
How to Do Design?

• Top-down approach (not the only way)

• Need: User Requirements and Software
Requirements (incl. conceptual models)

• Requirements are (partly) given in advance

• Architectural Design also validates, refines,
and elicits requirements

4

4

Requirements
Engineering

• Elicitation (obtain raw requirements)

• Analysis (formalization, modeling)

• Specification (refine, organize, document)

• Validation (review)

• Management (change control, tracing)

5

Requirements and
Architecture

• Architecture and Implementation (incl.
deployment) together determine qualities
of final product

• How much arch. and impl. contribute varies
per quality

• Architecturally Significant Requirement
(sometimes abbreviated as ASR)

• Functional vs. non-functional requirements

6

6

Functional Correctness

• Provide required functional relationship
between inputs and outputs

• Abstracts from timing, etc.

• Orthogonal to other quality attributes

• Typically not an architectural concern

• Almost any architecture can be made to
function correctly (at a price).

7

7

Key Quality Attributes

• Performance (timely response vs task size)

• Availability (deliver service when expected)

• Usability (can user accomplish tasks easily)

• Scalability (accommodate more “usage”,
while maintaining quality)

• Security (prevent unauthorized use)

• Modifiability (allow for reasonable changes)

• Verifiability (can conformance be checked)
8

8

ISO 9126-1 Quality Model
Attribute Sub-characteristic

Functionality Accuracy, suitability, interoperability, compliance and
security

Reliability Maturity, fault tolerance and recoverability

Usability Understandability, learnability and operability

Efficiency Time behaviour, resource and utilization

Maintainability Analysability, changeability, stability and testability

Portability Adaptability, installability, conformance and
replaceability

9

ISO 9126 Quality Metrics

• Internal quality metrics measure the sytem-
design+code

• External quality metrics measure the
system-in-operation

• The standards define the metrics, their
purpose, measurement formulae,
interpretation, etc.

10

Business Qualities

• Time to market

• Cost and benefit

• Projected lifetime

• Roll-out schedule (of multiple features)

• Integration with legacy systems

11

11

Performance
depends on

• Distribution of functionality, nature of
interfaces and protocols (architectural)

• Amount of communication (architectural)

• Allocation of shared resources (arch.)

• Choice of algorithms (non-architectural)

• Coding (non-architectural)

12

12

Usability depends on

• Choice and layout of UI widgets (non-arch.)

• Consistent style (could be architectural, if
various components have their own UI)

• Responsiveness, cancel, undo, help, error
handling, internationalization facilities (most
likely architectural)

13

13

Modifiability
depends on

• Distribution of functionality (coherence,
coupling: architectural)

• Coding techniques (non-architectural)

14

14

Specify Requirements
• Requirements must be verifiable, the earlier

the better

• Quality attributes are notoriously hard to
specify and verify (compared to functional
requirements)

• Quality attribute communities use their
own terminology; there is overlap

• Quality attributes are hard to determine
before design, so do it during design

• Quality attribute scenarios
15

15

Kruchten’s 4+1 Views

2

• the development view, which describes the static organization of the software in its development
environment.

The description of an architecture—the decisions made—can be organized around these four views, and
then illustrated by a few selected use cases, or scenarios which become a fifth view. The architecture is in
fact partially evolved from these scenarios as we will see later.

Logical View
Development

View

Process View Physical View

Scenarios

Programmers
Software management

System engineers
Topology

Communications

Integrators
Performance
Scalability

End-user
Functionality

Figure 1 — The “4+1” view model

We apply Perry & Wolf’s equation independently on each view, i.e., for each view we define the set of
elements to use (components, containers, and connectors) , we capture the forms and patterns that work, and
we capture the rationale and constraints, connecting the architecture to some of the requirements.
Each view is described by a blueprint using its own particular notation. For each view also, the architects
can pick a certain architectural style, hence allowing the coexistence of multiple styles in one system.

We will now look in turn at each of the five views, giving for each its purpose: which concerns is addresses,
a notation for the corresponding architectural blueprint, the tools we have used to describe and manage it.
Small examples are drawn from the design of a PABX, derived from our work at Alcatel Business System

and an Air Traffic Control system3, but in very simplified form—the intent here is just to give a flavor of
the views and their notation and not to define the architecture of those systems.

The “4+1” view model is rather “generic”: other notations and tools can be used, other design methods can
be used, especially for the and the logical and process decompositions, but we have indicated the ones we
have used with success.

