
Project programmeren: 4EE11

Project 6: The grain silo

Joris Remmers∗

February 9, 2009

Discrete particle model

The motion of grains in a silo can be simulated with a discrete particle model.
In this model, the grains are represented by particles with a certain mass.
The forces that act on these particles are (i) gravity and (ii) the elastic and
viscous contact forces due to the contact with neighboring particles. The
new position and velocity of each particles is determined by means of the
Verlet explicit time integration scheme.

Mechanical model

Consider the particles in Figure 1. The position and velocity of particle i

with a radius Ri is denoted by the vectors xi and vi respectively. The mass
of the particle is equal to mi. The particle is in contact with a particle j

when the particles overlap, or when:

|xij | < Ri + Rj ,

where xij = xi − xj . In that case, the overlap δ is defined as:

δ = Ri + Rj − |xij | .

The interaction force that particle i exerts on j can be decomposed into an
elastic part Fe

ij and a viscous part Fv
ij . The elastic force is equal to:

Fe
ij = kδeij ,

∗J.J.C.Remmers@tue.nl

1

xj

xi δ

Rj

Ri

eij

Figure 1: Two interacting particles

where k is a spring constant and eij denotes the unit vector that is aligned
with the relative position vector, see Figure 1:

eij =
xij

|xij |
.

The viscous force is a linear function of the relative velocities of the two
particles:

Fv
ij = −b (vi − vj) ,

where b is a drag constant. Finally, all particles are subjected to gravity:

F
g
i = −migj

where g is the gravitation constant g = 9.81 m/s2 and j is the unit vector
in the positive y direction. Note that all forces act on the center of mass of
the particle i, which is located at xi.

Solution algorithm

The total system consists of n particles, which have a position xt
i, a velocity

vt
i and an acceleration at

i at time t. The new state of each particle i at time
t + ∆t can be determined by using an explict Verlet algorithm [1]. For each
particle i, the following procedure can be followed:

1. Calculate:

xt+∆t
i = xt

i + ∆tvt
i +

1

2
∆t2at

i ;

2

2. Calculate:

v
t+ 1

2
∆t

i = vt
i +

1

2
∆tat

i ;

3. Determine the total force vector Fi that is acting on particle i using

the positions xt+∆t
i and the velocities v

t+ 1

2
∆t

i of all particles in the
system.

4. Calculate:

at+∆t
i =

1

mi

Fi

5. Calculate:

vt+∆t
i = v

t+ 1

2
∆t

i +
1

2
∆tat+∆t

i .

The positions, velocities and accelerations are now known at time t + ∆t

and one can proceed to the next time step.

Boundary conditions

The walls of the silo are represented by particles that have a fixed position,
i.e. their velocity is always equal to zero. Note that although these particles
do not move, they still interact with the particles inside the container.

The positions of the particles that describe the geometry of the silo are
given in the file silo1.dat. The first few lines of this file look as follows:

183 5

-1.300e+02 4.000e+02 3.000e+00

-1.300e+02 3.950e+02 3.000e+00

-1.300e+02 3.900e+02 3.000e+00

-1.300e+02 3.850e+02 3.000e+00

...

...

The integers in the first line denote the number of particles that represent
the fixed wall and the number of particles that represent the door of the
silo, respectively. The next lines contain three floats, representing the x

and y coordintes of a particle and its radius, respectively. In this specific
example, the first 183 lines describe the position and radius of the particles
that represent the wall of the silo. The following 5 lines the particles that
form the door.

3

Visualization

The data can be visualised using the Scalable Vector Graphics format [2].
SVG is a language for describing two-dimensional graphics and graphical
applications in XML. By writing the data in a relatively simple ascii text
file, the positions of the particles can be shown graphically in any viewing
program or a web browser such as Windows Explorer. An example of a file
that shows two circles is given here:

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg width="600px" height="800px" version="1.1"

xmlns="http://www.w3.org/2000/svg">

<circle cx="400" cy="50" r="10" fill="red"/>

<circle cx="210" cy="150" r="30" fill="green"/>

<circle cx="400" cy="550" r="60" fill="blue"/>

<circle cx="110" cy="650" r="30" fill="black"/>

</svg>

Simulation

In this case, we will simulate the flow of particles when they are added to a
silo and the subsequent flow when the door in the bottom is opened. The
dimensions of the silo, which is shown in Figure 2 are roughly 2.60 m wide
and 4.0 m high (the exact dimensions follow from the input file with the silo
walls). The radii of the particles that will be dropped into the silo may vary
from 3.0 to 5.0 cm. The mass of the particles is equal to mi = ρR2

i where ρ

is a density parameter. In this specific case, we take ρ = 100 kg/m2. Every
0.05 seconds, a new particle will be released from the point A, in Figure 2.
The initial velocity of these particles is v0

i = (0,−2.0)m/s. The elastic
constant for the particle interaction force k is taken to be k = 100 N/m and
the drag constant b = 0.05Ns/m. The time step that may be used in the
simulations is ∆t = 0.001 s.

