
Development of a test environment for constitutive models

Introduction

In modern engineering applications polymeric materials play a significant role, as they for
instance can be found in biomaterials and foams, just to mention a few. Their advanced
mechanical properties call for elaborate constitutive models to describe the observed material
behaviour. To achieve an accurate model representation the parameters in such a model need
to be determined experimentally, see Figure 1.

Figure 1: Experimental setup of foam testing, typical application of foam, simulation results

Project

The goal of the project is to develop a programme to fit a material model to experimental
data. Thereby focus is placed on the Mooney–Rivlin model as it well describes the hypere-
lastic behaviour of many materials. In both a one-dimensional, incompressible and a three
dimensional compressible format, the stress state for a given deformation shall be evaluated.
A numerical derivative is found by systematically perturbing the deformation state, and with
this a solution for the occurring multi-axial deformation is obtained iteratively. The algorithm
for the numerical derivative shall also be used for the fitting of the material parameters to
the experimental data.

A key ingredient in the programming is to define data structures, which allow to handle the
matrix quantities, and to define the necessary corresponding operators. The code shall be
designed in a modular fashion, such that the present Mooney–Rivlin model could easily be
replaced by other constitutive models, if needed later on. For this project the programming
language C is used.

Project Assignment

General procedure

The programming project in particular comprises five steps, which the group shall subse-
quently solve and briefly document.
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• In weekly meetings the progress will be discussed. Bring your current results and be
well prepared to explain occurring problems.

• The individual steps of the projects must be documented in a final report, which is due
6 March 2009.

• There will be a final discussion session of 30 min which each group in week 11 (9–13
March 2009). The exact time will be appointed during the course.

• The project tasks include simple plots to visualized the results. Because plotting curves
in C may be very time-consuming, it is recommended to perform the visualization of
the results using, for instance, Matlab.

Work plan.

step task date

S1 One-dimensional model and simple fitting 4 February 2009
S2 Three-dimensional hyperelastic model 9 February 2009
S3 Numerical derivative 13 February 2009
S4 Uniaxial stress state 20 February 2009
S5 Curve fitting for uniaxial stress state 6 March 2009

Final project report. The final project report must be submitted by 6 March 2009. It only
needs to be in note form, but make sure to include

• the group number and the names of all group members,

• the results of all problems asked for in the assignment,

• the source files containing the programming code written in C.

Problems

The following problem steps are to be solved subsequentially.

S1 One-dimensional hyperelastic model and simple fitting

Consider an incompressible Mooney–Rivlin constitutive model, in which the stress func-
tion is defined as

σ = [G1 + G2λ
−1][λ2 − λ−1]. (1)

when subjected to a uniaxial stretch ratio λ. Herein, the material parameters G1 and
G2 represent the two elastic shear moduli.

a) First assume G1 = 100 MPa and G2 = 100 MPa. For the stretch λ linearly varied
over from 1 to 3 in steps of 0.1, determine the resulting stress.
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b) Now the shear moduli G1 and G2 shall be fitted to the curve shown in Figure 2
using the algorithm of appendix C. The model response σ of Eq. (1) is thus stored
in a column h

˜
such that hi = σ(λi) and the model input in a column λ

˜
. Note that

in the algorithm the column θ
˜

=
[

G1 G2

]T
contains the shear moduli of the

model to be identified using the fitting algorithm described.

• Summarize all the data quantities (arrays) you will need in your code.

• Read the experimentally measured data for the stretch λi and the correspond-
ing stress σi from file data_1b.txt (columns: λ, σexper) and store them as λ

˜and m
˜

, respectively.

• Analytically determine the derivatives of the model quantity with respect to
the material parameters,

∂σ
˜∂Gi

. For the stretch λ
˜

found in Figure 2, store

these derivatives in the sensitivity matrix H =
∂h
˜
(λ
˜
, θ
˜
)

∂θ
˜

using the notation of

appendix A.

• Identify the two material parameters G1 and G2 with the Gauss–Newton al-
gorithm of appendix C. The weighting matrices can be set to V = I and
W = 0 .

