVisitStack.Create;
VStack.PushTask (vkTree, ANode);

while not VStack.IsEmpty do

begin
VTask := VStack.Top;
VStack.Pop;
with VTask do
begin
if FNode <> nil then
begin
case VTask.FKind of
vkNode:
begin
AAction(FNode” .FData) ;
end;
vkTree:
begin
VStack.PushTask(vkTree, FNode”
VStack.PushTask (vkTree, FNode”
VStack.PushTask (vkNode, FNode)
end;
end{case};
end{if};
end{with};
end{while};

VStack.Free;
end;

.FRight);
.FLeft);

4

procedure Inorder (ANode: PNode; AAction: TAction);

var
VStack: TVisitStack;
VTask: TTask;
begin
VStack := TVisitStack.Create;
VStack.PushTask(vkTree, ANode);

while not VStack.IsEmpty do
begin
VTask := VStack.Top;
VStack.Pop;
with VTask do
begin
if FNode <> nil then
begin
case VTask.FKind of
vkNode:
begin
AAction(FNode”.FData) ;
end;
vkTree:

begin
VStack.PushTask(vkTree,
VStack.PushTask (vkNode,
VStack.PushTask(vkTree,
end;
end{case};
end{if};
end{with};
end{while};

VStack.Free;
end;
procedure Postorder (ANode: PNode;
var
VStack:
VTask:
begin
VStack := TVisitStack.Create;
VStack.PushTask(vkTree, ANode);

TVisitStack;
TTask;

while not VStack.IsEmpty do
begin
VTask := VStack.Top;
VStack.Pop;
with VTask do
begin
if FNode <> nil then
begin
case VTask.FKind of
vkNode:
begin
AAction(FNode” .FData) ;
end;
vkTree:
begin
VStack.PushTask (vkNode,
VStack.PushTask(vkTree,
VStack.PushTask(vkTree,

end;
end{case};
end{if};
end{with};
end{while};

VStack.Free;
end;

AAction:

FNode”.FRight) ;
FNode) ;
FNode” .FLeft);

TAction);

FNode) ;
FNode”.FRight) ;
FNode”.FLeft);

4Binary Search Trees

4.10rder

If (S,<) is a totally ordered set, the set BT(S) of binary search trees over S
can be given additional structure, thus enabling more efficient searching
and modification. The idea is to organize the tree in such a way that for
each subtree < L, A, R > the data elements in the left subtree L are all
smaller than A, whereas the data elements in the right subtree R are all
greater than A. When trying to locate a particular data element X in such a
tree it suffices to repeatedly compare X to the data element A, say, in a
node:

« if X< A, the search continues inthe left subtree

« if X=A, the element has been found

« if X> A, the search continues inthe right subtree
If the tree is well-balanced (this will be the subject of section 5), this search
process can locate any element in a tree with N nodes in O(log N) steps. If
the tree is not balanced, the search described here may still require O(N)
steps, however. In this section we consider algorithms for the operations
Find, Insert, and Delete for arbitrary binary search trees. In section 5, these
will be refined to operations on balanced binary search trees.

Formally, the set BST(S,<) of binary search trees over the totally ordered
set (S,<) is the set { t O BT(S) | bst(t) }, where the predicate bst is defined
as follows:
e bst € =true
e bst<L,a,R>=
(bstL) and (bstR) and (forallxinL. x <a) and (forall xin
R. a<Xx)

The following is an example of a binary search tree over the natural
numbers:

10

From now on we assume that the type TData is equipped with a total
ordering < . Since many of the algorithms to follow will require some 3-way

comparison (i.e. less, equal, greater), we introduce a new type and
comparison function:

type
TCompare = (ls, eq, gt);

function Compare(X,Y: TData): TCompare;

begin
if X < Y then Result := 1ls
else if X = Y then Result := eqg
else Result := gt;

end;

4.2Find

The Find operation has to locate the node containing a given data element
X, if any. The Pascal codings, both recursive and iterative, are
straightforward:

