
Requirements Engineering

Mark van den Brand
Tom Verhoeff

Questions

•  Why does prototyping fall between waterfall and
agile?

•  What is the process model of the Software
Engineering Projects?

•  Does an agile process model deliver maintainable
software? Give a couple of (motivated) arguments.

/ Faculteit Wiskunde en Informatica PAGE 1 03-05-12

Requirements Engineering

/ Faculteit Wiskunde en Informatica PAGE 2 03-05-12 / Faculteit Wiskunde en Informatica PAGE 3 03-05-12

Domain Analysis

•  The process by which a software engineer learns
about the domain to better understand the problem:

•  The domain is the general field of business or
technology in which the clients will use the software

•  A domain expert is a person who has a deep
knowledge of the domain

•  Benefits of performing domain analysis:
•  Faster development
•  Better system
•  Anticipation of extensions

Domain analysis

Domain analysis document:

A. Introduction
B. Glossary
C. General knowledge about the domain
D. Customers and users
E. The environment
F. Tasks and procedures currently performed
G. Competing software
H. Similarities to other domains

/ Faculteit Wiskunde en Informatica PAGE 4 03-05-12

Domain analysis

Example document:
http://www.site.uottawa.ca/~laganier/seg3700/cemdomain.htm

/ Faculteit Wiskunde en Informatica PAGE 5 03-05-12

/ Faculteit Wiskunde en Informatica PAGE 6 03-05-12

Requirements
must be determined

Clients have produced
requirements

New
development

Evolution of
existing system

A B

C D

Starting Point for Software Projects

green field project!

/ Faculteit Wiskunde en Informatica PAGE 7 03-05-12

Defining Problem and Scope

•  A problem can be expressed as:
•  A difficulty the users or customers are facing,
•  Or as an opportunity that will result in some benefit

such as improved productivity or sales.

•  The solution to the problem normally will entail
developing software

•  A good problem statement is short and succinct

/ Faculteit Wiskunde en Informatica PAGE 8 03-05-12

Defining the Scope

•  Narrow the scope by defining a more precise
problem

•  List all the things you might imagine the system doing
−  Exclude some of these things if too broad
−  Determine high-level goals if too narrow

•  Example: A university registration system
Initial list of problems
with very broad scope

Narrowed
scope

Scope of
another system

exam scheduling

room allocation

fee payment

browsing courses

registering
exam scheduling

room allocation

fee payment

browsing courses

registering

/ Faculteit Wiskunde en Informatica PAGE 9 03-05-12

Processes in requirements engineering

•  Requirements elicitation
•  Requirements specification
•  Requirements validation and verification
•  Requirements negotiation

Documentation &
Management Elicitation

Specification

Validation

Negotiation

/ Faculteit Wiskunde en Informatica PAGE 10 03-05-12

What is a Requirement ?

•  It is a statement describing either
•  1) an aspect of what the proposed system must do,
•  or 2) a constraint on the system’s development.
•  In either case it must contribute in some way towards

adequately solving the customer’s problem;
•  the set of requirements as a whole represents a

negotiated agreement among the stakeholders.

•  A collection of requirements is a requirements
document.

/ Faculteit Wiskunde en Informatica PAGE 11 03-05-12

Types of Requirements

•  Functional requirements
•  Describe what the system should do

•  Quality requirements
•  Constraints on the design to meet specified levels of

quality
•  Platform requirements

•  Constraints on the environment and technology of the
system

•  Process requirements
•  Constraints on the project plan and development

methods

/ Faculteit Wiskunde en Informatica PAGE 12 03-05-12

Functional Requirements

•  What inputs the system should accept

•  What outputs the system should produce

•  What data the system should store that other
systems might use

•  What computations the system should perform

•  The timing and synchronization of the above

/ Faculteit Wiskunde en Informatica PAGE 13 03-05-12

Quality Requirements

•  All must be verifiable
•  Examples: Constraints on

•  Response time
•  Throughput
•  Resource usage
•  Reliability
•  Availability
•  Recovery from failure
•  Allowances for maintainability and enhancement
•  Allowances for reusability

Vragen

•  Why is domain analysis crucial for good
requirements?

•  Why is scoping important in problem definition?
•  What is the difference between functional and non-

functional requirements?
•  What is the relation between requirements and

testing?

