166 DYNAMIC INFORMATION STRUCTURES CHAP. 4

4.2. POINTERS OR REFERENCES

The characteristic property of recursive structures which clearly distin-
guishes them from the fundamental structures (arrays, records, sets) is their
ability to vary in size. Hence, it is impossible to assign a fixed amount of
storage to a recursively defined structure, and as a consequence a compiler
cannot associate specific addresses to the components of such variables,
The technique most commonly used to master this problem involves a dynamic
allocation of storage, i.e., allocation of store to individual components at the
time when they come into existence during program execution, instead of
at translation time. The compiler then allocates a fixed amount of storage
to hold the address of the dynamically allocated component instead of the
component itself. For instance, the pedigree illustrated in Fig. 4.2 would be
represented by individual—quite possibly non-contiguous—records, one for
each person. These persons are then linked by their addresses assigned to the
respective “father” and “mother” fields. Graphically, this situation is best
expressed by the use of arrows or pointers (see Fig. 4.3).

[Tl ]y 4]

/

v

HESNN
/

/ ; Fe{alrlj

T Adam| f I 3
Fig. 4.3 Structure linked by pointers.

It must be emphasized that the use of pointers to implement recursive
structures is merely a technique. The programmer need not be aware of
their existence. Storage may be allocated automatically the first time a new
component is referenced. However, if the technique of using references of
pointers is made explicit, more general data structures can be construc‘te.d
than those definable by purely recursive data definition. In particular, it 18
then possible to define “infinite” or circular structures and to dictate that
certain structures are shared. It has therefore become common in advanced
programming languages to make possible the explicit manipulation of refer-
ences to data in addition to the data themselves. This implies that a clear
notational distinction must exist between data and references to data and that

sEC. 4.2 POINTERS OR REFERENCES 167
consequently data types must be introduced whose values are pointers
(references) to other data. The notation we use for this purpose is the fol-
lowing:

type T, = 1T 4.4

The type declaration (4.4) expresses that values of type T, are pointers to data
- of type 7. Thus, the arrow in (4.4) is verbalized as “pointer to.” It is funda-
‘mentally important that the type of elements pointed to is evident from the
declaration of T',. We say that T, is bound to T. This binding distinguishes
pointers in higher-level languages from addresses in assembly codes, and it
'is a most important facility to increase security in programming through
redundancy of the underlying notation.

Values of pointer types are generated whenever a data item is dynamically
allocated. We will adhere to the convention that such an occasion be explicitly
mentioned at all times. This is in contrast to the situation in which the first
time that an item is mentioned it is automatically (assumed to be) allocated.
For this purpose, we introduce the intrinsic procedure new. Given a pointer
‘variable p of type T,, the statement

new(p) 4.5)

effectively allocates a variable of type T, generates a pointer of type T,
- referencing this new variable, and assigns this pointer to the variable p
(see Fig. 4.4). The pointer value itself can now be referred to as p (i.e., as the
‘value of the pointer variable p). In contrast, the variable which is referenced
i'by p is denoted by pt. This is the dynamically allocated variable of type 7.

p: TT| :L

pt: T

Fig. 4.4 Dynamic allocation of variable
pr.

- It was mentioned above that a variant component is essential in every
recursive type to ensure finite cardinality. The example of the family predigree
is of a pattern that exhibits a most frequently occurring constellation [see
(4.3)], namely, the case in which the tagfield is two-valued (Boolean) and in
‘:Which its value being false implies the absence of any further components.
his is expressed by the declaration schema (4.6).

type T = record if p then S(T) end (4.6)

S(T) denotes a sequence of field definitions which includes one or more fields
of type 7, thereby ensuring recursivity. All structures of a type patterned
after (4.6) will exhibit a tree (or list) structure similar to that shown in Fig.
4.3. Its peculiar property is that it contains pointers to data components with
4 tagfield only, i.e., without further relevant information. The implementa-
tion technique using pointers suggests an easy way of saving storage space by



168 DYNAMIC INFORMATION STRUCTURES CHAP. 4

letting the tagfield information be included in the value of the pointer itself,
The common solution is to extend the range of values of a type T, by a single
value that is pointing to no element at all. We denote this value by the special
symbol nil, and we understand that nil is automatically an element of al|
pointer types declared. This extension of the range of pointer values explains
why finite structures may be generated without the explicit presence of variants
(conditions) in their (recursive) declaration.

