
Software Engineering: Theory and Practice

Configuration Management

Tom Verhoeff

Eindhoven University of Technology
Department of Mathematics & Computer Science

Software Engineering & Technology

Feedback to T.Verhoeff@TUE.NL

c© 2008, T. Verhoeff @ TUE.NL 1 Software Engineering: Configuration Mgmt

Why Configuration Management?

Important potential problems:

• Ambiguity as to what document or file is meant

• Inconsistent combinations of files

• Lost files, lost changes

• Undocumented, unapproved changes

• Not knowing the composition of released software

• Not being able to go back to a previous version

c© 2008, T. Verhoeff @ TUE.NL 2 Software Engineering: Configuration Mgmt

Configuration Management (CM) Terminology

• Configuration Item (CI) : (document, software, hardware) entity
treated as a unit for CM; atomic or composite

• Version and relations between versions:

– revision replaces obsolete/incorrect version

– variant exists parallel to other version

• Baseline : formally reviewed and approved CI serving as a basis
for further development

c© 2008, T. Verhoeff @ TUE.NL 3 Software Engineering: Configuration Mgmt

Configuration Management Goals

• Identify and define the CIs of the project: all relevant artifacts

• Control the release and change of CIs throughout the project

• Record and report the status of CIs and of change requests

• Verify the completeness and correctness of CIs

c© 2008, T. Verhoeff @ TUE.NL 4 Software Engineering: Configuration Mgmt



Configuration Management Tools

• Tools are not a complete solution: also need to use them well.

Establish clear and effective procedures and rules. Train users.

• CVS, Subversion, Bazaar, Mercurial, Git

• Bugzilla

• Trac: an enhanced wiki and issue tracking system for software
development projects

• Also consider tools for building and releasing (not treated here).

c© 2008, T. Verhoeff @ TUE.NL 5 Software Engineering: Configuration Mgmt

Configuration Management with Subversion

• One central repository with current and past versions

– Trunk holds main line of development

– Tags mark baselines, releases, . . .

– Branches hold variants, experiments, . . .

• Multiple local working copies

– checkout, update, commit

Copying in the repository is cheap, both in time and in memory usage.

Tagging and branching are done by copying. The name of the copy
identifies the tag or branch.
c© 2008, T. Verhoeff @ TUE.NL 6 Software Engineering: Configuration Mgmt

Subversion: Create Working Copy from Repository

Repository

Before After

Repository

(unchanged)

New

Working Copy

checkout

Remote

Local

c© 2008, T. Verhoeff @ TUE.NL 7 Software Engineering: Configuration Mgmt

Subversion: Update Working Copy from Repository

Repository

Before After

Repository

(unchanged)

Updated

Working Copy
Working Copy

update

Remote

Local

This may result in so-called conflicts that need to be resolved.

c© 2008, T. Verhoeff @ TUE.NL 8 Software Engineering: Configuration Mgmt



Subversion: Commit Changes in Working Copy to Repository

Repository

Before After

Updated 

Repository

Working Copy 

(unchanged)
Working Copy

commit

Remote

Local

Fails when repository item now differs from original working item.

c© 2008, T. Verhoeff @ TUE.NL 9 Software Engineering: Configuration Mgmt

Configuration Management: Good Practices

• Only commit code that compiles, runs, and passes all unit tests.

• When committing, always include a log message explaining why
the change was made (svn diff can tell you what changed).

c© 2008, T. Verhoeff @ TUE.NL 10 Software Engineering: Configuration Mgmt

References

• “Configuration Management”, Ch. 17 from Software Engineering:
Planning for Change by D. A. Lamb. Prentice-Hall, 1988.

• Common CM Tasks in Subversion by T. Verhoeff

• The Subversion Book

• Turtoise SVN: GUI client for Subversion on Windows

• svnX: GUI client for Subversion on Mac OS X

c© 2008, T. Verhoeff @ TUE.NL 11 Software Engineering: Configuration Mgmt