Find using recursion:

function Find(X: TData; ANode: PNode): PNode;

begin

if ANode = nil

then Result := nil

else

case Compare(X, ANode”.FData) of

ls: Result := Find(X, ANode”.FLeft);
eqg: Result := ANode;
gt: Result := Find(X, ANode”.FRight)

end{case}
end;

Find using repetition:

function Find(X: TData; ANode: PNode): PNode;

var

H: PNode;
begin

H := ANode;

while (H <> nil) and (H".FData <> X) do // use conditional
and

if X < H*.FData

then H := H".FLeft
else H := H".Fright;
Result := H;

end;

4.3Insert

The Insert procedure takes two parameters: a value parameter X (the value
to be inserted) and a var parameter P (the pointer to the root of the tree in
which X has to be inserted). Upon return from the procedure P is the pointer
to the modified tree.

N.B.: In this procedure, and in many others to follow, the use of var
parameters is essential. Without var parameters the code of many
algorithms may become significantly more complicated.

procedure Insert(X: TData; var P: PNode);
begin
if P = nil
then P := MakeNode(X, nil, nil)
else
case Compare(X, P".Fdata) of
ls: Insert(X, P".FLeft);
eq: {X already present; do not insert again}
gt: Insert(X, P*.Fright)
end;
end;

4.4Delete

The Delete operation is somewhat more complicated than the Find and
Insert operations. Finding the location of the element X to be deleted
proceeds similarly to Find and Insert. For the actual deletion process of a
node - referenced by P - containing X, three cases have to be distinguished,
however:

« Xoccursin a leaf: in this case P may simply be set to nil;

« X occurs in a node with only one subtree: in this case P is made to
refer to that subtree;

e X occurs in a node with two subtrees (see figure below): in this case
removal of node P would result in two subtrees without a parent.
Node P is therefore left in place, but an element Y of one of its
subtrees is removed and used to replace X . If the binary search
property of the whole tree is to be preserved, there are only two
candidates for Y : the maximal element of L and the minimal
element of R . Let us choose for Y the maximal element of L. Due
to the bst property, Y must occur as the rightmost elementof L. It
can be reached from the root of L by following the right branch as

10

long as possible, i.e. until a node Q is encountered with no right
subtree. The value Y in this node can be copied to node P .
Thereafter node Q can be deleted. Since Q has at most one
subtree, its removal is easy.

11

> ¢—
-

Y

The deletion process outlined above is implemented by means of the
following procedures Delete and DelRM. Delete locates the node containing
X, if any, and handles the cases of 0 and 1 subtrees directly. The case of
two subtrees is handled using the procedure DelRM (delete rightmost),
which removes the rightmost node from its argument tree R and returns
that nodein S.

procedure DelRM(var R: PNode; var S: PNode);
// Make S refer to rightmost element of tree with root R;
// Remove that element from the tree

begin
if R*".FRight = nil
then begin S := R; R := S".FLeft end
else DelRM(R”".FRight, S);

end;

procedure Delete(X: TData; var P: PNode);
var
Q: PNode; // Node to be deleted
begin
if P = nil
then {skip}
else
case Compare(X, P".FData) of
ls: Delete(X, P".FLeft);
gt: Delete(X, P".FRight);
eq:
begin
if P*".FRight = nil then begin Q := P; P := P".FLeft
end

else if P".FLeft = nil then begin Q P; P :=

P~ .FRight end

12

else

begin
DelRM(P~.FLeft, Q);
P”.FData := Q”.FData
end;
Dispose(Q)
end;
end{case}
end;
4.5Rotations

Rotations are operations that preserve the contents and the bst property
of a binary tree, but rearrange the relative positions of some neighbouring
nodes and subtrees. Rotations may be used to improve the balance of a
tree (as will be done in section 5) or to move certain data elements closer to
the root. The two rotations RotL (Rotate Left) and RotR(Rotate Right) are
depicted graphically below. Note how RotL moves T1 one node closer to the
root and T3 one node further away from the root. Note also that RotL and
RotR are each other’s inverse.

