
Anagrams Architectural Design Document1

Irritable Enterprises, Inc.2

13 June 2008 – Version 0.3 – For Review – 5 pages3

1 Introduction4

This document defines the architecture for Anagrams. It divides the product5

into a number of components that can be developed and verified indepen-6

dently. The architecture should also serve as a guide to future maintenance7

of the product.8

The reader is assumed to be familiar with the terminology introduced in9

the Anagrams User Requirements Document.10

Section 2 provides an overview of the product. Section 3 defines the11

external interfaces. Section 4 explains the rationale behind the chosen design12

method, and presents the resulting decomposition from several viewpoints.13

Finally, Secion 5 specifies in detail the components of the architecture.14

2 System Overview15

The Anagrams product is a simple piece of software: it is a single-user stand-16

alone program to play a word game. Its purpose is mainly to entertain the17

user and, hence, it is not a critical system.18

No preliminary studies or prototyping were done to select the architec-19

ture. One alternative architecture was considered, where the rules of the20

game were put into a separate component to decouple them from the user21

interface. However, the visual aspects of the user interface were so closely22

tied to the rules of the game, that it was decided to keep the user inter-23

face and the rules in a single component. Otherwise, an extra interface24

would have to be introduced, and the complexity of this interface would not25

outweigh the advantages.26

3 System Context27

In its current form, the Anagrams product has only one external interface,28

viz. to the human user. This is a graphical user interface, presented in the29

host operating system that runs the Anagrams product.30

1



Anagrams Architectural Design Document Version 0.3

AnagramsUser

Game Rules

Figure 1: Context diagram for Anagrams

Figure 1 shows a context diagram in the form of a problem frame. For31

more information on problem frames see [1, 2]. The box with the triple32

line on the left is the (abstract) machine to be designed, whereas single-line33

boxes (in this case, only one) denote context domains. Edges between boxes34

indicate shared phenomena, that is, an interface relationship. Dashed ovals35

represent requirements to be realized by the machine. The arrow points to36

a domain to be controlled by the machine in some way.37

In the future, an external interface to the file system or even to a network38

may be introduced. There are two reasons for this:39

1. to store the word list separately from the executable, making it possible40

to change the word list without rebuilding the Anagrams product;41

2. to store game results for later inspection after the Anagrams product42

terminates execution.43

4 System Design44

4.1 Design Method45

Because Anagrams is a very simple system, no specific design method was46

applied. The design was intuitively obtained through the principle of sepa-47

ration of concerns.48

4.2 Decomposition Description49

Figure 2 shows the decomposition of Anagrams into components, and how50

they relate to each other and to the environment. The dahsed line encloses51

the Anagrams system. Each box inside the dashed line represents a compo-52

nent, and boxes outside the dashed line represent entities in the environment.53

An arrow from A to B expresses that A controls B.54

For Review Page 2 of 5



Anagrams Architectural Design Document Version 0.3

Anagrams

UI LibUser

Figure 2: Design-level decomposition diagram for Anagrams

This is an abstract (design-level) static (structural) view of the system,55

consisting of the two components UI (User Interface) and Lib (Word Li-56

brary). A more concrete (implementation-level) static view of the system57

is shown in Figure 3. This is a UML package diagram. Each component58

is implemented as a separate package. The dashed arrow indicates package59

dependence.

UI Lib

Figure 3: Package diagram (at implementation-level) for Anagrams
60

Because of the simplicity of Anagrams, a dynamic view reveals only one61

process for the entire application, which runs on a single processor. In the62

future, it may be considered to run the user interface in a separate thread.63

It also an option to have multiple clients (user interfaces) share the word64

library by running the latter as a server which is accessed through a network.65

5 Component Description66

Each component is described in more detail in the following subsections.67

5.1 Component UI: User Interface68

Type This component is a separate Java package: com.toy.anagrams.ui.69

Purpose Its purpose is to encapsulate the graphical user interface and those70

rules of the game that concern the ordering of game-related events. In71

particular, it realizes user requirements UR-10, UR-11, UR-151 UR-16,72

UR-20, UR-30, UR-40, UR-80, UR-81.73

1Partially, in that it presents the result to the user.

For Review Page 3 of 5



Anagrams Architectural Design Document Version 0.3

Function This component presents the graphical user interface, handles all74

user-generated events, and enforces the rules of the word game.75

Subordinates It has no subordinates.76

Dependencies It requires Lib, the Word Library.77

Interfaces This component provides an external graphical user interface78

and requires the interface to the Word Library.79

The graphical user interface has elements80

• to present the anagram (scrambled word);81

• to let the user type in a guess (UR-20);82

• to let the user indicate that a guess is to be evaluated (UR-20);83

• to inform the user of the correctness of a guess (UR-15);84

• to let the user start a new round with a new word (UR-20);85

• to display the game score (UR-16);86

• to show the product’s version (UR-30).87

Resources It requires access to the screen, mouse, and keyboard.88

Processing This component handles events dispatched from the main event89

loop. It realizes the game state transitions and related input and90

output via the graphical user interface.91

Data It maintains the current game state.92

5.2 Component Lib: Word Library93

Type This component is a separate Java package: com.toy.anagrams.lib.94

Purpose Its purpose is to encapsulate the list of words. In particular, it95

realizes user requirements UR-12, UR-13, UR-14, UR-15.96

Function This component manages the word list and the corresponding97

anagrams.98

Subordinates It has no subordinates.99

Dependencies There are no dependencies.100

Interfaces The provided interface is offered as the following public static101

methods of the class WordLibrary :102

• int getSize(), which returns the number of words in the list;103

• String getScrambled(int idx), where104

For Review Page 4 of 5



Anagrams Architectural Design Document Version 0.3

Parameter idx with 0 ≤ idx < getSize() is the index of a105

word in the list106

Returns random anagram of word at index idx.107

• boolean isCorrect(int idx; String userGuess), where108

Parameter idx with 0 ≤ idx < getSize() is the index of the109

correct word in the list110

Parameter userGuess is the word guessed by the user111

Returns whether userGuess is correct for index idx.112

Typical usage of this interface is as follows:113

1. Obtain the number of words in the list by calling getSize() once114

and storing the result;115

2. Each round starts with calling getScrambled with a random in-116

dex in the word list;117

3. Repeatedly check user guesses for correctness by calling isCorrect.118

Resources It requires no external resources.119

For future versions, storing the word list in an external file is an option.120

Processing This component does no autonomous processing; it only re-121

sponds to calls on its interface.122

Data It stores the list of words.123

References124

[1] Michael Jackson. Problem Frames: Analyzing and Structuring Software125

Development Problems. Addison-Wesley, 2000.126

[2] Benjamin L. Kovitz. Practical Software Requirements: A Manual of Con-127

tent and Style. Manning Publications Company, 1999.128

Written by Tom Verhoeff (SET) as an example for a software engineering129

project at Eindhoven University of Technology, based on the AnagramGame130

sample Java program provided with the NetBeans IDE.131

For Review Page 5 of 5

http://www.win.tue.nl/~wstomv/
http://www.win.tue.nl/set/
http://www.tue.nl/
http://www.netbeans.org/

	Introduction
	System Overview
	System Context
	System Design
	Design Method
	Decomposition Description

	Component Description
	Component UI: User Interface
	Component Lib: Word Library