Further assumptions are:

• The maximum number of particles in the simulation (including the
particles that model the walls of the silo) will never exceed 2500.

• Particles that have left the silo through the opening at the bottom

4

i

A

j

door

h
≈

4
.0

m

w ≈ 2.6 m

Figure 2: Geometry of the silo. The silo contains some internal obstacles to
deviate the trajectories of the grains.

and which have crossed the line y = −1.0 m, may be removed from the
simulation in order to speed-up the simulations.

Assignments

Week 1

1. Describe the data structure you will use to store the relevant data
(such as positions etc.) of all particles. Give the C code for this data
structure.

Week 2

2. Write a code that reads the positions of particles from the input file
into the data structure as described in assignment 1. Add a routine
to this code that writes these positions to an output file that plots the
particles in SVG format. Plot the fixed wall particles as red circles

5

and the particles that represent the door as green circles. Hint: you
may need to scale and translate the particle positions to get a nice
svg-picture. You can find these instructions at the SVG specification
website [2].

3. Implement the Verlet algorithm to calculate the trajectory of a single
particle under gravity. Do not consider the interaction forces for the
time being. Design a test to check if the implementation is correct.
Describe this test and its results in the report.

Week 3

4. Finish the code by adding the following items:

• A routine that releases new particles from point A with the cor-
rect initial velocity.

• A routine that calculates the interaction forces.

• A routine that plots the state of the system in an SVG file for
every second (i.e. every 1000 steps).

One can imagine that the routine in which the particle interaction
forces are calculated is the most time consuming part of the code. Try
to reduce the number of calculations in this part of much as possible,
without losing accuracy. Indicate what ’programming-tricks’ you have
been using to do this.

5. Simulate the flow of particles in the silo when 1000 particles are added
with a time interval of 0.05 seconds. Consider the following two cases:

• The silo is filled with particles that all have a uniform radius
Ri = 0.04 m.

• The silo is filled with a 50%-50% mixture of particles with radii
Ri = 0.04 m and Ri = 0.03 m.

What is the difference between the two results?

6. Implement a routine to determine whether all particles that have been
added to the silo have come to rest. At this instance, the door can be
opened to let the particles flow out. What kind of routine can be used
to open the door?

6

i

L

Figure 3: Division of the domains in cells with length L. Particle i can only
interact with particles in the shaded area.

Week 4

You may have noticed that when the number of particles increases, the sim-
ulation slows down drastically. This is because of the fact the the algorithm
that calculates the interaction forces is a double loop over the total number
of particles, which scales with O(N2) (where N is the number of particles.
This means that when the system contains 1000 particlesm the interaction
force algorithm is invoked approximately 106 times per time step.

The number of evaluation in particle interaction routine can be reduced
significantly when the evaluation of particles that are far away is skipped
in this process. This can be done by dividing the domain in a number of
square cells with length L, see Figure 3. When the dimension of the cell is
sufficiently large, it may be assumed that a particle can only interact with
the other particles in the cell and the particles in the neighboring cells (this
is done to cover the particles that are on a cell boundary). In this case,
the number of evaluations needed to calculate the interaction forces is much
smaller.

7. Implement this cell algorithm as a new function in your code. Make
sure that you can switch between the old implementation and this new
one. Describe the data structure that you use to store the mapping of

7

particles in the cells1. Test the algorithm with a cell size L = 0.25 m.
What is the speed-up of your simulation?

8. What is the minimum cell size for which this technique will still work.

Week 5

Time alotted to finish the assignments from the weeks before and to finish
the report.

References

[1] Verlet-Integration, http://en.wikipedia.org/wiki/Verlet integration.

[2] Scalable Vector Graphics, http://www.w3.org/Graphics/SVG/.

1If there is time left, one may consider to store the mapping of the particles on the

cells in a so-called chained-hash table.

8