¢ P RotR(P)
B

T

RotL(P)

The rotations can be performed by the following procedures:

procedure RotL(var P: PNode);
var

Pl: PNode;

begin
Pl := P".FRight;
P*.FRight := P1~.FLeft;
P1".FLeft := P;

13

P := P1l;
end;

procedure RotR(var P: PNode);
var
P1l: PNode;
begin
Pl := P".FLeft;
P~.FLeft := P1".FRight;
P1"~.FRight := P;
P := P1;
end;

5 AVL Trees

5.1Balancing

The operations Find, Insert, and Delete, as defined for binary search trees in
section 4 , still have worst case complexity O(N). This is due to the fact that
binary search trees without further restrictions may still be very skew
(consider e.g. the extreme case in which elements are inserted in increasing
order; in that case the tree will degenerate into an ordered linear list). The
situation may be improved by requiring that trees are balanced, i.e. that for
each node its subtrees are of about the same height. One such definition
has been postulated in [Adelson-Velskii & Landis]. Their balance criterion is
the following:

A tree is balanced if and only if for every node the heights of its two
subtrees differ by at most 1.

The criterion can be formally defined by means of the predicate bal ,
defined as:

 bal ¢ =true
e bal<L,a,R>= (balL) and (balR) and |hL - hr|<=1

Binary search trees satisfying this criterion are often called AVL-trees (after
their inventors).

Algorithms for insertion and deletion that do rebalancing critically depend
on the way information about the tree’s balance is stored. An extreme
solution lies in keeping balance information entirely implicit in the tree
structure itself. In this case, however, a node’s balance factor must be
rediscovered each time it is affected by an insertion or deletion, resulting in
an excessively high overhead. The other extreme is to attribute an explicitly
stored balance factor to every node. We shall subsequently interpret a
node’s balance factor as the height of its right subtree minus that of its left
subtree. To this end we introduce a new type TBal, and we modify the
definitions of type TNode and function MakeNode as follows:

14

type
TBal = -1..1;

PNode = "“TNode;
TNode
record

FData: TData;

FLeft: PNode;

FRight: PNode;

FBal: TBal; // balance factor: h(FRight) - h(FLeft)
end;

function MakeNode(AData: TData; ALeft: PNode; ARight: PNode; ABal: TBal):
PNode;
var
H: PNode;
begin
New (H) ;
with H” do
begin
FData := AData;
FlLeft := ALeft;
FRight := ARight;
FBal := ABal;
end;
Result := H;
end;

5.2Find

The function Find is the same as the one for ordinary binary search trees.
See 4.2.

5.3Insert

Let us now consider what may happen when a new node is inserted in a
balanced tree. Given a root r with the left and right subtrees L and R, three
cases must be distinguished. Assume that the new node is inserted in L
causing its height to increase by 1 :

1. hL = hR: L and R become of unequal height, but the balance criterion is
not violated.

2. hL < hR: L and R obtain equal height, i.e., the balance has even been
improved.

3. hL > hR: the balance criterion is violated, and the tree must be
restructured.

Consider the tree in Fig. 4.31. Nodes with keys 9 and 11 may be inserted
without rebalancing; the tree with root 10 will become one-sided (case 1);
the one with root 8 will improve its balance (case 2). Insertion of nodes 1, 3,
5, or 7, however, requires subsequent rebalancing.

15

Fig 4.31 Balanced tree

Some careful scrutiny of the situation reveals that there are only two
essentially different constellations needing individual treatment. The
remaining ones can be derived by symmetry considerations from those two.
Case 1 is characterized by inserting keys 1 or 3 in the tree of Fig. 4.31, Case
2 by inserting nodes 5 or7.

The two cases are generalized in Fig. 4.32 in which rectangular boxes
denote subtrees, and the height added by the insertion is indicated by
crosses. Simple applications of the rotation operators defined in section 4.5
restore the desired balance:
» For case 1: apply a right rotation to node B;
» For case 2: first apply a left rotation to node A (thus reducing this case
to case 1); subsequently apply a right rotation to node C.

