
ACM SIGSOFT Software Engineering Notes vol 20 no 2 April 1995 Page 42

SMART Requirements

Mike Mannion, Barry Keepence
Sottware Engineering Research Group.

Napier University
Department of Mechanical, Manufaeting

and Sottware Engineering.
10 Colinton Road, Edinburgh
EH10 5DT, United Kingdom

Tel: +44- O)31.447-9241
Fax: +44 (0)31-447-8046

email: m.mannion@central.napier.ac.uk

Abstract

Systems Analysis, or as it is increasingly known as today,
Requirements Engineering, is a time consuming,
expensive but critical phase in software (and system)
development. The "perfect" Requirements Specification
should exhibit a number of qualities including correcmess,
completeness and consistency. Within a Requirements
Specification individual requirements at the microscopic
level should be justified, clear, unambiguous and
verifiable. However, in many eases Systems Analysts or
Requirements Engineers describe requirements which fall
short of these demands. In addition, outside reviewers
faced with presenting an independent qualitative
assessment of a Requirements Specification have few
guidelines to assist them. In this paper we present a
simple technique, borrowed from objective setting in
Management Psychology, to assist the construction and
evaluation of individual requirements.

1. Introduction

Systems Analysis, or as it is increasingly known as today,
Requirements Engineering, is a time consuming,
expensive but critical phase in software (and system)
development. In broad terms it can be divided into three
areas of activity: elicitation, analysis and specification. In
practice elicitation and analysis are performed iteratively
and often in parallel. They are notoriously difficult to
regularly perform well because they depend on the ability
of two people to communicate to each other whether by
spoken word, written word or image. For all the methods
and techniques that cognitive psychologists have provided
us with over the last twenty-five years, including lateral
thinking, visual hooks, and picture chains, elicitation and
analysis remains an art in which the following skills are
demonstrated in abundance:

* filtered listening;

. the abilit\ to describe and explain;

• the ability to grasp new and abstract concepts
quickly;

• a genuine interest and enthusiasm for solving other
people's problems.

These are inherent human skills which can be taught to
many but are mastered by few. In many cases the
requirements engineer has a correct understanding but fails
to document this accurately in formal documentation.

The skill of specification has improved over the same
period of time with the development of a number of
specification modelling techniques including Structured
Analysis,[l,6], Object Oriented Analysis [7] and Formal
Methods [11]. These techniques have evolved to
overcome the difficulties of communicating a large
amount of detailed and complex information precisely.
Each has its own notation which is annotated to a greater
or lesser extent by natural language. In general terms the
more precise the notation the less annotation is needed, but
the greater the learning curve which is required to
understand and master the notation. It is this point in
particular which-has caused the use of these techniques to
reside primarily within the domain of the Developer and it
remains the case that a set of requirements is written in the
first instance in natural language because this is the
common language of the Client and the Developer.

There are a number of standards for developing
Requirement Specification documents, for example
[8,9,10]. Most of these standards make the distinction
between a User Requirement Specification (URS) which
describes the set of services required by a Client and the
Software Requirement Specification (SRS) which
describes the set of technical requirements necessary to
provide those services, and which is used by the
Developer. Typically each standard recommends
guidelines on how to partition each document into
different types of requirements, including functional, non-
functional and external interface. It is also worth noting
that the URS is usually in the foma of natural language and

ACM SIGSOFT Software Engineering Notcs vol 20 no 2 April 1995 Page 43

the SRS usually includes some form of modelling
technique (e.g. ~ f l o w diagrams).

In addition each standard offers in its guidelines for the
development of the URS and SRS that the requirements
should have a number of atln'butes including:

• maintainability;

• verifiability;

• completeness;

• correctness,

• consistency;

• clarity;

• traceability;

• modifiability;

• readability;

• ease of use.

Despite these checklists a large number of requirement
specifications are being produced which fall short o f these
demands.