• Plot and compare the model response for these parameters with the experi-
mental behaviour.
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Figure 2: Measurements from a tensile test for the incompressible material, which is to be
fitted in step 1b.

S2 Three-dimensional hyperelastic model

For a three-dimensional hyperelastic Mooney-Rivlin model, the Cauchy stress σ for an
arbitrary deformation gradient tensor F is given as:

σ =
1

J

[

G1B̃
d
− G2(B̃

−1
)d

]

+ K(J − 1)I , (2)

For this compressible model, the bulk modulus K represents a third material parameter.
Furthermore, B̃ = J−2/3

F · FT is the isochoric left Cauchy–Green deformation tensor
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and J = det(F ) is the volume ratio of the deformation. The required tensor operations
can be found in appendix A.

a) Identify the matrix operations that are needed to determine the Cauchy stress (2)
for a known deformation gradient F .

b) Give all components of the Cauchy stress tensor for the following deformations for
the scalar stretch λ = 1.1:

F =







λ 0 0

0 λ−
1

2 0

0 0 λ−
1
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; F =





λ 0 0
0 λ 0
0 0 λ



 . (3)

Thereby use the following material parameters: G1 = 100 MPa, G2 = 100 MPa,
and K = 200 MPa.

b) For these deformations also determine the equivalent deviatoric stress σeq =
√

3
2
σd :σd and the hydrostatic stress σh = 1

3
tr(σ).

S3 Numerical derivative

For a constitutive model, a numerical derivative of the stress with respect to the defor-

mation gradient,
dσ

dF
, can be obtained as follows:

dσ

dFij

∣

∣

∣

∣

F

=
σ(F + δF~ei~ej) −σ(F )

δF
for i, j ∈ {1, 2, 3} (4)

wherein δF is a perturbation applied to the deformation gradient componentwise.

a) Write a programme that determines all the components of the numerical tangent
for the three-dimensional Mooney–Rivlin model of the previous step. Store the
stress and the deformation gradient tensors both in column format as

σ
˜

= [ σ11 σ22 σ33 σ12 σ23 σ31 ]T , (5)

F
˜

= [ F11 F22 F33 F12 F23 F31 F21 F32 F13 ]T , (6)

respectively. Identify further arrays you need to initialize, while considering the
notation of appendix A.

b) Create a plot that displays the component
dσ11

dF11

∣

∣

∣

∣

F

versus the perturbation δF for

F =







λ 0 0

0 λ−
1

2 0

0 0 λ−
1

2






with λ = 1.1. (7)

Thereby vary δF from 10−9 to 100 and use a logarithmic scale for the δF -axis.
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S4 Uniaxial stress state

A material is subject to the prescribed stretch

U11 = λ(t) (8)

under the condition of uniaxial tensile stress, with

σ22 = σ33 = σ12 = σ13 = σ23 = 0. (9)

Since in this case no rotation occurs and no shearing modes are active, the deformation
tensor boils down to

F = U =̂





U11 0 0
0 U22 0
0 0 U33



 , (10)

which is a symmetric tensor with all diagonal components other than U11 unknown.

a) To determine these unknown deformations in U , write a programme that solves
the following system of equations

σ
˜
(u
˜
) = 0

˜
, (11)

using an iterative Newton–Raphson scheme (see appendix B). Use the notation

σ
˜

=

[

σ22

σ33

]

, u
˜

=

[

U22

U33

]

(12)

and numerically determine the tangent
dσ
˜

du
˜

for a perturbation of δu = 10−5.

b) Calculate the response for the stretch ratio λ ∈ [0; 2] in steps of ∆λ = 0.02.
Discretize the time into small increments and plot the following quantities versus
λ − 1:

• the three stress components σii,

• the diagonal components of the stretch tensor U ,

• the number of iterations needed for convergence and the residue ||σ
˜
||2 after

convergence.

S5 Fitting to experimental data

Apply the fitting algorithm of step 1, described in appendix C, now to the uniaxial model
within the three-dimensional setting of the previous step, which provides the relation
σ11. While taking the bulk modulus K the same as before, the goal is to determine the
shear moduli G1 and G2 in the model (2) based on the experimental response shown in
Figure 3, as it was obtained under uniaxial loading conditions.

a) • Read the experimental data from a file data_5a.txt (columns: λ, σ) and store
the stretches in λ

˜
and the corresponding stress measures in the column m

˜
.