Their result is shown in Fig. 4.33; note that the only movements allowed are
those occurring in the vertical direction, whereas the relative horizontal
positions of the shown nodes and subtrees must remain unchanged.

Fig. 4.32 Imbalance resulting from insertion

16

Fig 4.33 Restoring the balance

The process of node insertion consists essentially of the following three
consecutive parts :
* Follow the search path until it is verified that the key is not already in
the tree.
* Insert the new node and determine the resulting balance factor .

* Retreat along the search path and check the balance factor at each
node.

Although this method involves some redundant checking (once balance is
established, it need not be checked on that node's ancestors), we shall first
adhere to this evidently correct schema because it can be implemented
through a pure extension of the already established Insert procedure of
section 4.3 . This procedure describes the search operation needed at each
single node, and because of its recursive formulation it can easily
accommodate an additional operation "on the way back along the search
path." At each step, information must be passed as to whether or not the
height of the subtree (in which the insertion had been performed) had
increased. We therefore extend the procedure's parameter list by the
Boolean Higher with the meaning "the subtree height has increased."
Clearly, Higher must denote a variable parameter since it is used to
transmit a result.

Assume now that the process is returning to a node P~ from the left branch
(see Fig. 4.32), with the indication that it has increased its height. We now
must distinguish between the three situations involving the subtree heights
prior to insertion :

« hL < hR, P".FBal = +1, the previous imbalance at p has been

equilibrated.

« hL = hR, P~ .FBal = 0, the weight is now slanted to the left.

e hL > hR, P~.FBal = -1, rebalancing is necessary.
This leads to the following scheme for procedure Insert (compare with
section 4.3):

procedure Insert(X: TData; var P: PNode; wvar Higher: Boolean);

begin
if P = nil

17

then begin P := MakeNode(X, nil, nil, 0); Higher := true end
else
case Compare(X, P".Fdata) of
1ls:
begin
Insert (X, P".FLeft, Higher);
if Higher then {Left branch has grown higher}
case P".FBal of

1: begin P*".FBal := 0; Higher := false end;
0: begin P*".FBal := -1 end;
-1: begin {Rebalance}
// ... REORDER TREE ...
P".FBal := 0;
Higher := false;
end{-1}
end{case}
end; {1s}
eq: {X already present; do not insert again}
gt:
begin
Insert (X, P*.Fright);
if Higher then {Right branch has grown higher}
case P".FBal of
-1: begin P".FBal := 0; Higher := false end;
0: begin P".FBal := 1 end;
1: begin {Rebalance}
// ... REORDER TREE ...
P".FBal := 0;
Higher := false;
end{1}
end{case}
end; {gt}

end; {case}
end; {Insert}

In case of rebalancing after insertion in the left subtree, inspection of the
balance factor of the root of the left subtree (i.e. P”.FLeft™.FBal)
determines whether case 1 or case 2 of Fig. 4.32 is present. If that node has
also a higher left than right subtree, then we have to deal with case 1,
otherwise with case 2. (Convince yourself that a left subtree with a balance
factor equal to 0 at its root cannot occur in this case.) The necessary
rebalancing operations are performed by means of the rotation procedures
RotL and RotR. Hence the rebalancing code can be refined to:

if P*".FLeft”".FBRal = -1
then {single R rotation}
begin
RotR(P);
//adjust balance factor:
end
else {double LR rotation}
begin
RotL(P".FLeft);
RotR(P);

//adjust balance factor:

18

end;
P*.FBal := 0;
Higher := false;

The rebalancing code following insertion in the right subtree of P is
symmetrical to this.