The new formulations of the data types declared in (4.1) and (4.3)—
based on explicit pointers—are given in (4.7) and (4.8), respectively. Note
that in the latter case (which originally corresponded to the schema (4.6))
the variant record component has vanished, since p1.known = false is now
expressed as p = nil. The renaming of the type ped to person reflects the
difference in the viewpoint brought about by the introduction of explicit
pointer values. Instead of first considering the given structure in its entirety
and then investigating its substructure and its components, attention is
focused on the components in the first place, and their interrelationship
(represented by pointers) is not evident from any fixed declaration.,

type expression = record op: operator;
opdl, opd2: term
end;
= record
if ¢ then (id: alfa)
else (sub: Texpression)

type term (4.7)

end

type person = record name: alfa;
father, mother: 1 person
end

(4.8

The data structure representing the pedigree shown in Figs. 4.2 and 4.3
is again shown in Fig. 4.5 in which pointers to unknown persons are denoted
by nil. The ensuing improvement in storage economy is obvious.

[ Eva l nil l nil

|Adam lnil I nil |

Fig. 4.5 Structure with nil pointers.

SEC. 4.2 POINTERS OR REFERENCES 169
- Again referring to Fig. 4.5, assume that Fred and Mary are siblings, i.e.,
~have the same father and mother. This situation is easily expressed by
replacing the two nil values in the respective fields of the two records. An
- implementation that hides the concept of pointers or uses a different tech-
nique of storage handling would force the programmer to represent the
records of Adam and Eva twice each. Although in accessing their data for
inspection it does not matter whether the two fathers (and the two mothers)
are duplicated or represented by a single record, the difference is essential
when selective updating is permitted. Treating pointers as explicit data items
instead of as hidden implementation aids allows the programmer to express
clearly where storage sharing is intended.
- A further consequence of the explicitness of pointers is that it is possible
to define and manipulate cyclic data structures. This additional flexibility
yields, of course, not only increased power but also requires increased care
by the programmer because the manipulation of cyclic data structures may
easily lead to non-terminating processes.
- This phenomenon of power and flexibility being intimately coupled with
the danger of misuse is well-known in programming, and it particularly
recalls the goto statement. Indeed, if the analogy between program structures
‘and data structures is to be extended, the purely recursive data structure could
well be placed at the level corresponding with the procedure, whereas the
introduction of pointers is comparable to the use of goto statements. For,
as the goto statement allows the construction of any kind of program pattern
(including loops), so do pointers allow for the composition of any kind of
data structure (including cycles). The parallel development of corresponding
Pprogram and data structures is shown in concise form in Table 4.1.
In Chap. 3 it was shown that iteration is a special case of recursion and

-

Construction Pattern Program Statement Data Type
s Atomic element Assignment Scalar type
Enumeration Compound statement Record type
Repetition by a known For statement Array type
factor
- Choice Conditional statement Variant record, type

3 union

Repetition by an unknown Sequence or file type
factor
- Recursion

General “graph”

While or repeat statement

Recursive data type
Structure linked by
pointers

Procedure statement
Go to statement

Table 4.1 Correspondences of Program and Data Structures.