5



• Store the model response in h
˜

such that hi = σ11(ti) and the model input in
λ
˜

such that λi = λ(ti).

• Compute the sensitivity matrix H =
∂h
˜
(λ
˜
, θ
˜
)

∂θ
˜

with respect to the sought-for

set of parameters θ
˜

=
[

G1 G2

]T
applying the same perturbation technique

for a numerical derivative as in step 3.

• Determine the shear moduli of this material, plot the resulting model response
and compare it to the experimental curve. Give the value of the (least squares)
objective function (29) for this fit.
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Figure 3: Experimental measurements from tensile test for the compressible material under
uniaxial stress, which is to be fitted in step 5a.

b) Describe the structure of the programme and how the constitutive model can be
replaced by an arbitrary other model.
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Appendix A: Notation and tensor/matrix operations

Tensor operations

We consider the stress/strain state of a material point in a global Cartesian coordinate system
with unit vector basis {~e1, ~e2, ~e3}.

Products between tensors. For two second-order tensors A = Aij ~ei~ej and B = Bjk ~ej~ek

the following products are defined. Thereby Einstein’s summation convention holds, which
prescribes a summation over equal indices.

• tensor product

C = A · B = AijCjk ~ei~ek = Cik ~ei~ek (13)

• scalar product

c = A : B = AikBki ~ei~ek (14)

Operations on tensors. The operations on second order tensors are evaluated for the matrix
representation with respect to the Cartesian basis defined above.

• transpose

A
T → A

T :=





A11 A21 A31

A12 A22 A32

A13 A23 A33



 (15)

• determinant

detA → detA :=

∣

∣

∣

∣

∣

∣

A11 A12 A13

A21 A22 A23

A31 A32 A33

∣

∣

∣

∣

∣

∣

(16)

= A11A22A33 − A11A23A32 − A12A21A33

+ A12A23A31 + A13A21A32 − A13A22A31

• inverse

A
−1 → A

−1 :=
1

detA



















∣

∣

∣

∣

A22 A23

A32 A33

∣

∣

∣

∣

∣

∣

∣

∣

A13 A12

A33 A32

∣

∣

∣

∣

∣

∣

∣

∣

A12 A13

A22 A23

∣

∣

∣

∣

∣

∣

∣

∣

A23 A21

A33 A31

∣

∣

∣

∣

∣

∣

∣

∣

A11 A13

A31 A33

∣

∣

∣

∣

∣

∣

∣

∣

A13 A11

A23 A21

∣

∣

∣

∣

∣

∣

∣

∣

A21 A22

A31 A32

∣

∣

∣

∣

∣

∣

∣

∣

A12 A11

A32 A31

∣

∣

∣

∣

∣

∣

∣

∣

A11 A12

A21 A22

∣

∣

∣

∣



















(17)

=
1

detA





A22A33 − A23A32 A13A32 − A33A12 A12A23 − A22A13

A23A31 − A21A33 A11A33 − A13A31 A13A21 − A11A23

A21A32 − A22A31 A12A31 − A11A32 A11A22 − A12A21
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• trace

trA → trA = Aii = A11 + A22 + A33 (18)

• deviator

A
d = A −

1

3
trA : I (19)

General matrix/column operations

• inverse of a 2 × 2 matrix A =

[

A11 A12

A21 A22

]

A =
1

detA

[

A22 −A12

−A21 A11

]

(20)

• 2-norm of a column

||u
˜
||2 =

√

u
˜

Tu
˜

=

√

∑

i

u2
i (21)

How to store derivatives

Store the numerical derivatives in a matrix K where the rows refer to the component of the
quantity itself and the columns refer to the quantity with respect to which the derivative is
taken.