In addition to pointer rotation, the respective node balance factors also
have to be adjusted. From fig. 4.33 it is clear that in case 1 the new balance
factor of node B (i.e. P~.FRight™.FBal) is 0. In case 2, the old balance
factor of node B (now P~ .FBal) should be inspected in order to find the new
balance factors of node A (now P”.FLeft™.FBal) and of node B (now
P~.FRight™.FBal). Adding these adjustments (and their symmetrical
counterparts) results in the folowing complete Insert procedure:

procedure Insert(X: TData; var P: PNode; var Higher: Boolean);
begin
if P = nil
then begin P := MakeNode(X, nil, nil, 0); Higher := true end
else
case Compare(X, P".Fdata) of
1ls:
begin
Insert (X, P".FLeft, Higher);
if Higher then {Left branch has grown higher}
case P”.FBal of
1: begin P".FBal := 0; Higher := false end;
0: begin P".FBal := -1 end;
-1: begin {Rebalance}
if P*".FLeft”".FRal = -1
then {single R rotation}
begin
RotR(P);
//adjust balance factor:
P*.FRight”.FBal := 0O;
else {double LR rotation}
begin
RotL(P".FLeft);
RotR(P);
//adjust balance factor:
if P*".FBal = -1
then
begin P".FLeft”.FBal := 0; P".FRight”.FBal :=1 end
else
begin P".FLeft”.FBal :=-1; P".FRight".FBal:=0 end;
end;
P".FBal := 0;
Higher := false;
end{-1}
end{case}
end; {1s}
eq: {X already present; do not insert again}
gt:

19

begin
Insert (X, P".Fright, Higher);
if Higher then {Right branch has grown higher}
case P”.FBal of
-1: begin P".FBal 0; Higher := false end;
0: begin P*".FBal := 1 end;
1: begin {Rebalance}
if P*.FRight”.FBal = 1
then {single L rotation}

begin
RotL(P);
//adjust balance factor:
PN.FLeft.FBal := 0;

end

else {double RIL rotation}

begin
RotR(P".FRight);
RotL(P);

//adjust balance factor
if P*".FBal = +1

then
begin P".FRight”.FBal := 0; P".FLeft”".FBal :=-1 end
else
begin P".FRight”.FRal := 1; P".FLeft”.FBal := 0 end
end;
P".FBal := 0;
Higher := false;
end{1}
end{case}
end; {gt}

end; {case}
end; {Insert}

The working principle is shown by Fig. 4.34. Consider the binary tree (a)
which consists of two nodes only. Insertion of key 7 first results in an
unbalanced tree (i.e., a linear list). Its balancing involves a single left
rotation, resulting in the perfectly balanced tree (b). Further insertion of
nodes 2 and 1 result in an inbalance of the subtree with root 4. This subtree
is balanced by an single right rotation (d). The subsequent insertion of key 3
immediately offsets the balance criterion at the root node 5. Balance is
thereafter re-established by the more complicated RL double rotation; the
outcome is tree (e). The only candidate for loosing balance after a next
insertion is node 5. Indeed, insertion of node 6 must invoke the fourth case
of rebalancing outlined in (4.63), the LR double rotation. The final tree is
shown in Fig. 4.34(f).

20

(a) (b)

Fig. 4.34 Insertions in balanced tree

5.4Delete

Our experience with tree deletion suggests that in the case of balanced
trees deletion will also be more complicated than insertion. This is indeed
true, although the rebalancing operation remains essentially the same as
for insertion. In particular, rebalancing consists of either a single or a double
rotation of nodes.

The basis for balanced tree deletion is procedure Delete of section 4.4. The
easy cases are terminal nodes and nodes with only a single descendant. If
the node to be deleted has two subtrees, we will again replace it by the
rightmost node of its left subtree. As in the case of the balanced Insert
procedure (section 5.3), a Boolean variable parameter Shorter is added with
the meaning "the height of the subtree has been reduced." Rebalancing has
to be considered only when Shorter is true. Shorter is assigned the value
true upon finding and deleting a node or if rebalancing itself reduces the
height of a subtree. We introduce the two (symmetric) balancing operations
in the form of procedures since they have to be invoked from more than one
place in the deletion algorithm. Note that Balancel is applied when the left,
Balance2 after the right branch had been reduced in height.

