
Software Engineering: Theory and Practice

Architecture

Tom Verhoeff

Eindhoven University of Technology
Department of Mathematics & Computer Science

Software Engineering & Technology

Feedback to T.Verhoeff@TUE.NL

c© 2008, T. Verhoeff @ TUE.NL 1 Software Engineering: Architecture

What is Software Architecture?

• The fundamental organization of a system

• embodied in its components ,

• their relationships to each other and

• to the environment , and

• principles guiding its design and evolution .

From: IEEE Standard 1471

c© 2008, T. Verhoeff @ TUE.NL 2 Software Engineering: Architecture

Why Software Architecture?

• Organizes communication about the solution domain.

• Facilitates parallel construction by a team.

• Improves ability to plan work , track progress .

• Improves verifiability (makes it easier to get it to work):

– Allows early review of design.

– Allows unit testing of separate components.

– Allows stepwise integration (no “big bang”).

• Improves maintainability : doc.; changes affect few components.

• Improves possibilities for reuse .

c© 2008, T. Verhoeff @ TUE.NL 3 Software Engineering: Architecture

Architecture Description: Ingredients

• Stakeholders

• Viewpoints

• Architectural views

• Inconsistencies and conflicts among views

• Rationale, alternatives and why they were not chosen

Compare to architectural description of buildings: spaces and doors,
water supplies and drains, electricity, heating/cooling, fire safety, . . .

c© 2008, T. Verhoeff @ TUE.NL 4 Software Engineering: Architecture



Kruchten’s 4 + 1 Views

Static Dynamic

(Structure) (Behavior)

Abstract Logical Process

Concrete Development Deployment

concerns code in files concerns processors

+ Use case scenarios traced through the architecture

c© 2008, T. Verhoeff @ TUE.NL 5 Software Engineering: Architecture

Example of Logical View

elevator
hardware
(ehw)

service (srv)

driver (drv)
doors level

requestscage

scheduling (sch)

elevator control (ect)

c© 2008, T. Verhoeff @ TUE.NL 6 Software Engineering: Architecture

How to Design an Architecture

Almost any architecture can be made to work, that is, can be made
to provide required functionality.

Extra-functional requirements should drive the architectural design:
understandability, verifiability, efficiency, maintainability, . . .

Approaches: Top down, bottom up, yo-yo, functional decomposition,
data distribution

KISS: Keep It Simple, Stupid

Consider alternatives and compare them: on paper, by experiment.

c© 2008, T. Verhoeff @ TUE.NL 7 Software Engineering: Architecture

Top down versus bottom up

• Top down : starts from high-level requirements

– Most important decisions made with least information

– Requirements are never completely known

– Risk to reinvent lower-level solutions, instead of reusing them

– No working code possible until you hit the bottom

• Bottom up : starts from implementation technology

– Provides no guidance for clear modular structure

• Yo-yo : interleave top-down and bottom-up approaches

c© 2008, T. Verhoeff @ TUE.NL 8 Software Engineering: Architecture



Design Guidelines

• Trace design items and design decisions to requirements

• Minimize coupling between components

• Maximize coherence of components (keep related things together)

• Resolve cross-cutting issues at the architectural level

• Consider alternatives (mention them in the documentation)

• Maximize reusability (through generalization, abstraction)

• Experiment with focused exploratory prototypes

c© 2008, T. Verhoeff @ TUE.NL 9 Software Engineering: Architecture

References

• Example: Anagrams Architectural Design Document

c© 2008, T. Verhoeff @ TUE.NL 10 Software Engineering: Architecture