170 DYNAMIC INFORMATION STRUCTURES CHAP. 4

that a call of a recursive procedure P defined according to schema (4.9)

procedure P;
begin

if B then begin P,; P end (4.9)
end

where P, is a statement not involving P, is equivalent to and replaceable by
the iterative statement
while B do P,

The analogies outlined in Table 4.1 reveal that a similar relationship
holds between recursive data types and the sequence. In fact, a recursive
type defined according to the schema

type T = record
if B then (¢,: Ty; t: T) (4.10)
end

where T, is a type not involving 7, is equivalent and replaceable by the

sequential data type
file of T,

This shows that recursion can be replaced by iteration in program and data
definitions if (and only if) the procedure or type name occurs recursively
only once at the end (or the beginning) of its definition.

The remainder of this chapter is devoted to the generation and manipula-
tion of data structures whose components are linked by explicit pointers.
Structures with specific simple patterns are emphasized in particular; recipes
for handling more complex structures may be derived from those for mani-
pulating basic formations. These are the linear list or chained sequence—
the most simple case—and trees. Our preoccupation with these “building
blocks” of data structuring does not imply that more involved structures do
not occur in practice. In fact, the following story which appeared in a Ziirich
newspaper in July 1922 is a proof that irregularity may even occur in cases
which usually serve as examples for regular structures, such as (family)
trees. The story tells of a man who describes the misery of his life in the fol-

lowing words:

I married a widow who had a grown-up daughter. My father, who visited
us quite often, fell in love with my step-daughter and married her. Hence,
my father became my son-in-law, and my step-daughter became my mother.
Some months later, my wife gave birth to a son, who became the brother-in-
law of my father as well as my uncle. The wife of my father, that is my step-
daughter, also had a son. Thereby, I got a brother and at the same time 2
grandson. My wife is my grandmother, since she is my mother’s mother.
Hence, I am my wife’s husband and at the same time her step-grandson; in
other words, I am my own grandfather.

- seC. 4.3 LINEAR LISTS 171

~ 4.3. LINEAR LISTS

4.3.1. Basic Operations

The simplest way to interrelate or link a set of elements is to line them up
in a single /ist or queue. For, in this case, only a single link is needed for each
element to refer to its successor.

Assume that a type T is defined as shown in (4.11). Every variable of
this type consists of three components, namely, an identifying key, the
- pointer to its successor, and possibly further associated information omitted
in (4.11).
type T = record key: integer;

next: 1T;

(4.11)
end

A list of T"’s, with a pointer to its first component being assigned to a variable
P, is illustrated in Fig. 4.6. Probably the simplest operation to be performed
;With a list as shown in Fig. 4.6 is the insertion of an element at its head. First,
an element of type 7 is allocated, its reference (pointer) being assigned to an
auxiliary pointer variable, say g. Thereafter, a simple reassignment of pointers
completes the operation, which is programmed in (4.12).

new(q); ql.next .= p; p :=gq 4.12)

Note that the order of these three statements is essential.

p[ —F—

®
w

[ ]
B

nil

Fig. 4.6 Example of a list.

The operation of inserting an element at the head of a list immediately
sugg§sts how such a list can be generated: starting with the empty list, a
3 eading element is added repeatedly. The process of list generation is expressed
10 (4.13); here the number of elements to be linked is 7.

p := nil; {start with empty list}

while n > 0 do
begin new(q); g7.next :
gl.key := n; n .=

p;pi=4q; (4.13)
n—1
end



172  DYNAMIC INFORMATION STRUCTURES CHAP, 4
This is the simplest way of forming a list. However, the resulting order of
elements is the inverse of the order of their “arrival.” In some applications
this is undesirable; consequently, new elements must be appended at the
end of the list. Although the end can easily be determined by a scan of the
list, this naive approach involves an effort that may as well be saved by using
a second pointer, say g, always designating the last element. This method is,
for example, applied in Program 4.4 which generates cross-references to a
given text. Its disadvantage is that the first element inserted has to be treated
differently from all later ones.

The explicit availability of pointers makes certain operations very simple
which are otherwise cumbersome; among the elementary list operations are
those of inserting and deleting elements (selective updating of a list), and, of
course, the traversal of a list. We first investigate /ist insertion.

