Algorithmic Adventures
From Knowledge to Magic

Book by Juraj Hromkovič, ETH Zurich
Slides by Tom Verhoeff, TU Eindhoven

Potential and Actual Infinity

The sequence of natural (counting) numbers never ends:
\[0, 1, 2, 3, \ldots \]
There is no largest natural number: after \(i \) comes \(i + 1 \)

The sequence is **unbounded**, giving rise to **potential infinity**:
- at each moment we have encountered only a finite set
- We never need to see **actual infinity**, the whole infinite set together:
 \[\mathbb{N} = \{ 0, 1, 2, 3, \ldots \} \]
 \(\mathbb{N} \) is an infinite object, about which we reason symbolically

How many elements does \(\mathbb{N} \) have? \(\infty \)?

Quotation

Little progress would be made in the world
if we were always afraid of possible negative consequences.

Georg Christoph Lichtenberg

Integer numbers

The set \(\mathbb{Z} \) of integer numbers (integers):
\[\mathbb{Z} = \{ \ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \} \]
How many elements does \(\mathbb{Z} \) have? \(\infty \)?

Are there more integers than natural numbers?

The set \(\mathbb{Z}^+ \) of positive integers:
\[\mathbb{Z}^+ = \{ 1, 2, 3, \ldots \} \]
How many elements does \(\mathbb{Z}^+ \) have? \(\infty \)?

Are there more natural numbers than positive integers?
Rational numbers

The set \mathbb{Q}^+ of positive rational numbers (integer fractions):

$$\mathbb{Q}^+ = \left\{ \frac{m}{n} \mid m, n \in \mathbb{Z}^+ \right\}$$

There is no smallest positive fraction: $\frac{1}{2} > \frac{1}{3} > \ldots > 0$

The positive fractions extend the positive integers: $\mathbb{Z}^+ \subset \mathbb{Q}^+$

Between every pair of fractions q_1, q_2 lies another fraction: $(q_1 + q_2)/2$

Between natural numbers n and $n + 1$ lie infinitely many fractions

How many elements does \mathbb{Q}^+ have? ∞?

Are there more positive fractions than natural numbers?

Real numbers

The set \mathbb{R}^+ of positive real numbers (Dedekind cuts):

$$\mathbb{R}^+ = \left\{ (S, T) \mid S, T \text{ is a Dedekind cut of } \mathbb{Q}^+ \right\}$$

Every real number r has an infinite radix-R expansion ($2 \leq R \in \mathbb{N}$):

$$r = n.d_1d_2d_3\ldots = n + \sum_{i=1}^{\infty} d_iR^{-i}, \text{ with } n \in \mathbb{N}, d_i \in \mathbb{N}, d_i < R$$

$\sqrt{2} = 1.41421\ldots$ (decimal, $R = 10$) = 1.01101\ldots (binary, $R = 2$)

The positive real numbers extend the positive fractions: $\mathbb{Q}^+ \subset \mathbb{R}^+$

Square root two is a real number, not a fraction: $\sqrt{2} \in \mathbb{R}^+ \setminus \mathbb{Q}^+$

How many elements does \mathbb{R}^+ have? ∞?

Are there more positive real numbers than positive fractions?

The Number Line and Dedekind Cuts

A Dedekind cut of \mathbb{Q}^+ is a pair of nonempty subsets $S, T \subset \mathbb{Q}^+$ with

- $S \cup T = \mathbb{Q}^+$, i.e., they partition \mathbb{Q}^+ into two parts
- $S < T$, i.e., $s < t$ for all $s \in S$ and $t \in T$, i.e., S lies left of T
- S has no largest element (N.B. T may but need not have a smallest element)

$\sqrt{2}$

Comparing the Sizes of (Infinite) Sets According to Cantor

The size of set S is denoted by $|S|

A matching of sets S and T is a set of pairs $(s, t) \in S \times T$ such that

- $s \in S$ and $t \in T$
- each element of S is the first element of a exactly one pair
- each element of T is the second element of a exactly one pair

We write $S \overset{1-1}{\sim} T$ when there exists a matching between S and T

Cantor (mathematician, 1845–1918) defined:

$|S| = |T|$ if and only if $S \overset{1-1}{\sim} T$
Comparing \(\mathbb{N} \) and \(\mathbb{Z}^+ \)

\[\mathbb{N} = \{ 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots \} \]
\[\mathbb{Z}^+ = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9, \ldots \} \]

A matching between \(\mathbb{N} \) and \(\mathbb{Z}^+ \):
\[\{(i, i+1) | i \in \mathbb{N}\} \]

Hence
\[|\mathbb{N}| = |\mathbb{Z}^+| \]