/ Faculteit Wiskunde en Informatica PAGE 14 03-05-12

Conceptual modeling

•  You model part of reality: the Universe of Discourse (UoD)

•  This model is an explicit conceptual model

•  People in the UoD have an implicit conceptual model of that
UoD

•  Making this implicit model explicit poses problems:
•  analysis problems
•  negotiation problems

/ Faculteit Wiskunde en Informatica PAGE 15 03-05-12

Conceptual modeling

•  Requirements engineering is difficult

•  Success depends on the degree with which we
manage to properly describe the system desired

/ Faculteit Wiskunde en Informatica PAGE 16 03-05-12

Conceptual modeling

•  Beware of subtle mismatches:

•  a library employee may also be a client
•  there is a difference between `a book` and `a copy of a

book`
•  status info `present` / `not present` is not sufficient; a

(copy of a) book may be lost, stolen, in repair, ...

/ Faculteit Wiskunde en Informatica PAGE 17 03-05-12

Conceptual modeling

•  Humans as sources of information:

•  different backgrounds

•  short-term vs long-term memory

•  human prejudices

•  limited capability for rational thinking

/ Faculteit Wiskunde en Informatica PAGE 18 03-05-12

Conceptual modeling

•  How we study the world around us:
•  people have a set of assumptions about a topic they study

(paradigm)
•  this set of assumptions concerns:

−  how knowledge is gathered
−  how the world is organized

•  this in turn results in two dimensions:
−  subjective-objective (wrt knowledge)
−  conflict-order (wrt the world)

•  which results in 4 archetypical approaches to requirements
engineering

/ Faculteit Wiskunde en Informatica PAGE 19 03-05-12

Conceptual modeling

•  Four approaches to RE:
•  functional (objective+order): the analyst is the expert

who empirically seeks the truth
•  social-relativism (subjective+order): the analyst is a

`change agent’. RE is a learning process guided by the
analyst

•  radical-structuralism (objective+ conflict): there is a
struggle between classes; the analyst chooses for
either party

•  neohumanism (subjective+conflict): the analyst is kind
of a social therapist, bringing parties together

/ Faculteit Wiskunde en Informatica PAGE 20 03-05-12

Elicitation techniques

•  Asking:
•  interview
•  Delphi technique
•  brainstorming session

•  Observing
•  task analysis
•  scenario analysis
•  ethnography
•  form analysis
•  synthesis from existing

system

•  Others:
•  analysis of natural

language descriptions
•  domain analysis
•  Business Process

Redesign (BPR)
•  prototyping

/ Faculteit Wiskunde en Informatica PAGE 21 03-05-12

/ Faculteit Wiskunde en Informatica PAGE 22 03-05-12

Interviewing

•  Conduct a series of interviews
•  Ask about specific details
•  Ask about the stakeholder’s vision for the future
•  Ask if they have alternative ideas
•  Ask for other sources of information
•  Ask them to draw diagrams

/ Faculteit Wiskunde en Informatica PAGE 23 03-05-12

Brainstorming

•  Appoint an experienced moderator
•  Arrange the attendees around a table
•  Decide on a ‘trigger question’
•  Ask each participant to write an answer and pass

the paper to its neighbour

•  Joint Application Development (JAD) is a technique based on
intensive brainstorming sessions

!

!

! !

!

!

/ Faculteit Wiskunde en Informatica PAGE 24 03-05-12

Observation

•  Read documents and discuss requirements with
users

•  Shadowing important potential users as they do
their work

•  ask the user to explain everything he or she is doing
•  Session video taping

Task Analysis

•  Task analysis is the process of analyzing the way
people perform their jobs: the things they do, the
things they act on and the things they need to know.

•  The relation between tasks and goals: a task is
performed in order to achieve a goal.

•  Task analysis has a broad scope.

/ Faculteit Wiskunde en Informatica PAGE 25 03-05-12

Task Analysis

•  Task analysis concentrates on the current situation.
However, it can be used as a starting point for a new
system:
•  users will refer to new elements of a system and its

functionality
•  scenario-based analysis can be used to exploit new

possibilities

/ Faculteit Wiskunde en Informatica PAGE 26 03-05-12

Scenario-Based Analysis

•  Provides a more user-oriented view perspective on
the design and development of an interactive
system.