Assume that an element designated by a pointer (variable) g is to be
inserted in a list after the element designated by the pointer p. The necessary
pointer assignments are expressed in (4.14), and their effect is visualized
by Fig. 4.7.

ql.next := pl.next; pt.next := q (4.14)

q —

o /) w—

Fig. 4.7 List insertion after p?.

If insertion before instead of after the designated element p? is desired,
the one-directional link chain seems to cause a problem because it does not
provide any kind of path to an element’s predecessors. However, a simple
“trick” solves our dilemma: it is expressed in (4.15) and illustrated in Fig.
4.8. Assume that the key of the new element is k = 8.

new(q); q1 := pT;

pl.key := k; pl.next := ¢
The “trick” evidently consists of actually inserting a new component afer
p1, but then interchanging the values of the new element and of pf.

Next, we consider the process of list deletion. Deleting the successor of

p? is straightforward. In (4.16) it is shown in combination with the re-inser-
tion of the deleted element at the head of another list (designated by ¢).
is an auxiliary variable of type 17.

@.15)

r := pt.next; pt.next := rf.next,

rlmext :=gq; q:=r

(4.16)

 sgC. 4.3 LINEAR LISTS 173
q— 8 27
P

13 27

/’ /> 8 21

Fig. 4.8 List insertion before p?.

q
s

f [—=
Al A el // A\
/ \ / \
b ! | p { \

‘_;' \ | = /

| g e B e e

S =

Fig. 4.9 List deletion and re-insertion.

" Figure 4.9 illustrates process (4.16) and shows that it consists of a cyclic

~ exchange of three pointers.

. More difficult is the removal of a designated element itself (instead of

1ts successor), since we encounter the same problem as with insertion in front
;pf a p?: backtracking to the denoted element’s predecessor is impossible.

- But deleting the successor after moving its value forward is a relatively obvi-

ous and simple solution. It can be applied whenever p} has a successor, i.e.,

18 not the last element on the list.

- We now turn to the fundamental operation of list traversal. Let us assume

that an operation P(x) has to be performed for every element of the list whose
first element is pt. This task is expressible as follows:

while list designated by p is not empty do
begin perform operation P;

proceed to the successor
end

1In detail, this operation is described by statement (4.17).

while p = nil do

begin P(p?1); p := pl.next
end

4.17)

’t follows frf)m the definitions of the while statement and of the linking struc-
ture that P is applied to all elements of the list and to no other ones.



174  DYNAMIC INFORMATION STRUCTURES CHAP. ¢

A very frequent operation performed is list searching for an element
with a given key x. As with file structures, the search is purely sequential,
The search terminates either if an element is found or if the end of the list is
reached. Again, we assume that the head of the list is designated by a pointer
p. A first attempt to formulate this simple search results in the following:

while (p = nil) A (pl.key #= x) do p := pl.next (4.18)

However, it must be noticed that p = nil implies that p7 does not exist,
Hence, evaluation of the termination condition may imply access to a non-
existing variable (in contrast to a variable with undefined value) and may
cause failure of program execution. This can be remedied either by using an
explicit break of the repetition expressed by a goto statement (4.19) or by
introducing an auxiliary Boolean variable to record whether or not a desired
key was found (4.20).
while p = nil do
if pt.key = x then goto Found
else p := pt.next

(4.19)

The use of the goto statement requires the presence of a destination
label at some place; note that its incompatibility with the while statement
is evidenced by the fact that the while clause becomes misleading: the con-
trolled statement is not necessarily executed as long as p = nil.

b := true;
while (p % nil) A b do
if p?.key = x then b := false
else p := pt.next

(4.20)

{(p=nil)V —b}
4.3.2. Ordered Lists and Re-organizing Lists

Algorithm (4.20) strongly recalls the search routines for scanning an
array or a file. In fact, a file is nothing but a linear list in which the technique
of linkage to the successor is left unspecified or implicit. Since the primitive
file operators do not allow insertion of new elements (except at the end)
or deletion (except removal of all elements), the choice of representation i
left wide open to the implementor, and he may well use sequential allocation;
leaving successive components in contiguous storage areas. Linear lists with
explicit pointers provide more flexibility, and therefore they should be used
whenever this additional flexibility is needed.