In practice, whilst each of the above characteristics are
conceptually understood, their application proves difficult.
The problem is twofold, fwst, although some textbooks
and standards provide formal definitions for each
characteristic few provide examples or guidelines to
illustrate good or bad practice. Secondly, the sheer
number of characteristics to remember, each of apparent
equal importance and desirability, can be overwhelming to
the author of the requirements specification, often with the
result that some characteristics are heavily emphasised
whilst others are overlooked. Although this imbalance
may be partially rectified at formal review meetings when
the various participants (customer, managers, designers,
maintainers, testers, quality control) display their different
interests in the document and argue their separate cases.
An imp~'ovement would be to have achieved a better
balance in the fast place.

What is required is a raore oractical and easilv
remembered framework which can be used during the
development and examination of a requirements
specification, be it a URS or an SRS. Such a framework
can be useful for both Clients and Developers, experienced
and inexperienced, and for independent reviewers, such as
the Quality Control team, whose role is to offer a
qualitative independent assessment on the Requirements
Specification. Quality Assurance personnel in particular
often face the difficult challenge of not being familiar with
the project but being asked to provide a qualitative
judgement on the specification before them. This is made
more difficult as the size of the document grows or in
cases where documents contain a large amount of
acronyms and domain specific jargon.

2. Specifying SMART Requirements

Individual requirements can be compared to pm'sonalised
objectives. They are goals which are desired to be
achieved. In many time management courses and
leadership courses, the acronym SMART [12] is used to
assist people in setting down good objectives. A SMART
objective is:

S pecific

Measu rab l e

A trainable

R ealisable

T i m e bounded.

For persoualised objective setting T stands for time-
bounded in that the objective must be achieved by a
specified date. In the context o f soRware requirements
however the dates by which requirements must be
achieved is usually specified in the Project Plan (and
ultimately the contract). The Project Plan is not usually
developed by the author(s) o f the Requirements
Specifications and can not be produced accurately until the
SRS is completed. Consequently it would not be
appropriate for a Requirements Engineer to specify time
boundaries for individual requirements.

In addition, many requirements in a Requirements
Specification are dependent on other requirements or are
part of a higher level requirement. A common criticism of
some requirements is that the original justification is lost.
It would be better for a Requirements Engineer to think of
T as standing for Traceable. "If it is not possible to

envisage how a particular requirement is related to other
requirements and to know where it came from, then it is
not a SMART requirement.

Hence in specifying software requirements we define
SMART to be:

S pecific

Measu rab le

A trainable

R ealisable

T raceable.

The objective of developing SMART requirements is not
to prove that the requirements document is correct in the
technical sense (i.e. the requirements state what is actually
needed). Using the SMART framework a document can
be checked and every requirement can be verified as
correct in terms of expression (but not content). However,
it is worth noting that a badly expressed requirement is
usually a case of incorrect or incomplete analysis.
Therefore it is expected that a SMART document is more
likely to be technically correct.

The following sections give examples and guidelines for
each of the areas in SMART. It is worth noting at this

ACM SIGSOFT Software Engineering Notes vol 20 no 2 April 1995 Page 44

point that if a requirement fails one o f the criteria o f
SMART it is sometimes because o f a failure o f another
criteria. As an example, a requirement may not be
measurable because it is not specific.

2.1 Spec/f/c

All requirements techniques have a criteria in this area. A
requirement must say exactly what is required. Specificity
actually comprises several areas as follows:

• clear i.e. that there is no ambiguity;

• consistent i.e. that the same terminology has been
used throughout the specification to describe the
same system element or concept;

• simple i.e. avoid double requirements e.g. X and Y;

• of an appropriate level of detail.

• only use the word "details", "information", "data"
in a requirement when you can describe or refer to
precisely what they will be;

• if the requirement is described by a prototype
program ensure that specific program is
documented;

• when a term is defmed in a glossary, substitute the
def'mition in the text and then review the
requirement;

• no "To Be Defineds".