•  The defining property of a scenario is that it projects
a concrete description of an activity that the user
engages in when performing a specific task, a
description sufficiently detailed so that the design
implications can be inferred and reasoned about.

/ Faculteit Wiskunde en Informatica PAGE 27 03-05-12

Scenario-Based Analysis (example)

•  first shot:
•  check due back date
•  if overdue, collect fine
•  record book as being available again
•  put book back

•  as a result of discussion with library employee:
•  what if person returning the book is not registered as a client?
•  what if the book is damaged?
•  how to handle in case the client has other books that are overdue,

and/or an outstanding reservation?

/ Faculteit Wiskunde en Informatica PAGE 28 03-05-12

Scenario-Based Analysis

Scenario view
•  concrete descriptions
•  focus on particular instances
•  work-driven
•  open-ended, fragmentary
•  informal, rough, colloquial
•  envisioned outcomes

Standard view
•  abstract descriptions
•  focus on generic types
•  technology-driven
•  complete, exhaustive
•  formal, rigorous
•  specified outcomes

/ Faculteit Wiskunde en Informatica PAGE 29 03-05-12

Form analysis

Proceedings request form:
Client name ……………
Title ……………
Editor ……………
Place ……………
Publisher ……………
Year ……………

Certainty vs uncertainty

/ Faculteit Wiskunde en Informatica PAGE 30 03-05-12 / Faculteit Wiskunde en Informatica PAGE 31 03-05-12

Prototyping

•  The simplest kind: paper prototype.
•  a set of pictures of the system that are shown to users

in sequence to explain what would happen
•  The most common: a mock-up of the system’s UI

•  Written in a rapid prototyping language
•  Does not normally perform any computations, access

any databases or interact with any other systems
•  May prototype a particular aspect of the system

Questions

•  Which problems can arise when making explicit the
implicit model in conceptual modeling?

•  What is the purpose of requirements elicitation?
•  Name a number of elicitation techniques?

/ Faculteit Wiskunde en Informatica PAGE 32 03-05-12 / Faculteit Wiskunde en Informatica PAGE 33 03-05-12

Use case analysis

•  Determine the classes of users that will use the
facilities of this system (actors)

•  Determine the tasks that each actor will need to do
with the system

/ Faculteit Wiskunde en Informatica PAGE 34 03-05-12

Use-Cases: describing how the user will
use the system

•  A use case is a typical sequence of actions that a
user performs in order to complete a given task

•  The objective of use case analysis is to model the
system from the point of view of
… how users interact with this system
… when trying to achieve their objectives.
It is one of the key activities in requirements analysis

•  A use case model consists of
−  a set of use cases
−  an optional description or diagram indicating how

they are related

/ Faculteit Wiskunde en Informatica PAGE 35 03-05-12

Use cases

•  A use case should
•  Cover the full sequence of steps from the beginning of

a task until the end.
•  Describe the user’s interaction with the system ...
−  Not the computations the system performs.

•  Be written so as to be as independent as possible from
any particular user interface design.

•  Only include actions in which the actor interacts with
the computer.
−  Not actions a user does manually

/ Faculteit Wiskunde en Informatica PAGE 36 03-05-12

Scenarios

•  A scenario is an instance of a use case
•  A specific occurrence of the use case
−  a specific actor ...
−  at a specific time ...
−  with specific data.

/ Faculteit Wiskunde en Informatica PAGE 37 03-05-12

How to describe a single use case

A.  Name: Give a short, descriptive name to the use case.
B.  Actors: List the actors who can perform this use case.
C.  Goals: Explain what the actor or actors are trying to achieve.
D.  Preconditions: State of the system before the use case.
E.  Summary: Give a short informal description.
F.  Related use cases.
G.  Steps: Describe each step using a 2-column format.
H.  Postconditions: State of the system in following completion.