To exemplify, we will now consider a problem that will re-occur through-
out this chapter in order to illustrate alternative solutions and techniques-
It is the problem of reading a text, collecting all its words, and counting the
frequency of their occurrence. It is called the construction of a concordance:

SEC. 4.3 LINEAR LISTS 175
An obvious solution is to construct a list of words found in the text.
The list is scanned for each word. If the word is found, its frequency count is
incremented ; otherwise the word is added to the list. We shall simply call
this process search, although it may apparently also include an insertion.

In order to be able to concentrate our attention on the essential part of
Jist handling, we assume that the words have already been extracted from the
text under investigation, have been encoded as integers, and are available in
the form of an input file.

The formulation of the procedure called search follows in a straight-
forward manner from (4.20). The variable root refers to the head of the list
in which new words are inserted according to (4.12). The complete algorithm
is listed as Program 4.1; it includes a routine for tabulating the constructed
.~ concordance list. The tabulation process is an example in which an action
is executed once for each element of the list, as shown in schematic form in
(4.17).

The linear scan algorithm of Program 4.1 recalls the search procedure
for arrays and files, and in particular the simple technique used to simplify
' the loop termination condition: the use of a sentinel. A sentinel may as well

Program 4.1 Straight List Insertion.

program /ist (input,output);
{straight list insertion}
type ref = fword,
word = record key: integer;
count: integer,
next: ref
end ;
var k: integer; root: ref;

procedure search (x: integer; var root: ref);
var w: ref; b: boolean;

begin w := root; b := true;
while (w=nil) A b do
if wi.key = x then b := false else w := w1.next;
if b then
begin {new entry} w := root; new (root);
with root7 do
begin key := x; count := 1; next := w
end
end else
wt.count := wt.count + 1

end {search} ;



176 DYNAMIC INFORMATION STRUCTURES CHAP. 4 ’:‘5150. 4.3 LINEAR LISTS 177
procedure printlist (w: ref);
begin while w == nil do
begin writeln (w1.key, wl.count);
w = wl.next
end
end {printlist} ;
begin root := nil; read(k);
while £ == 0 do
begin search (k, root); read(k)

 (Note, however, that even in ordered lists no equivalent to the binary search
of arrays is available.)

~ Ordered list search is a typical example of the situation described in
‘.(4.15) in which an element must be inserted ahead of a given item, namely,
in front of the first one whose key is too large. The technique shown here,
‘however, differs from the one used in (4.15). Instead of copying values, two
-pointers are carried along in the list traversal; w2 lags one step behind wl,
and it thus identifies the proper insertion place when w1 has found too large
a key. The general insertion step is shown in Fig. 4.10. Before proceeding we

end ;
printlist(root) ¥4 7 w3
end . ] [
\ N
Program 4.1 (Continued) - N )
X \\ e
& 5 7
be used in list search; it is represented by a dummy element at the end of the | & 8
list. The new procedure is (4.21), which replaces the search procedure of — | 12
Program 4.1, provided that a global variable sentinel is added and that the t -
initialization of root is replaced by the statements W 1 ; nil
w

new(sentinel); root := sentinel;
) . Fig. 410 Ordered list insertion.
which generate the element to be used as sentinel.
must consider two circumstances:
procedure search(x: integer; var root: ref);

var w: ref; - 1. The pointer to the new element (w3) is to be assigned to w2f.next,
begin w := root; sentinelt.key := x; except when the list is still empty. For reasons of simplicity and effec-
while wi.key == x do w := wh.next; tiveness, we prefer not to make this distinction by using a conditional
if w = sentinel then wt.count := wt.count + 1 else statement. The only way to avoid this is to introduce a dummy element
begin {new entry} w := root; new(root); 4.21) at the list head.
with oot} do 2. The scan with two pointers descending down the list one step apart
begin key := x; count := 1; next ‘— w requires that the list contain at least one element (in addition to the
end dummy). This implies that insertion of the first element be treated differ-
end ently from the rest.

end {search} A proposal that follows these guidelines and hints is expressed in (4.23).