Some requirements may seem at fast sight to be specific.
However they oRen require a specific definition of a term
in order to be specific. Consider:

"The system shall support 50 simultaneous
users."

A requirement can be tested for this by its reading by a
reviewer. There are a number o f words and phrases which
are first rate indicators of an unspecific requirement.
Consider the following requirement:

"The Mission Planning System shall support
several planning environments for generating the
mission plan."

In this example, it is not clear what is meant by "several".
In addition the terms "planning environment" and
"mission plan" may not have been defined.

In general terms the following guidelines are
recommended:

• avoid phrases such as: "obviously", clearly",
"certainly";

• avoid ambiguities such as "some", several",
"many";

• avoid list terminators such as: "etc", "and so on",
"...such as";

• ensure pronouns are clearly referenced eg "When
module A calls B its message history file is
updated";

• when numbers are specified identify the units;

• ensure all possible elements in a.list are described;

• use pictures to clarify understanding;

• ensure all system or project terms are defined in a
glossary;

• consider placing individual requirements in a
separate paragraph and individually numberered;

• ensure verbs such as "transmitted", "sent",
"downloaded", "processed" are qualified by precise
explanations;

This requirement is specific in itself but the definition o f
what the users would be doing is required. ORen a certain
interpretation is assumed which can be very dangerous.

2.2 Measurable

In the context o f Requirements Engineering, by
measurable we mean is it possible, once the system has
been constructed, to verify that this requirement has been
met. In some software engineering methodologies, the
Requirements Engineer is instructed to determine the tests
which must be performed in order to satisfy the
requirement. This is a good discipline. The level of detail
required to describe and set up the corresponding test is
itself a strong indicator of whether the requirement should
be broken down into sub-requirements.

Assuming that a requirement is specific, non - measurable
requirements fall into two categories:

a) those which cannot be instrumented (or
instrumentation interferes);

b) those which are specific but for which there is no
yardstick available.

Examples of the first category can occur when detailed
timing or performance information is required. It may be
impossible to measure such values without introducing
extensive intrusive software. A common example of this
is ensuring that there are no memory leaks in a real-time
program. The software to test for the leaks changes the
characteristics of the program and therefore the operation
of it.

The second category (b) is slightly more subtle. Consider
the following requirement:

"The system shall produce a plan optimised for
time."

ACM SIGSOFT Softwaze Engineering Notes vol 20 no 2 April 1995 Page 45

The only way to measure a plan to see if it is optimal is to
compare it to an absolute optimum; which may not be
available. Even if the requirement was 90% of optimum
the same would apply. This is o f course dependent on the
test cases used in the acceptance testing. To be
measurable the requirement must specify a fixed
performance against a predefmed set o f test cases for
which the absolute optimum is known. It is also worth
noting that requirements which are in category b need to
be made more specific in order to be measuarable.

In general terms the following guidelines are
recommended.

• What other requirements need to be verified before
this requirement?

• Can this requirement be verified as part of the
verification for another requirement ? If so, which
one?

• How much data or what test cases are required?

• How much processing power is required?

• Can the test be conducted on one site7

• Can this requirement be tested in isolation7

It is often the case that the attainable and realisable criteria
are often considered in parallel. This does not however
make them synonymous.

2.4 Realisable

in the context of software requirements, by realisable we
mean is it possible to achieve this requirement given what
ks known about the constraints under which the system
and the project must be developed.

Determining whether a requirement is realisable or not is
the most difficult part of creating a SMART requirement.
The difficulty is twofold in nature:

• can we satisfy this requirement given the other
system and physical constraints that we have?

• can we satisfy this requirement given the project
resource consWaints which we must work to?

For example, if there is a requirement to have 99%
reliability but the project budget does not permit the
inclusion of the extensive defensive programming needed
to satisfy that requirement then that requirement is not
realistic.

