Requirements
Engineering

Elicitation (obtain raw requirements)
Analysis (formalization, modeling)
Specification (refine, organize, document)
Validation (review)

Management (change control, tracing)

Functional Correctness

® Provide required functional relationship
between inputs and outputs

® Abstracts from timing, etc.
® Orthogonal to other quality attributes
® Typically not an architectural concern

® Almost any architecture can be made to
function correctly (at a price).

How to Do Design!?

Top-down approach (not the only way)

Need: User Requirements and Software
Requirements (incl. conceptual models)

Requirements are (partly) given in advance

Architectural Design also validates, refines,
and elicits requirements

Requirements and
Architecture

® Architecture and Implementation (incl.
deployment) together determine qualities
of final product

® How much arch. and impl. contribute varies
per quality

® Architecturally Significant Requirement
(sometimes abbreviated as ASR)

® Functional vs. non-functional requirements

6




ISO 9126-1 Quality Model

Attribute Sub-characteristic

Functionality Accuracy, suitability, interoperability, compliance and

security
Reliability Maturity, fault tolerance and recoverability
Usability Understandability, learnability and operability
Efficiency Time behaviour, resource and utilization

Maintainability |Analysability, changeability, stability and testability

Adaptability, installability, conformance and

Portabilit
Y replaceability

Business Qualities

Time to market

Cost and benefit

Projected lifetime

Roll-out schedule (of multiple features)

Integration with legacy systems

Key Quality Attributes

® Performance (timely response vs task size)
® Auvailability (deliver service when expected)
® Usability (can user accomplish tasks easily)

® Scalability (accommodate more “usage”,
while maintaining quality)

® Security (prevent unauthorized use)
® Modifiability (allow for reasonable changes)

® Verifiability (can conformance be checked)

ISO 9126 Quality Metrics

® [nternal quality metrics measure the sytem-
design+code

® [External quality metrics measure the
system-in-operation

® The standards define the metrics, their
purpose, measurement formulae,
interpretation, etc.




Usability depends on

Choice and layout of Ul widgets (non-arch.)

Consistent style (could be architectural, if
various components have their own Ul)

Responsiveness, cancel, undo, help, error
handling, internationalization facilities (most
likely architectural)

Specify Requirements

® Requirements must be verifiable, the earlier
the better

® Quality attributes are notoriously hard to
specify and verify (compared to functional
requirements)

® Quality attribute communities use their
own terminology; there is overlap

® Quality attributes are hard to determine
before design, so do it during design

® Quality attribute scenarios

15

Performance
depends on

Distribution of functionality, nature of
interfaces and protocols (architectural)

Amount of communication (architectural)
Allocation of shared resources (arch.)
Choice of algorithms (non-architectural)

Coding (non-architectural)

Modifiability
depends on

® Distribution of functionality (coherence,
coupling: architectural)

® Coding techniques (non-architectural)




Quality Attribute Scenario
{7

—
1‘2
———p| Artifact —bL -—
Stimulus Response 3 —»
y Yy

Source Environment Response

of Stimulus Measure

® Source of stimulus: generator of stimulus
® Stimulus: action to consider

® Environment: state/condition of context
e Artifact: thing being stimulated

® Response (by artifact on stimulus)

® Response measure (quantitative judgment)

General vs Concrete

® General scenarios: system independent (can
be formulated in advance)

® Concrete scenarios: specific to a particular
system (can often be obtained by
specialization of general scenarios)

® Typically use collections of scenarios

Kruchten’s 4+ | Views

End-user Programmers
Functionality Software management

. . Development
Logical View H View

‘ Q Scenarios)

Process View Physical View
Integrators System engineers
Performance Topology

Scalability Communications

Example: Performance
of web order system

® Source: the user
® Stimulus: web form submission

® Environment: normal working conditions

Artifact: the system

Response: load & display confirmation page

Response measure: page is displayed in less
than 5 seconds 99% of the time




Performance Notes

Throughput: transactions/messages/events/requests
processed per second; average vs peak; input
characteristics/mix

Response Time, Latency: distribution constraints if
not a fixed amount

Real-Time Deadlines: hard, soft, time scale

Capacity: number of records; temporary,
persistent; access characteristics

Accuracy: numerical

Overhead: error protection, crypto, logging

21

Availability in General

® Source: internal/external to system

® Stimulus: fault (no response, crash, early/late
response, wrong format/value)

® Environment: normal/degraded operation

® Artifact: processors, communication channels,
persistent storage, processes

® Response: log, notify, corrective action, degrade

® Response measure: time interval/percentage (must-
be available, allowed degraded), mean-time
between failure, mean-time to repair

23

23

Performance in General

Source: one or more, possibly internal

Stimulus: individual/periodic/sporadic/
stochastic events

Artifact: (sub)system
Environment: normal/overload mode

Response: handle stimulus, change service
level

Response measure: latency, deadline,
throughput, jitter; miss rate, data loss

20

Availability Concerns

® How system failure is detected.
® How frequently system failure may occur.
® What happens when a failure occurs.

® How long a system is allowed to be out of
operation.

® When failures may occur safely.
® How failures can be prevented.

® What kinds of notifications are required when a
failure occurs.

22

22




Modifiability in General

® Source: end user, developer, administrator
® Stimulus: change request to add/delete/...
® Artifact: component, platform

® Environment: at run/build/design time

® Response: Localize entities to be modified,
realize/verify/deploy modifications

® Response measure: number of elements
changed, cost, effort, side-effects

26

Usability in General

Source: end user

Stimulus: minimize impact of errors
Artifact: the system

Environment: at runtime

Response: provide undo/cancel operation

Response measure: user satisfaction

28

28

Security in General

® Engineering discipline in itself
® Doing this well requires a major effort

- Confidentiality (protected against unauthorized
access)

- Integrity (protected against unauthorized
change)

- Nonrepudiation (transaction cannot be denied)

- Assurance (signature)

- Auvailability (no denial of service)

- Auditing (preserve historic trail of activities)

25

Usability Concerns

Learning system features

Using a system effectively
Minimizing the impact of user errors
Adapting the system to user needs

Increasing confidence and satisfaction

27

27