Note that \(\mathbb{Z}^+ \) is a proper subset of \(\mathbb{N} \): \(\mathbb{Z}^+ \subset \mathbb{N} \)

A proper part of an infinite set can have the same size as the whole set

Definition \(S \) is infinite when it has a proper subset \(T \subset S \) with \(|T| = |S| \)

Comparing \(\mathbb{N} \) to some other subsets

\[\mathbb{N} = \{ 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots \} \]
\[\mathbb{N}_{\text{even}} = \{ 0, 2, 4, 6, 8, 10, 12, 14, 16, \ldots \} \]
\[\mathbb{N}_{\text{square}} = \{ 0, 1, 4, 9, 16, 25, 36, 49, 64, \ldots \} \]
\[\mathbb{N}_{\text{prime}} = \{ 2, 3, 5, 7, 11, 13, 17, 19, 23, \ldots \} \]
\[\mathbb{N}_{\text{powers of } 10} = \{ 1, 10, 10^2, 10^3, 10^4, 10^5, 10^6, 10^7, 10^8, \ldots \} \]

All these infinite subsets have the same size as \(\mathbb{N} \)
\[|S| = |\mathbb{N}| \Leftrightarrow \text{the elements of } S \text{ can be enumerated (numbered)} \]

Comparing \(\mathbb{N} \) to \(\mathbb{Z} \)

\[\mathbb{N} = \{ 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots \} \]
\[\mathbb{Z} = \{ 0, -1, 1, -2, 2, -3, 3, -4, 4, \ldots \} \]

An enumeration need not be order preserving!

Comparing \(\mathbb{N} \) to \(\mathbb{Q}^+ \)

\[\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots \]
\[\frac{2}{1}, \frac{2}{2}, \frac{2}{3}, \frac{2}{4}, \frac{2}{5}, \ldots \]
\[\frac{3}{1}, \frac{3}{2}, \frac{3}{3}, \frac{3}{4}, \frac{3}{5}, \ldots \]
\[\frac{4}{1}, \frac{4}{2}, \frac{4}{3}, \frac{4}{4}, \frac{4}{5}, \ldots \]
\[\frac{5}{1}, \frac{5}{2}, \frac{5}{3}, \frac{5}{4}, \frac{5}{5}, \ldots \]

Can the elements of \(\mathbb{Q}^+ \) be enumerated?

N.B. Table contains duplicates!
Enumeration of \(\mathbb{Q}^+ \) by Diagonals (Cantor)

\[
\begin{array}{cccccccccc}
\frac{1}{1} & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \cdots \\
\frac{2}{1} & \frac{2}{2} & \frac{2}{3} & \frac{2}{4} & \frac{2}{5} & \frac{2}{6} & \frac{2}{7} & \frac{2}{8} & \cdots \\
\frac{3}{1} & \frac{3}{2} & \frac{3}{3} & \frac{3}{4} & \frac{3}{5} & \frac{3}{6} & \frac{3}{7} & \frac{3}{8} & \cdots \\
\frac{4}{1} & \frac{4}{2} & \frac{4}{3} & \frac{4}{4} & \frac{4}{5} & \frac{4}{6} & \frac{4}{7} & \frac{4}{8} & \cdots \\
\frac{5}{1} & \frac{5}{2} & \frac{5}{3} & \frac{5}{4} & \frac{5}{5} & \frac{5}{6} & \frac{5}{7} & \frac{5}{8} & \cdots \\
\vdots & \ddots
\end{array}
\]

\(N = \{ 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots \} \)

\(\mathbb{Q}^+ = \{ \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8}, \ldots \} \)

Encoding Pairs of Natural Numbers (\(\mathbb{N} \times \mathbb{N} \)) in \(\mathbb{N} \)

An enumerable union of enumerable sets is enumerable

Map \((a, b) \in \mathbb{N} \times \mathbb{N}\) to what unique natural number in \(\mathbb{N}\)?

A mapping of the form \(F(a, b) = Ka + b\) does not work, because \(F(a + 1, b) = K(a + 1) + b = Ka + b + K = F(a, b + K)\)

Diagonalization works: define \(F(a, b) = (a + b)(a + b + 1)/2 + b\)

\[
\begin{array}{ccc}
| a & b = 0 | b = 1 | b = 2 | b = 3 \\
\hline
a = 0 & 0 & 2 & 5 & 9 \\
精密 & 1 & 4 & 8 & 13 \\
精密 & 2 & 7 & 13 & 20 \\
精密 & 3 & 10 & 18 & 27 \\
精密 & 4 & 13 & 22 & 32 \\
精密 & 5 & \cdots & \cdots & \cdots \\
\end{array}
\]