2.3 Attainable

By an attainable requirement we mean it is possible
physically for the system to exhibit that requirement under
the given conditions. Some requirements may be beyond
the bounds of human knowledge. Others may have
theoretical solutions but be beyond what is currently
achievable. For example:

"The system shall be 100% reliable and 100%
available".

"The system shall have a minimum response to
a query of 1 second irrespective of system load".

These examples are not atypical The consequence of
attempting to meet these requirements is that the system
will never be accepted or prohibitively expensive or both
In general terms the following guidelines are
recommended:

• Is there a theoretical solution to the problem ?

• Has it been done before ? If not, why not ?

• Has a feasability study been done ?

• Is there an overiding constraint which prohibits this
requirement ?

• Are there physical constraints on the size of the
memory, processor or peripherals ?

• Are there environmental constraints such as
temperature, compressed air?

In general terms the following guidelines are
recommended.

• Determine who has responsibility for satisfying the
requirement.

• Can they deliver?

• Can we afford to manage them?

• How badly is it needed?

• Are there sufficient resources?

• staffwith the right skill set;

• space and desks;

• hardware and software for development;

• hardware and software for testing

• Is there sufficient time?

• Is there sufficient budget?

• Are we constrained to a particular package which
does not support this requirement?

• Will we have to develop it ourselves?

• Can we reuse from other projects?

During the first iteration of the Requirements
Specification requirements are often placed into one of
two categories:

essential;

desirable.

A C M S I G S O F T Softwaze Engineering Notes vol 20 no 2 April 1995 Page 46

If an analyst is not sure about a requirement then it is often
marked as desirable. This does not change the
requirement Desirable requirements should only be leR in
requirements documents when there is a clear choice in the
development stage. For example:

"The system must have ten operator chairs" -
essential

"The operator chairs should be red" - desirable

If the were any other colour, the system would still be
acceptable.

2.5 Traceable

Requirements Traceability is the ability to trace (forwards
and backwards) a requirement from its conception through
its specification to its subsequent design, implementation
and test. It is important for the following reasons:

• so that we can know and understand the reason for
each requirement's inclusion within the system;

• so that we can verify that each requirement has
been implemented;

• so that modifications are made easily, consistently
and completely.

Most software development projects which can
demonstrate evidence of traceability have been driven to
do by the second of these three reasons. This applies also
to CASE tools which support traceability. From our own
personal industrial experience and from a recent study of
practitioners' experiences by Gotel and Finkelstein [5]
whilst such a view of traceability is essential it does not
help us understand why individual or combinations of
requirements have been included, nor explain hidden
requirements inter-relationships such as dependency or
implication. We believe that in the specification of a
requirement the provision of the following supplementary
information where appropriate should be made:

• originators of requirements (institutions or people);

• underlying assumptions

These are particularly important. Often an
underlying assumption applies to many
requirements but the assumption is stated once,
often several pages adrift from a requirement which
is dependent on it. It is also vital to ask what will
happen when (not if) the underlying assumption is
not trueL

• business justifications;

* inter-relationships such as subsumption,
dependency or implication;

• These sorts of relationships are vital in determining
the impact of any changes brought about to the
requirements specification

* their criticality.

3. SMART Users

SMART as a technique applies to all aspects of specifying
a requirement. However not everyone who has an interest
in a requirements specification will be concerned with
each aspect of SMART. Consider for example the various
interested parties of an SRS. Typically, on the Client's
side there will be the Procurer and End User, and on the
Developer's side, there will be the Project Manager, the
Requirements Engineer, the System Designer, the Test
Engineer, the Maintainance Engineer and the Quality
Engineer.

At a formal review meeting of the SRS, each of these
parties will be reading and reviewing the SRS from their
own viewpoint (Table 1.1). A Procurer is most interested
in requirements being correct, complete and easily
changed if necessary ie Specific and Traceable. An End
User is interested only in whether the requirements are
correct and complete ie Specific. The Project Manager,
whilst having a healthy interest in all aspects, is focused
on whether the implementation of these requirements can
be achieved on time, within budget and to such a level of
quality that corrective maintenance does not become a
contractual issue ie Attainable, Realisable and Traceable.