•  A and G are the most important

/ Faculteit Wiskunde en Informatica PAGE 38 03-05-12

Use case diagrams

Register in Course

Add Course

Add Course Offer ing

Student

Find information about course

Professor Actor

Registrar Actor

Enter Grade
for Course

/ Faculteit Wiskunde en Informatica PAGE 39 03-05-12

The modeling processes: Choosing use
cases on which to focus

•  Often one use case (or a very small number) can be
identified as central to the system

•  The entire system can be built around this particular
use case

•  There are other reasons for focusing on particular
use cases:

•  Some use cases will represent a high risk because for
some reason their implementation is problematic

•  Some use cases will have high political or commercial
value

/ Faculteit Wiskunde en Informatica PAGE 40 03-05-12

The benefits of basing software
development on use cases

•  They can
•  Help to define the scope of the system

•  Be used to plan the development process

•  Be used to both develop and validate the requirements

•  Form the basis for the definition of test cases

•  Be used to structure user manuals

/ Faculteit Wiskunde en Informatica PAGE 41 03-05-12

Use cases must not be seen as a
panacea

•  The use cases themselves must be validated
•  Using the requirements validation methods.

•  Some aspects of software are not covered by use
case analysis.

•  Innovative solutions may not be considered.

Requirement documents

•  An informal outline of the requirements using a few
paragraphs or simple diagrams
•  requirements definition

•  A long list of specifications that contain thousands
of pages of intricate detail
•  requirements specification

•  Requirements documents for large systems are
normally arranged in a hierarchy

/ Faculteit Wiskunde en Informatica PAGE 42 03-05-12

Requirement documents

•  Level of required detail
•  The size of the system
•  The need to interface to other systems
•  The readership
•  The stage in requirements gathering
•  The level of experience with the domain and the

technology
•  The cost that would be incurred if the requirements

were faulty

/ Faculteit Wiskunde en Informatica PAGE 43 03-05-12

Prioritizing requirements (MoSCoW)

•  Must haves: top priority requirements

•  Should haves: highly desirable

•  Could haves: if time allows

•  Won’t haves: not today

One dimensional

/ Faculteit Wiskunde en Informatica PAGE 44 03-05-12

Prioritizing requirements (Kano model)

•  Attractive: more satisfied if +, not less satisfied if –
•  Must-be: dissatisfied when -, at most neutral
•  One-dimensional: satisfaction proportional to

number
•  Indifferent: don’t care
•  Reverse: opposite of what analyst thought
•  Questionable: preferences not clear

/ Faculteit Wiskunde en Informatica PAGE 45 03-05-12

Kano model

/ Faculteit Wiskunde en Informatica PAGE 46 03-05-12

Requirements specification

•  readable
•  understandable
•  non-ambiguous
•  complete
•  verifiable
•  consistent
•  modifiable
•  traceable
•  usable
•  …

/ Faculteit Wiskunde en Informatica PAGE 47 03-05-12

SE, Requirements Engineering, Hans van Vliet, ©2007 48

IEEE Standard 830

1. Introduction
 1.1. Purpose
 1.2. Scope
 1.3. Definitions, acronyms and

 abbreviations
 1.4. References
 1.5. Overview

2. General description
 2.1. Product perspective
 2.2. Product functions
 2.3. User characteristics
 2.4. Constraints
 2.5. Assumptions and
dependencies

3. Specific requirements

SE, Requirements Engineering, Hans van Vliet, ©2007 49

IEEE Standard 830 (cntd)

3. Specific requirements
 3.1. External interface

 requirements
 3.1.1. User interfaces
 3.1.2. Hardware interfaces
 3.1.3. Software interfaces
 3.1.4. Comm. interfaces

3.2. Functional requirements
 3.2.1. User class 1
 3.2.1.1. Functional req. 1.1
 3.2.1.2. Functional req. 1.2
 ...
 3.2.2. User class 2
 …

3.3. Performance requirements
3.4. Design constraints
3.5. Software system attributes
3.6. Other requirements

SE, Requirements Engineering, Hans van Vliet, ©2007 50

Requirements management

requirements
creep

too early
freeze

re
qu

ire
m

en
ts

 s
ta

bi
lit

y

time

SE, Requirements Engineering, Hans van Vliet, ©2007 51

Requirements management

•  Requirements identification (number, goal-hierarchy
numbering, version information, attributes)

•  Requirements change management (CM)
•  Requirements traceability:

•  Where is requirement implemented?
•  Do we need this requirement?
•  Are all requirements linked to solution elements?
•  What is the impact of this requirement?
•  Which requirement does this test case cover?