• numerical derivative of step 3, Kij = dσi

dFj
:

K =
dσ
˜

dF
˜

=



















dσ11

dF11

dσ11

dF22

dσ11

dF33

dσ11

dF12

dσ11

dF23

dσ11

dF31

dσ11

dF21

dσ11

dF32

dσ11

dF13

dσ22

dF11

dσ22

dF22

dσ22

dF33

dσ22

dF12

dσ22

dF23

dσ22

dF31

dσ22

dF21

dσ22

dF32

dσ22

dF13

dσ33

dF11

dσ33

dF22

dσ33

dF33

dσ33

dF12

dσ33

dF23

dσ33

dF31

dσ33

dF21

dσ33

dF32

dσ33

dF13

dσ12

dF11

dσ12

dF22

dσ12

dF33

dσ12

dF12

dσ12

dF23

dσ12

dF31

dσ12

dF21

dσ12

dF32

dσ12

dF13

dσ23

dF11

dσ23

dF22

dσ23

dF33

dσ23

dF12

dσ23

dF23

dσ23

dF31

dσ23

dF21

dσ23

dF32

dσ23

dF13

dσ31

dF11

dσ31

dF22

dσ31

dF33

dσ31

dF12

dσ31

dF23

dσ31

dF31

dσ31

dF21

dσ31

dF32

dσ31

dF13



















(22)

• numerical derivative of step 4, Kij = dσi

duj
:

K =
dσ
˜

du
˜

=

[

dσ22

dU22

dσ22

dU33

dσ33

dU22

dσ33

dU33

]

(23)
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Appendix B: Newton–Raphson scheme

The iterative Newton–Raphson scheme is used to find a solution u
˜

for the following non-linear
set of equations:

σ
˜
(u
˜
) = 0

˜
. (24)

Because the real solution u
˜

of this equation is yet unknown, consider an estimate u
˜
∗. A Taylor

expansion around this estimate reads

σ
˜
(u
˜
∗ + δu

˜
) = σ

˜
(u
˜
∗) +

dσ
˜

du
˜

∣

∣

∣

∣

u
˜

∗

δu
˜

+ . . . . (25)

If the higher order terms are ignored, the update on the estimate, δu
˜
, can be obtained as:

δu
˜

= −

[

dσ
˜

du
˜

∣

∣

∣

∣

u
˜

∗

]

−1

σ
˜
(u
˜
∗). (26)

With this a new, better estimate is obtained from:

u
˜
∗ := u

˜
∗ + δu

˜
. (27)

Starting with an initial estimate, the solution (26) and the update (27) are repeated until the
estimated solution is sufficiently close to the real solution and convergence has been obtained.
Use as a criterion for convergence:

||δu
˜
||2

||u
˜
∗||2

≤ 10−6, (28)

Appendix C: Fitting algorithm

The Gauss–Newton fitting algorithm that is also given in section 3.3.2 of the lecture notes
“Continuum Mechanics for Advanced Manufacturing Technologies” is used to determine the
parameters of the model that best fit the experimentally obtained response of the material.

Let the difference between the measured data points for the stress m
˜

and the model prediction
for this response h

˜
be given by ξ

˜
= m

˜
−h

˜
. Furthermore, the difference between the estimated

parameters θ
˜

and an initial estimate θ
˜
0 is given by ζ

˜
= θ

˜
0 − θ

˜
. With the fitting algorithm,

the following quadratic objective function will be minimized:

G(θ
˜
) = ξ

˜

T
V ξ

˜
+ ζ

˜

T
W ζ

˜
, (29)

where V and W are weighting matrices (which are positive definite and symmetric).

The model sensitivity to variations in the parameters is given by:

H =
∂h
˜
(λ
˜
, θ
˜
)

∂θ
˜

(30)

9



Then, a new estimate for the model parameters can be obtained from

θ
˜

:= θ
˜

+ δθ
˜

(31)

with

δθ
˜

= K
−1

(

H
T
V ξ

˜
+ W ζ

˜

)

(32)

and

K = H
T
V H + W . (33)

The parameter estimate θ
˜

is being updated until the updates are sufficiently small. Use as a
criterion for convergence:

||δθ
˜
||2

||θ
˜
||2

≤ 10−4. (34)
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