16

16

Quality Attribute Scenario

• Source of stimulus: generator of stimulus

• Stimulus: action to consider

• Environment: state/condition of context

• Artifact: thing being stimulated

• Response (by artifact on stimulus)

• Response measure (quantitative judgment)

A quality attribute scenario is a quality-attribute-specific requirement. It consists of six parts.

l Source of stimulus. This is some entity (a human, a computer system, or any other

actuator) that generated the stimulus.

l Stimulus. The stimulus is a condition that needs to be considered when it arrives at a

system.

l Environment. The stimulus occurs within certain conditions. The system may be in an

overload condition or may be running when the stimulus occurs, or some other condition

may be true.

l Artifact. Some artifact is stimulated. This may be the whole system or some pieces of it.

l Response. The response is the activity undertaken after the arrival of the stimulus.

l Response measure. When the response occurs, it should be measurable in some fashion

so that the requirement can be tested.

We distinguish general quality attribute scenarios (general scenarios)—those that are system

independent and can, potentially, pertain to any system—from concrete quality attribute

scenarios (concrete scenarios)—those that are specific to the particular system under

consideration. We present attribute characterizations as a collection of general scenarios;

however, to translate the attribute characterization into requirements for a particular system,

the relevant general scenarios need to be made system specific.

Figure 4.1 shows the parts of a quality attribute scenario.

Figure 4.1. Quality attribute parts

Availability Scenario

A general scenario for the quality attribute of availability, for example, is shown in Figure 4.2.

Its six parts are shown, indicating the range of values they can take. From this we can derive

concrete, system-specific, scenarios. Not every system-specific scenario has all of the six parts.

The parts that are necessary are the result of the application of the scenario and the types of

testing that will be performed to determine whether the scenario has been achieved.

Figure 4.2. Availability general scenarios

Página 4 de 24

26/03/2008file://C:\Documents and Settings\Natalia\Configuración local\Temp\~hh1BC4.htm

17

17

Example: Performance
of web order system

• Source: the user

• Stimulus: web form submission

• Environment: normal working conditions

• Artifact: the system

• Response: load & display confirmation page

• Response measure: page is displayed in less
than 5 seconds 99% of the time

18

18

General vs Concrete

• General scenarios: system independent (can
be formulated in advance)

• Concrete scenarios: specific to a particular
system (can often be obtained by
specialization of general scenarios)

• Typically use collections of scenarios

19

19

Performance in General
• Source: one or more, possibly internal

• Stimulus: individual/periodic/sporadic/
stochastic events

• Artifact: (sub)system

• Environment: normal/overload mode

• Response: handle stimulus, change service
level

• Response measure: latency, deadline,
throughput, jitter, miss rate, data loss

20

20

Performance Notes
• Throughput: transactions/messages/events/requests

processed per second; average vs peak; input
characteristics/mix

• Response Time, Latency: distribution constraints if
not a fixed amount

• Real-Time Deadlines: hard, soft, time scale

• Capacity: number of records; temporary,
persistent; access characteristics

• Accuracy: numerical

• Overhead: error protection, crypto, logging

21

21

Availability Concerns
• How system failure is detected.

• How frequently system failure may occur.

• What happens when a failure occurs.

• How long a system is allowed to be out of
operation.

• When failures may occur safely.

• How failures can be prevented.

• What kinds of notifications are required when a
failure occurs.

22

22

Availability in General
• Source: internal/external to system

• Stimulus: fault (no response, crash, early/late
response, wrong format/value)

• Environment: normal/degraded operation

• Artifact: processors, communication channels,
persistent storage, processes

• Response: log, notify, corrective action, degrade

• Response measure: time interval/percentage (must-
be available, allowed degraded), mean-time
between failure, mean-time to repair

23

23

Security in General

• Engineering discipline in itself

• Doing this well requires a major effort

- Confidentiality (protected against unauthorized
access)

- Integrity (protected against unauthorized
change)

- Nonrepudiation (transaction cannot be denied)

- Assurance (signature)

- Availability (no denial of service)

- Auditing (preserve historic trail of activities)

25

25

Modifiability in General

• Source: end user, developer, administrator

• Stimulus: change request to add/delete/…

• Artifact: component, platform

• Environment: at run/build/design time

• Response: Localize entities to be modified,
realize/verify/deploy modifications

• Response measure: number of elements
changed, cost, effort, side-effects

26

26

Usability Concerns

• Learning system features

• Using a system effectively

• Minimizing the impact of user errors

• Adapting the system to user needs

• Increasing confidence and satisfaction

27

27

Usability in General

• Source: end user

• Stimulus: minimize impact of errors

• Artifact: the system

• Environment: at runtime

• Response: provide undo/cancel operation

• Response measure: user satisfaction

28

28