•  Related to Design Space Analysis

SE, Requirements Engineering, Hans van Vliet, ©2007 52

The 7 sins of the analyst

•  noise
•  silence
•  overspecification
•  contradictions
•  ambiguity
•  forward references
•  wishful thinking

SE, Requirements Engineering, Hans van Vliet, ©2007 53

Functional vs. Non-Functional
Requirements

•  functional requirements: the system services which
are expected by the users of the system.

•  non-functional (quality) requirements: the set of
constraints the system must satisfy and the
standards which must be met by the delivered
system.
•  speed
•  size
•  ease-of-use
•  reliability
•  robustness
•  portability

Reviewing requirements

•  Each individual requirement should
−  Have benefits that outweigh the costs of development
−  Be important for the solution of the current problem
−  Be expressed using a clear and consistent notation
−  Be unambiguous
−  Be logically consistent
−  Lead to a system of sufficient quality
−  Be realistic with available resources
−  Be verifiable
−  Be uniquely identifiable
−  Does not over-constrain the design of the system

/ Faculteit Wiskunde en Informatica PAGE 54 03-05-12 SE, Requirements Engineering, Hans van Vliet, ©2007 55

Validation of requirements

•  Inspection of the requirement specification w.r.t.
correctness, completeness, consistency, accuracy,
readability, and testability.

•  Some aids:
•  structured walkthroughs
•  prototypes
•  simulation
•  use cases and scenarios analysis
•  develop a test plan
•  tool support for formal specifications

© Lethbridge/Laganière 2005
Chapter 4:
Developing
requirements

56

Requirements Review Checklist

1. Does the (software) product have a succinct name, and a clearly
described purpose?

2. Are the characteristics of users and of typical usage mentioned? (No
user categories missing.)

3. Are all external interfaces of the software explicitly mentioned? (No
interfaces missing.)

4. Does each specific requirement have a unique identifier?
5. Is each requirement atomic and simply formulated? (Typically a

single sentence. Composite requirements must be split.)
6. Are requirements organized into coherent groups? (If necessary,

hierarchical; not more than about ten per group.)
7. Is each requirement prioritized? (Is the meaning of the priority levels

clear?)

© Lethbridge/Laganière 2005
Chapter 4:
Developing
requirements

57

Requirements Review Checklist
(continued)
8.  Are all unstable requirements marked as such? (TBC=`To Be Confirmed',

TBD=`To Be Defined')
9.  Is each requirement verifiable (in a provisional acceptance test)?

(Measurable: where possible, quantify; capacity, performance, accuracy)
10. Are the requirements consistent? (Non-conflicting.)
11. Are the requirements sufficiently precise and unambiguous? (Which

interfaces are involved, who has the initiative, who supplies what data, no
passive voice.)

12. Are the requirements complete? Can everything not explicitly constrained
indeed be viewed as developer freedom? Is a product that satisfies every
requirement indeed acceptable? (No requirements missing.)

13. Are the requirements understandable to those who will need to work with
them later?

14. Are the requirements realizable within budget?
15. Do the requirements express actual customer needs (in the language of the

problem domain), rather than solutions (in developer jargon)?

© Lethbridge/Laganière 2005
Chapter 4:
Developing
requirements

58

Requirements documents...

•  The document should be:
−  sufficiently complete
− well organized
−  clear
−  agreed to by all the stakeholders

•  Traceability:

Design
document

....due to
requirement 1.2

Re quirements
document

1.1 XXXX
.... because
1.2 YYYY

rationale

© Lethbridge/Laganière 2005
Chapter 4:
Developing
requirements

59

Requirements document...

A. Problem
B. Background information
C. Environment and system models
D. Functional Requirements
E. Non-functional requirements

© Lethbridge/Laganière 2005
Chapter 4:
Developing
requirements

60

Managing Changing Requirements
•  Requirements change because:

•  Business process changes
•  Technology changes
•  The problem becomes better understood

•  Requirements analysis never stops
•  Continue to interact with the clients and users
•  The benefits of changes must outweigh the costs.
−  Certain small changes (e.g. look and feel of the UI) are

usually quick and easy to make at relatively little cost.
−  Larger-scale changes have to be carefully assessed
−  Forcing unexpected changes into a partially built system

will probably result in a poor design and late delivery
•  Some changes are enhancements in disguise
−  Avoid making the system bigger, only make it better