Based on triangular numbers \((b = 0)\): \(a(a + 1)/2 = \sum_{i=1}^{a} i\)

Encoding k-Tuples of Natural Numbers (\(\mathbb{N}^k \)) in \(\mathbb{N} \)

Let \(F_2 = F : \mathbb{N}^2 = \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}\)

\(F_3 : \mathbb{N}^3 = \mathbb{N} \times \mathbb{N} \times \mathbb{N} = \{(a, b, c) \mid a, b, c \in \mathbb{N}\} \rightarrow \mathbb{N}\)

Define \(F_3(a, b, c) = F(a, F(b, c))\)

Similarly for \(\mathbb{N}^{k+1} = \mathbb{N} \times \mathbb{N}^k\)

Define \(F_{k+1}(a_1, a_2, a_3, \ldots, a_{k+1}) = F(a_1, F_k(a_2, a_3, \ldots, a_{k+1}))\)

Hence, Each \(\mathbb{N}^k\) is enumerable: \(|\mathbb{N}^k| = |\mathbb{N}|\)

N.B. All \(F_k\) are invertible

Encoding All Tuples of Natural Numbers (\(\mathbb{N}^* = \bigcup \mathbb{N}^k \)) in \(\mathbb{N} \)

The set of all tuples of natural numbers:

\(\mathbb{N}^* = \bigcup_{k=1}^{\infty} \mathbb{N}^k\) where \(\mathbb{N}^1 = \mathbb{N}\)

Define \(G : \mathbb{N}^* \rightarrow \mathbb{N}\) by

\(G(a_1, a_2, a_3, \ldots, a_k) = F(k, F_k(a_1, a_2, a_3, \ldots, a_k))\)

where \(F_1(n) = n\) (N.B. \(G\) is invertible)

\(G\) is also called a Gödel numbering of \(\mathbb{N}^*\)

Hence, \(\mathbb{N}^*\) is enumerable: \(|\mathbb{N}^*| = |\mathbb{N}|\)

Are all sets enumerable?
The Power Set Consisting of All Subsets

For a set S, its **power set** $\mathcal{P}(S)$ consists of all subsets of S:

$$\mathcal{P}(S) = \{ T \mid T \subseteq S \}$$

E.g. $\mathcal{P}(\{0,1\}) = \{ \emptyset, \{0\}, \{1\}, \{0,1\} \}$

Attempt to match S and $\mathcal{P}(S)$:

$$x \in S \leftrightarrow \text{subset } T_x \subseteq S: \bullet = y \in T_x$$

$$\begin{array}{cccccc}
a & \leftrightarrow & \bullet & \circ & \circ & \circ \\
b & \leftrightarrow & \circ & \bullet & \circ & \circ \\
c & \leftrightarrow & \bullet & \bullet & \circ & \circ \\
d & \leftrightarrow & \circ & \circ & \bullet & \bullet \\
\end{array}$$

$$D = \text{complement of diagonal}$$

A Set is Smaller Than Its Power Set (Cantor)

Diagonalization method: assume matching $\{ (x, T_x) \mid x \in S, T_x \subseteq S \}$

$$D = \{ x \in S \mid x \notin T_x \}$$

$x \in D \iff x \in S \text{ and } x \notin T_x$

$$D \subseteq S \text{ and } D \neq T_x$$

Hence, $D \in \mathcal{P}(S)$ is not matched with any $x \in S$

Consequently, S is smaller than $\mathcal{P}(S)$: $|S| < |\mathcal{P}(S)|$, in particular

$$|\mathbb{N}| < |\mathcal{P}(\mathbb{N})|$$

The power set of S is isomorphic to the set of mappings $S \to \{0,1\}$

$$f : S \to \{0,1\} \text{ corresponds to } \{ x \in S \mid f(x) = 1 \}$$

$\mathcal{P}(\mathbb{N})$ corresponds to the set of all **infinite** $0,1$-sequences

The Set of Real Numbers is Not Enumerable

Real numbers in the interval $[0,1]$ have **binary expansions** of the form

$$0.d_1d_2d_3\ldots \text{ with } d_i \in \{0,1\}$$

Thus, there is a correspondence between $[0,1]$ and infinite $0,1$-sequences

There are still some technical difficulties here, because

$$0.\ldots 0\overline{1} = 0.\ldots 1\overline{0}$$

where \overline{d} means an infinite tail of repeating digits d only

Consequently, the real numbers are not enumerable:

$$|\mathbb{N}| < |\mathbb{R}|$$

Cantor also showed that $|[0,1]| = |\mathbb{R}| = |\mathbb{R}^k|$