The operation of the procedure is illustrated in Fig. 4.35. Given the balanced

tree (a), successive deletion of the nodes with keys 4, 8, 6, 5, 2, 1, and 7
results in the trees (b) ...(h).

21

Fig 4.35 Deletions in balanced tree

The deletion of key 4 is simple in itself since it represents a terminal node.
However, it results in an unbalanced node 3. Its rebalancing operation
involves a single right rotation. Rebalancing becomes again necessary after
the deletion of node 6. This time the right subtree of the root (7) is
rebalanced by an single left rotation. Deletion of node 2, although in itself
straightforward since it has only a single descendant, calls for a complicated
RL double rotation. The fourth case, an LR double rotation, is finally invoked
after the removal of node 7, which at first was replaced by the rightmost
element of its left subtree, i.e., by the node with key 3 [NOTE: THIS
INCORRECT, THERE IS ONLY A SINGLE R ROTATION AROUND 3].

Evidently, deletion of an element in a balanced tree can also be performed
with - in the worst case - O(log N) operations. An essential difference
between the behavior of the insertion and deletion procedures must not be
overlooked, however. Whereas insertion of a single key may result in at
most one rotation (of two or three nodes), deletion may require a rotation at
every node along the search path. Consider, for instance, deletion of the
rightmost node of a Fibonacci-tree. In this case the deletion of any single
node leads to a reduction of the height of the tree; in addition, deletion of
its rightmost node requires the maximum number of rotations. This
therefore represents the worst choice of node in the worst case of a
balanced tree, a rather unlucky combination of chances! How probable are

22

rotations, then, in general ? The surprising result of empirical tests is that
whereas one rotation is invoked for approximately every two insections, one
is required for every five deletions only. Deletion in balanced trees is
therefore about as easy - or as complicated - as insertion.

The code of procedures DelRM and Delete follows (compare with section
4.4):

procedure DelRM(var R: PNode; var S: PNode; var Shorter: Boolean);

// Make S refer to rightmost element of tree with root R;
// Remove that element from the tree

begin
if R".FRight = nil
then begin S := R; R := S”.FLeft; Shorter := true end
else

begin DelRM(R”.FRight, S, Shorter);
if Shorter then Balance2(R, Shorter)
end
end;

procedure Delete(X: TData; var P: PNode; var Shorter: Boolean);

var
Q: PNode;
begin
if P = nil
then Shorter := false
else

case Compare(X, P".FData) of
1s:
begin
Delete(X, P".FLeft, Shorter);
if Shorter then Balancel(P, Shorter)
end;
gt:
begin
Delete(X, P”.FRight, Shorter);
if Shorter then Balance2(P, Shorter)

end;
eq:
begin
if P~.FRight = nil
then begin Q := P; P := P".FLeft; Shorter := true end
else if P".FLeft = nil
then begin Q := P; P := P".FRight; Shorter := true end
else
begin
DelRM(P*.FLeft, Q, Shorter);
P”.FData := Q" .FData;
if Shorter then Balancel (P, Shorter)
end;

Dispose(Q)

23

end; {eq}
end{case}
end; {Delete}

The rebalancing operations look similar to those in the Insert procedure, yet
there are some subtle differences. Consider e.g. the cases to be dealt with
by procedure Balancel. In these cases the left subtree of P has become so
short that rebalancing is necessary. Similar to the Insert case, the balance
factor of the other subtree (here P~ .FRight™.FBal) is inspected to
distinguish between two cases:

Case 1:
This case corresponds to the left part of the figure below:
' s
RotL(P)
B A
—>
A B
Tl
T3
T2 T1 T2
T3

Note that the crossed part may or may not be present. This can be detected
by inspecting B1 := P~ .FRight™.FBal. If B1 = 1, the crossed part is absent; if
Bl = 0, it is present. After performing the rotation RotLP), the balance
factors can be adjusted, depending on B1. This leads to the following code:

if B1 =0
then

begin P".FBal :=-1; P".FLeft”.FBal :=1; Shorter := false end
else

begin P*".FBal := 0; P".FLeft”".FBal := 0 end;

Case 2:
This case corresponds to the left part of the figure below.