It uses an auxiliary procedure insert, to be declared local to search. It generates

Obviously, th d flexibility of the linked list ill used in this e . . o
usly, the power and Dexibtiity ol the linked Lst are 171 usec 1 and initializes the new element w and is shown in (4.22).

example, and the linear scan of the entire list can only be accepted in cases
in which the number of elements is limited. An easy improvement, however,
is readily at hand: the ordered list search. If the list is ordered (say by increas-
ing keys), then the search may be terminated at the latest upon encountering
the first key which is larger than the new one. Ordering of the list is achieved

procedure insert(w: ref’);
var w3: ref;

begin new(w3);
with w31 do

by inserting new el.ements.at the appropriate place instead 9f at the headt-_ begin key := x; count := 1; next := w (12)
In effect, ordering is practically obtained free of charge. This is because O end ;
the ease by which insertion in a linked list is achieved, i.e., by making full use w2l.next 1= w3

of its flexibility. It is a possibility not provided by the array and file structures- end {insert}



178 DYNAMIC INFORMATION STRUCTURES CHAP. 4

The initializing statement “root :=mil” in Program 4.1 is accordingly
replaced by
new(root); root].next := nil

Referring to Fig. 4.10, we determine the condition under which the scan
continues to proceed to the next element; it consists of two factors, namely,

(wlt.key < x) A (wll.next = nmil)

The resulting search procedure is shown in (4.23).

procedure search(x: integer; var root: ref);
var wl,w2: ref;

begin w2 := root; wl := w2}.next;
if wl = nil then insert (nil) else
begin
while (wlf.key < x) A (wlf.next = nil) do .23)
begin w2 := wl; wl := w2{.next '
end ;
if wit.key = x then wlf.count := wll.count + 1 else
insert(wl)
end

end {search} ;

Unfortunately, this proposal contains a logical flaw. In spite of our care,
a “bug” has crept in! The reader is urged to try to identify the oversight
before proceeding. For those who choose to skip this detective’s assignment,
it may suffice to say that (4.23) will always push the element first inserted to
the tail of the list. The flaw is corrected by taking into account that if the
scan terminates because of the second factor, the new element must be inserted
after w11 instead of before it. Hence, the statement “insert(w1)” is replaced by

begin if wlt.next = nil then
begin w2 := wl; wl := nil
end; 4.24)
insert(wl)
end

Maliciously, the trustful reader has been fooled once more, for (4.24) is still
incorrect. To recognize the mistake, assume that the new key lies between the
last and the second last keys. This will result in both factors of the continua-
tion condition being false when the scan reaches the end of the list, and con”
sequently the insertion being made behind the tail element. If the same k?y
occurs again later on, it will be inserted correctly and thus appear twice 11

SEC. 4.3 LINEAR LISTS 179

the tabulation. The remedy lies in replacing the condition
wll.next = nil
in (4.24) by )
wltkey < x
In order to speed up the search, the continuation condition of the while
statement can once again be simplified by using a sentinel. This requires the

initial presence of a dummy header as well as a sentinel at the tail. Hence,
the list must be initialized by the following statements

new(root); new(sentinel); roott.next := sentinel,;
and the search procedure becomes noticeably simpler as evidenced by
(4.25).

procedure search(x: integer; var root: ref);
var wl,w2,w3: ref;

begin w2 := root; wl := w2l.next; sentinelt.key := x;
while wif.key < x do
begin w2 := wl; wl := w27l.next
end ;
if Wlt.key = x) A (wl # sentinel) then
wlt.count := wll.count - 1 else (4.25)
begin new(w3); {insert w3 between wl and w2}
with w37 do
begin key := x; count := 1; next := wl
end ;
w2l.next := w3
end

end {search}

It is now high time to ask what gain can be expected from ordered list

- search. Remembering that the additional complexity incurred is small, one
- should not expect an overwhelming improvement.