The Requirements Engineer, being the author of the SRS,
has attempted to construct a document in which all
requirements are SMART. The System Designer reviews
a requirement asking the questions: "do I understand what
is required?" and "is it possible to achieve?". That is, is it
Specific and ")~ttainable? Similarly the Test Engineer
asks: "do I understand what is required?" and "is it
possible to verify the requirement?". That is, is it Specific
and Measurable? The Maintenance Engineer needs to
understand each requirement, where it came from and
what the impact is if it needs changing: that is, Specific
and Traceable. The Quality Engineer faces the most
difficult task, having to assess whether each requirement is
SMART without having been directly involved in its
construction nor having responsibility for its subsequent
development and implementation.

Typically an assumption is removed from a system (i.e.
becomes invalid) but all the requirements which depended
upon it are not removed. This often leads to features
which are nol required still being implemented.

This matrix helps in the following way. It helps to clarify
for individuals during their preparation for a formal
review, what their responsibilities are and what their
objectives are. This means their own reading of each
requirement will be sharper. This in turn will bring about
less overlap and deeper coverage by the group as a whole.

ACM SIGSOFT Software Engineering Notes vol 20 no 2 April 1995 Page 47

Users of SMART
II

Procurer

S

, /

M A

J¢

R

J¢

T

, /

Analyst ¢" ¢ " ¢ ¢

Designer ¢" x ¢" x x

Project Manager ¢ "/ ¢" "/ ¢"

Quality Engineer ¢" ¢ ¢ ¢" ¢"

Test Engineer ¢" ¢' x x x

Maintainer ¢" x x x ¢"

End User ¢" x x = x

Table 1.1. Interests of different users in SMART

4. Conclusion

Communication between different groups in requirements
engineering is very important, and it cannot be relied upon
for one group (the user) to learn the craft of another (the
analyst). Natural language will continue to be the
expression medium for requirements for a long time.
However it is by its nature highly dependent upon
assumption and definition (even disregarding ambiguity).

The requirements development and evaluation technique
we have developed and presented here is a technique
which can be used by all people involved in requirements
engineering. In SMART we have presented a simole and
straightforward system for ensuring that requirement
documents are smart.

Most importantly it is independent of any analysis or
design methodology which has been used. It is also
independent of the requirements extraction method used.

In a forthcoming paper we will presenting SMARTRe in
which we extend the SMART acronym to cover Reusable
requirements.

References

Modem Structured Analysis
E Yourdon, Prentice-Hall, 1989

2. Software Engineering, 4th edition
I Sommerville. Addision-Wesley, 1992

3. Software Engineering: A Practitioner's Guide

.

.

6.

7.

.

9.

10.

11.

12.

R Pressman, McGraw-Hill, 1992

Software Engineering: Principles and Practice
H van Vilet, John Wiley, 1993

An Analysis of the Requirements Traceability
Problem
O Gotel, A Finkelstein, Dept of Computing,
Imperial College, 180 Queen's Gate, London,
SW7 2BZ, 1993

A Practical Guide to Real-Time
Devlopment
Sylvia Goldsmith, Prentice-Hall, 1993

Systems

Object-Oriented Design with Application, 1st
Edition G Booch, Benjamin-Cummings
Publishing Company, 1991

IEEE Standard 830: Software Requirements
Specifications

European Space Agency Software Engineering
Standards
PSS-05-0 Issue 1, January 1987

The STARTS Guide
2nd edition, Vol I, 1987, ISBN 0 85012 G193

Z: An Introduction to Formal Methods
A Diller, John Wiley 1990

Study Skills,
P Crisfield, L Sollars,
National Coaching Foundation, 1992
Leeds, ISBN 0 947850 872