24

¢ P
RotR(P~.FRigh
t); B

—

O ¢4—
O

T1 B

T4 T1 T2 T3 T4

T2 T3

Note that, unlike fig. 4.32, possibly both crossed parts may be present. This
can be detected by inspecting B2 := P~.Fright™.FLeft™.FBal . After
performing the rotations, the balance factors can be adjusted, depending on
B2. This leads to the following code:

if B2=+1 then P".FLeft”.FBal := -1 else P".FLeft".FBal := 0;
if B2=-1 then P".FRight”.FBal := 1 else P".FRight".FBal := 0;

procedure Balancel(var P: PNode; var S: PNode; var Shorter: Boolean);
var Bl, B2: -1..1;
{Shorter = true, left branch has become less high}

begin
case P".FBal of
-1: begin P".FBal := 0 end;
0: begin P".FBal := 1; Shorter := false end;
1: begin {Rebalance}
Bl := P*".FRight”.FBal;
if B1L >= 0
then {single L rotation}
begin
RotL(P);
//adjust balance factors:
if B1 =0
then
begin P".FBal :=-1; P".FLeft”.FBal :=1; Shorter := false end
else
begin P*".FBal := 0; P".FLeft”".FBal := 0 end;
end
else {double RL rotation}
begin
B2 := P".FRight”.FLeft”.FBal;
RotR(P*.FRight);
RotL(P);
//adjust balance factors:
if B2=+1 then P".FLeft”.FBal := -1 else P".FLeft”.FBal := 0;
if B2=-1 then P".FRight”.FBal := 1 else P".FRight".FBal := 0;
P*.FBal := 0;
end;

25

end; {1}
end{case}
end; {Balancel}

The code of procedure Balance2 follows by synmetry:

procedure Balance2(var P: PNode; var S: PNode; var Shorter: Boolean);
var Bl, B2: -1..1;
{Shorter = true, right branch has become less high}
begin
case P".FBal of

1: begin P".FBal := 0 end;
0: begin P".FBal := -1; Shorter := false end;
-1: begin {Rebalance}
Bl := P*".FLeft”.FBal;
if Bl <=0
then {single R rotation}
begin
RotR(P);
//adjust balance factors}
if B1 =0
then
begin P".FBal :=1; P".FRight”.FBal :=-1; Shorter:= false end
else
begin P".FBal := 0; P".FRight”.FBal := 0 end;
end
else {double LR rotation}
begin
B2 P*.FLeft”.FRight”.FBal;

RotL(P".FLeft);

RotR(P);
//adjust balance factors
if B2=-1 then P".FRight”.FBal := 1 else P".FRight”.FBal := 0;
if B2= 1 then P".FLeft”.FBal := -1 else P".FLeft”.FBal := 0;
P".FBal := 0;
end;
end; {1}

end{case}
end; {BalanceZ2}

6References

 Niklaus Wirth; Algorithms and Data Structures, Prentice-Hall,
Englewood Cliffs, NJ, 1986, ISBN: 0-13-022005-1, pp. 215 - 226.

« G. M. Adelson-Velskii and Y. M. Landis. An algorithm for the
organization of information. Soviet Math. Dokl., 3:1259--1262, 1962.

26

	Binary Trees, Binary Search Trees and AVL Trees
	1Introduction
	2Basic Definitions
	3Traversals
	3.1Standard Tree Traversals
	3.2Recursive Tree Traversals
	3.3Tree Traversals by Means of a Stack

	4Binary Search Trees
	4.1Order
	4.2Find
	4.3Insert
	4.4Delete
	4.5Rotations

	5 AVL Trees
	5.1Balancing
	5.2Find
	5.3Insert
	5.4Delete

	6References

