
Programming Methods (2IPC0) Checklist (v1.3)

This document presents a checklist for larger (object-oriented) programs, especially in
the course Programming Methods (2IPC0).

1. Understand and analyze the requirements . Preferably, precise requirements areRequirements
available in a written document.

2. Adhere to a good coding standard for a readable layout , through systematic! Coding
Standard indentation, spacing, and empty lines. There is a (mild) coding standard for this

course [1].

3. Use appropriate identifiers to name entities. Local entities can be designatedNaming
by shorter names. Java naming conventions :

• Class names are (singular) nouns, starting with a capital letter: Card

• Method names are verbs (or begin with a verb), starting with a lower case
letter: turnCard()

• Variable names (including instance variables, local variables, and parame-
ters) are nouns, starting with a lower case letter: card

• Constants are written in all upper case: QUEEN

• Use camelCasing to distinguish words in a name; except in constants, use
underscores: CardDeck, getCard(), MAXIMUM_RANK

4. Avoid magic literals; use named constants :Constants

public static final int MAXIMUM_RANK = 13;

5. Use auxiliary variables to reduce the complexity of expressions, to avoid codeAuxiliary
variables duplication, to improve efficiency, and to facilitate focused comments.

6. Use appropriate coding idiom to reveal the code’s intention, in particular for se-Coding
idiom lection (?:, if-else, switch-case-break) and repetition (for, while,

do-while).

7. Avoid large method bodies and (deeply) nested control structures; decompose! Procedural
abstraction functionality into multiple methods , through procedural abstraction . Each

method must serve a well-defined purpose (Single Responsibility Principle) specifiedSRP
in a contract . Be aware of the pros and cons of recursive methods .

8. Declare variables as locally as possible ; from most preferred to least preferred:Prefer local
declarations within a statement block (e.g., inside a loop body), local to a method body, as a

method parameter, non-public instance variable of a class, public instance vari-
able of a class. Use final if the value should not change.

9. Communicate data between methods via parameters and return values ; minimizeMethod
coupling communication where methods refer directly to variables that are global to these

methods.

10. Provide unit tests for key functionality. Aim for 100% branch coverage. Ap-! Unit tests
ply Test Driven Development (TDD): (1) specify functionality in contracts, (2)
develop tests, (3) implement functionality, (4) execute tests, (5) use functionality.

c© 2013–2014, TUE.NL 1/2

Programming Methods (2IPC0) Checklist (v1.3)

11. Use assert statements and exceptions to signal abnormal conditions, and! Robustness
thus make facilities robust . Avoid the use of exceptions for normal operation
(less clear control flow; run-time penalty). Check the proper throwing of excep-
tions in unit tests.

12. Bundle related variables in a class (data decomposition).! Data
abstraction

(a) Consider an enum to define related constants.• Enum
(b) Consider a record , i.e., a class that only has public instance variables,• Record

when there is no concern about data representation. Optionally provide a
constructor that sets the instance variables, and a conversion to a string.

(c) Consider an Abstract Data Type (ADT) with private instance variables to• ! ADT
provide data abstraction (hide the data representation from clients); pro-
vide public methods to access the data. See to it that methods either
• inspect the state (also known as queries), or

• modify the state (also known as commands),

but not do both. Provide a class contract via public invariants between
queries, and contracts for each method. For the implementation, provide a
(private) representation invariant and an abstraction function .

13. Use iterators , preferably standard iterators in a for-each statement , instead ofIterators
ad-hoc loops. Consider providing (standard) iterators.

14. Define functionality as close as possible to the data that it operates on (coherence).Coherence

15. Put related classes together in their own package . Explain the relationship andPackages
development status in package-info.java.

16. Avoid mutual dependencies ; decouple functionality through callbacks , alsoDecoupling
knowns as listeners or observers (cf. Dependency Inversion Principle).DIP

17. Prefer association and interfaces over inheritance .Composition/
Inheritance

18. Reuse standardized facilities, such as the Java Collections Framework .JCF

19. Apply common Design Patterns . See [2].Design
Patterns

Keep in mind: avoid code duplication (Don’t Repeat Yourself); aliasing, sharing; muta-DRY
ble versus immutable classes; static members; inheritance, abstract classes, interfaces;
mutually related classes (package level invariants); nested classes; generics; annota-
tions; choice of algorithm and data representation; Graphical User Interface (GUI)
mechanisms (event driven); the SOLID OO design principlesSOLID

References

[1] Coding Standard for the Course ‘Programming Methods’, (2IPC0).

[2] Eddie Burris. Programming in the Large with Design Patterns. Pretty Print Press,
2012.

c© 2013–2014, TUE.NL 2/2