Assume that all words in the text occur with equal frequency. In this
case the gain through lexicographical ordering is indeed also nil, once all
words are listed, for the position of a word does not matter if only the rotal
of all access steps is significant and if all words have the same frequency of
occurrence. However, a gain is obtained whenever a new word is to be
inserted. Instead of first scanning the entire list, on the average only half the
list is to be scanned. Hence, ordered list insertion pays off only if a concor-
dance is to be generated with many distinct words compared to their frequency

- of occurrence. The preceding examples are therefore suitable primarily as
- Programming exercises rather than for practical applications.



180 DYNAMIC INFORMATION STRUCTURES CHAP. 4

The arrangement of data in a linked list is recommended when the number
of elements is relatively small (say < 100), varies, and, moreover, when no
information is given about their frequencies of access. A typical example is
the symbol table in compilers of programming languages. Each declaration
causes the addition of a new symbol, and upon exit from its scope of validity,
it is deleted from the list. The use of simple linked lists is appropriate for
applications with relatively short programs. Even in this case a considerable
improvement in access method can be achieved by a very simple technique
which is mentioned here again primarily because it constitutes a pretty
example for demonstrating the flexibilities of the linked list structure.

A characteristic property of programs is that occurrences of the same
identifier are very often clustered, that is, one occurrence is often followed by
one or more re-occurrences of the same word. This information is an invita-
tion to re-organize the list after each access by moving the word that was
found to the top of the list, thereby minimizing the length of the search path
the next time it is sought. This method of access is called list search with
re-ordering, or—somewhat pompously—self-organizing list search. In pre-
senting the corresponding algorithm in the form of a procedure which may
be substituted in Program 4.1, we take advantage of our experience made
so far and introduce a sentinel right from the start. In fact, a sentinel not only
speeds up the search, but in this case it also simplifies the program. The list
is, however, not initially empty, but contains the sentinel element already.
The initial statements are

new (sentinel); root := sentinel,;

Note that the main difference between the new algorithm and the straight
list search (4.21) is the action of re-ordering when an element has been found.
It is then detached or deleted from its old position and re-inserted at the top.
This deletion again requires the use of two chasing pointers, such that the
predecessor w21 of an identified element w1* is still locatable. This, in turn,
calls for the special treatment of the first element (i.e., the empty list). To
conceive the re-linking process, we refer to Fig. 4.11. It shows the two pointers

| X

root 3
—> > u2 sentinel
2 A0
—— 7
— G5 /
I?I/ 6
Lj/ ="
wa nil
wi

Fig. 4.11 List before re-ordering.

()]
o

ec. 4.3 LINEAR LISTS

181

X1
root 3
o ...l UD sentinel

(o]

T e -

nil

Fig. 4.12 List after re-ordering.

b procedure is shown in (4.26).

procedure search(x: integer; var root: ref);
var wl,w2: ref;
begin wl := root; sentinel|.key := X;
if wl = sentinel then
begin { first element} new(root);
with root? do
begin key := x; count := 1; next := sentinel
end
end else
if wift.key = x then wlt.count := wll.count + 1 else
begin {search}

end {search}

repeat w2 := wl; wl := w27.next
until wll.key = x; (4.26)
if wl = sentinel then
begin {insert}
w2 1= root; new(root);
with root! do
begin key := x; count := 1; next := w2
end
end else
begin { found, now reorder}
wlt.count := wll.count + 1;
w2t .next :— wll.next; wll.next := root; root := wl
end
end



	scan0001.bmp
	scan0002.bmp
	scan0003.bmp
	scan0004.bmp
	scan0005.bmp
	scan0006.bmp
	scan0007.bmp
	scan0008.bmp

