Questions

- Give a definition of Software Engineering?
- Why is Software Engineering necessary?
- Give a number of examples of projects failures.

What is Software Engineering?

- Large, high quality software systems
 - Software engineering techniques are needed because large systems cannot be completely understood by one person
 - Identification of missing quality aspects before building
 - Teamwork and co-ordination are required
 - Key challenge: dividing up the work and ensuring that the parts of the system work properly together
 - · The end-product must be of high quality

ische Universiteit

PAGE

iversity of Technology

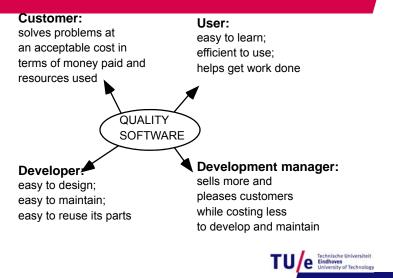
e Eindhoven

What is Software Engineering?

- Cost, time and other constraints
- Finite resources
- · The benefit must outweigh the cost
- · Others are competing to do the job cheaper and faster
- Inaccurate estimates of cost and time have caused many project failures
- Quality attributes:
- · Usability, efficiency, reliability, maintainability, reusability
- The different qualities can conflict
 - increasing efficiency can reduce maintainability
 - increasing usability can reduce efficiency

Stakeholders in Software engineering

- 1. Users
 - Those who use the software
- 2. Customers
 - Those who pay for the software
- 3. Software developers
- 4. Development Managers


Software Quality...

- Usability
 - · Users can learn it and fast and get their job done easily
- Efficiency
 - It doesn't waste resources such as CPU time and memory
- Reliability
 - · It does what it is required to do without failing
- Maintainability
 - It can be easily changed
- Reusability
 - Its parts can be used in other projects, so reprogramming is not needed

TU/e Technische Universiteit Eindhoven University of Technology

TU/e Eindhoven University of Technology

Software Quality and the Stakeholders

Software Quality: Conflicts and Objectives

- The different qualities can conflict
 - Increasing efficiency can reduce maintainability or reusability
 - · Increasing usability can reduce efficiency
- Setting objectives for quality is a key engineering activity
 - You then design to meet the objectives
 - Avoids 'over-engineering' which wastes money
- Optimizing is also sometimes necessary
- E.g. obtain the highest possible reliability using a fixed budget

Internal Quality Criteria

- These:
 - Characterize aspects of the design of the software
 - Have an effect on the external quality attributes
 - E.g.
 - The amount of commenting of the code
 - The complexity of the code

Short Term Vs. Long Term Quality

- Short term:
 - Does the software meet the customer's immediate needs?
 - Is it sufficiently efficient for the volume of data we have *today*?
- Long term:
 - Maintainability
 - Customer's future needs
 - Scalability: Can the software handle larger volumes of data?

TU/e Technische Universiteit Eindhoven University of Technology

nische Universiteit

PAGE 10

niversity of Technology

e Eindhoven

Activities Common to Software Projects

- Requirements and specification
- Domain analysis
- Defining the problem
- Requirements gathering
 - Obtaining input from as many sources as possible
- Requirements analysis
 - Organizing the information
- Requirements specification
 - Writing detailed instructions about how the software should behave

/ Faculteit Wiskunde en Informatio	á

Activities Common to Software Projects

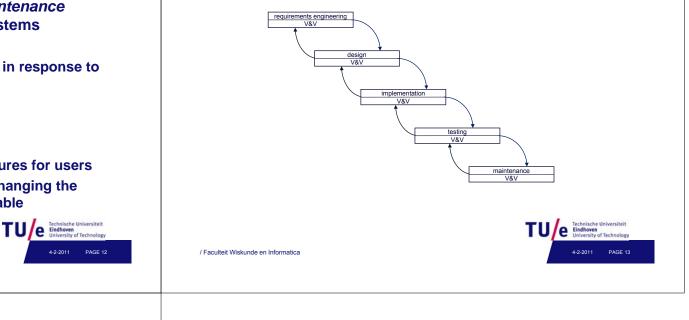
- Design
- Deciding how the requirements should be implemented, using the available technology
- Includes:
 - Systems engineering: Deciding what should be in hardware and what in software
 - Software architecture: Dividing the system into subsystems and deciding how the subsystems will interact
 - Detailed design of the internals of a subsystem
 - User interface design
 - Design of databases

Activities Common to Software Projects

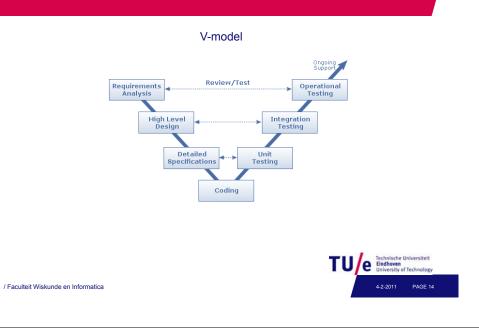
- Modeling
- · Creating representations of the domain or the software
 - Use case modeling
 - Structural modeling
 - Dynamic and behavioral modeling
- Programming
- Quality assurance
- Reviews and inspections
- Testing
- Deployment & maintenance
- Managing the process

/ Faculteit Wiskunde en Informatica

Software Engineering Projects


- Most projects are evolutionary or maintenance projects, involving work on legacy systems
- <u>Corrective</u> projects: fixing defects
- <u>Adaptive</u> projects: changing the system in response to changes in
 - Operating system
 - Database

/ Faculteit Wiskunde en Informatica


- Rules and regulations
- Enhancement projects: adding new features for users
- <u>Reengineering</u> or <u>perfective</u> projects: changing the system internally so it is more maintainable

Software development model

Waterfall model

Software development model

